Статьи 2019 года (A...H)



Abrahamson D., Flood V.J., Miele J.A., Siu Y.-T. (2019). Enactivism and ethnomethodological conversation analysis as tools for expanding universal design for learning: The case of visually impaired mathematics students // ZDM Mathematics Education, 51(2), 291-303. doi:10.1007/s11858-018-0998-1.

Adiga A., Barrett C., Eubank S., Kuhlman C.J., Marathe M.V., Mortveit H., Ravi S. S., Rosenkrantz D.J., Stearns R.E., Swarup S., Vullikanti A. Validating agent-based models of large networked systems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2807-2818.
The paper describes a systematic approach for validating real-world biological, information, social and technical networks.

Ahmed K., Liu J. Simulation of energy-efficient demand response for high performance computing systems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2560-2571.

Akopov A.S., Beklaryan L.A., Saghatelyan A.K. Agent-based modelling of interactions between air pollutants and greenery using a case study of Yerevan, Armenia // Environmental Modelling & Software. 2019. Vol. 116. P. 7–25. https://doi.org/10.1016/j.envsoft.2019.02.003.

Alabdulkarim A.A., Al-Harkan I.M., Goldsman D. Using discrete event simulation to analyze pricing strategies for same-location car rentals // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1625-1636.
The aim of this study is to understand what pricing strategies work best for rental companies so as to achieve higher revenue for same-location pick-up and drop-off of rentals.

Albey E., Yanıkoglu I., Uzsoy R. A robust optimization approach for production planning under exogenous planned lead times // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2312-2323.
In this paper, we present a distributionally robust release planning model that allows planned lead time probability estimates to vary over a specified ambiguity set.

Alexopoulos C., Goldsman D., Mokashi A.C., Wilson J.R. Sequential estimation of steady-state quantiles: some new developments in methods and software // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.3774-3785.

Alshammari S.M., Gwalani H., Helsing J.E., Mikler A.R. Disease spread simulation to assess the risk of epidemics during the global mass gathering of hajj pilgrimage // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.215-226.

Anagnostou A., Taylor S.J.E., Abubakar N.T., Kiss T., DesLauriers J., Gesmier G., Terstyanszky G., Kacsuk P., Kovacs J. Towards a deadline-based simulation experimentation framework using micro-services auto-scaling approach // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2749-2758.

Anauate P.P., Netto J.F., Botter R.C., Mota D.O. Estimating the effect of product variety at a brazilian bulk terminal // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1731-1742.
In this context, we present a case study involving a Brazilian terminal designed to handle iron ore, which must now import coal as well.

Andreasson H., Weman J., Nafors D., Berglund J., Johansson B., Lihnell K., Lydhig T. Utilizing discrete event simulation to support conceptual development of production systems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2073-2084.
Discrete Event Simulation (DES) is a well-reputed tool for analyzing production systems. However, the development of new production system concepts introduces challenges from uncertainties, frequent concept changes, and limited input data. This paper investigates how DES should be applied in this context and proposes an adapted simulation project methodology that sets out to deal with the identified challenges.

Anton G., Wilensky U. (2019). One size fits all: Designing for socialization in physical computing // In Proceedings of the 50th ACM technical symposium on computer science education (pp. 825 - 831). ACM.

Arastoopour Irgens G., Dabholkar S., Bain C., Woods P., Hall K., Swanson H., Horn M., Wilensky U. (2019). Modeling and measuring students' computational thinking practices in science // Journal of Science Education and Technology.

Bader R.M.I., Hamad N.A. A multi-agent system model for controlling traffic congestions // ICIC Express Letters. 2019. Vol. 10. No. 9. P. 841-847.

Bain C., Wilensky U. (2019). Sorting out algorithms: learning about complexity through participatory simulations // Proceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE '19), February 27-March 2, 2019, Minneapolis, MN, USA.

Bain C., Anton G. (2019, February). Integrating Agent-based Modeling in STEM Classes: from blocks to text and back? // In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 1238-1238).

Bain C., Anton G., Horn M., Wilensky U. (2019, October). Position: Building blocks for agent-based modeling can scaffold computational thinking engagement in STEM Classrooms // In 2019 IEEE Blocks and Beyond Workshop (B&B) (pp. 1-4).

Barat S., Kulkarni V., Clark T., Barn B. An actor based simulation driven digital twin for analyzing complex business systems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.157-168.
This paper presents a novel approach to analogously utilise the concept of digital twin in controlling and adapting large complex business enterprises, and demonstrates its efficacy using a set of adaptation scenarios of a large university.

Barbuto A., Lopolito A., Santeramo F.G. (2019) Improving diffusion in agriculture: an agent-based model to find the predictors for efficient early adopters // Agricultural and Food Economics.
The aim of this paper is to find the network features of the early adopters associated with high adoption rates of a specific new practice: the use of biodegradable mulching films containing soluble bio-based substances derived from municipal solid wastes. We simulated the diffusion process by means of an agentbased model calibrated on real-world data.

Barhebwa-Mushamuka F., Dauzere-Peres S., Yugma C. Work-in-process balancing control in global fab scheduling for semiconductor manufacturing // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2257-2268.
This paper addresses the problem of controlling the Work-In-Process in semiconductor manufacturing by using a global scheduling approach.

Bastian N.D., Fisher C.B., Hall A.O., Lunday B.J. Solving the Army’s cyber workforce planning problem using stochastic optimization and discrete-event simulation modeling // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.738-749.

Basu D., Panorkou N. (2019). Integrating covariational reasoning and technology into the teaching and learning of the greenhouse effect // Journal of Mathematics Education, 12(1), pp.6-23.

Batosalem A.C., Gaba J.M.B., Ngo J.B.O., Ticug J.R.G., Ngo C.A.M. Static zoning division elevator traffic simulation using agent-based modeling // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.145-156.

Bauduin S., McIntire E.J., Chubaty A.M. (2019). NetLogoR: a package to build and run spatially explicit agent‐based models in R // Ecography, 42(11), 1841-1849.

Bayliss C., Juan A.A., Franco G., Guidotti R., Estrada-Moreno A. Combining simulation with a biased-randomized heuristic to develop parametric bonds for insurance coverage against earthquakes // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1328-1339.

Beklaryan G.L., Akopov A.S., Khachatryan N.K. Optimisation of system dynamics models using a real-coded genetic algorithm with fuzzy control // Cybernetics and Information Technologies. 2019. Vol. 19. No. 2. P. 87–103. https://doi.org/10.2478/cait-2019-0017.

Bell D., Groen D., Mustafee N., Ozik J., Strassburger S. Hybrid simulation development – is it just analytics? // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1352-1362.
This panel will discuss a range of hybrid simulation development approaches and endeavor to uncover possible strategies for supporting the development and coupling of hybrid simulations.

Belloli L., Vicino D., Ruiz-Martin C., Wainer G. Building DEVS models with the cadmium tool // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.45-59.
In this tutorial, we introduce Cadmium, a new Discrete Event System Specification (DEVS) simulator. Cadmium is a C++17 header only DEVS simulator easy to include and to integrate into different projects. We discuss the tool’s Application Programming Interface, the simulation algorithms used and its implementation. We present a case study as an example to explain how to implement DEVS models in Cadmium.

Benaben F., Lauras M., Fertier A., Salatge N. Integrating model-driven engineering as the next challenge for artificial intelligence – application to risk and crisis management // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1549-1563.

Benhadi-Marín J., Pereira J.A., Sousa J.P., Santos S.A. (2019). EcoPred: an educational individual based model to explain biological control, a case study within an arable land // Journal of Biological Education, 1-16.

Benzaman B., Pakdamanian E. Discrete event simulation of driver’s routing behavior rule at a road intersection // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1801-1812.
This paper focuses on driver behavior of route selection by differentiating three distinguishable decisions, which are shortest distance routing, shortest time routing and less crowded road routing.

Beskow D.M., Carley K.M. Agent based simulation of bot disinformation maneuvers in Twitter // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.750-761.

Biller B., Wolf E., Yucesan E. Inventory management under disruption risk // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1918-1929.
Using stochastic simulation, we combine the newsvendor model capturing demand uncertainty costs with catastrophe models capturing disruption/recovery costs. We apply data analytics to the simulation outputs to obtain insights to manage inventory under disruption risk.

Bin Othman M.S., Tan G. Enhancing realism in simulation through deep learning // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2795-2806.
In this paper, some issues in the commonly used simulation flow were identified and deep learning was introduced to enhance realism by learning historical data progressively, so as to generate realistic inputs to a simulation model.

Bipasha T., Azucena J., Alkhaleel B., Liao H., Nachtmann H. Hybrid simulation to support interdependence modeling of a multimodal transportation network // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1390-1401.

Blanchet J., Kang Y., Murthy K., Zhang F. Data-driven optimal transport cost selection for distributionally robust optimization // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.3740-3751.

Blasch E., Xu R., Nikouei S.Y., Chen Y. A study of lightweight DDDAS architecture for real-time public safety applications through hybrid simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.762-773.

Bluemink B., de Kok G., Srinivasan B., Uzsoy R. Evaluating mixed integer programming models for solving stochastic inventory problems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1696-1707.
We formulate mixed integer programming models to obtain approximate solutions to finite horizon stochastic inventory models. These deterministic formulations of necessity make a number of simplifying assumptions, but their special structure permits very short model solution times under a range of experimental conditions.

Bocciarelli P., D_Ambrogio A., Giglio A., Paglia E. BPMN-based business process modeling and simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1439-1453.
This paper presents a business process model and notation (BPMN)-based M&S approach that introduces a BPMN extension to specify business process (BP) simulation models as annotated BPMN models, and a domain-specific BP simulation language to specify and execute simulation model implementations, which can be seamlessly derived from annotated BPMN models by use of automated model transformations.

Bocciarelli P., D’Ambrogio A., Giglio A., Paglia E. Model-driven distributed simulation engineering // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.75-89.
This tutorial introduces an approach that applies highly automated model-driven engineering principles and standards to ease the development of distributed simulations.

Borowczak M., Burrows A.C. (2019). Ants Go Marching—Integrating Computer Science into Teacher Professional Development with NetLogo // Education Sciences, 9(1), 66.

Bosch P. Mixed-mode pandemic modeling // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1103-1113.
This paper describes a mixed mode approach to simulating a global pandemic. It describes the architectural and design decisions as well as the data sources, development tools and processes in each of the three simulation domains – system dynamics, discrete event simulation and agent-based modeling.

Browning F., Moore K., Campos J. (2019) Exploring Negative Absolute Temperature Using NetLogo // The Physics Journal, 57(26), 26-27.

Bubna R., Balaraman V., Kumar S., Lobo S. Service design simulation using fine grained agents // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.308-319.

Canonico L.B., McNeese N. Flash crashes in multi-agent systems using minority games and reinforcement learning to test AI-safety // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.193-204.
This paper expands upon prior AI-safety research to create a model to study the harmful outcomes of multi-agent systems. In this paper, we outline previous work that has highlighted multiple aspects of AI-safety research and focus on AI-safety systems in multi-agent systems.

Carna S., Ferracci S., De Santis E., Pellegrini A., Quaglia F. Hardware-assisted incremental checkpointing in speculative parallel discrete event simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2759-2770.
In this article we take the opposite perspective where hardware profiling facilities are exploited to execute core functional tasks for the correct and efficient execution of speculative Parallel Discrete Event Simulation applications.

Castane G.G., Simonis H., Brown K.N., Lin Y., Ozturk C., Garraffa M., Antunes M. Simulation-based optimization tool for field service planning // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1684-1695.
Many companies that deliver units to customer premises need to provide periodical maintenance and services on request by their field service technicians. A common challenge is to evaluate different design choices, related to staffing decisions, technician scheduling strategies, and technological improvements in order to make the system more efficient. This work provides a simulation-based optimization tool to support decision makers in tackling this challenging problem.

Castañeda-Martínez R.A., Flores DL., Castro C., Benítez B. (2019). Agent-Based Model of resistant bacterial evolution in an heterogeneous medium // In: Sanchez M., Aguilar L., Castanon-Puga M., Rodríguez A. (eds) Applied Decision-Making. Studies in Systems, Decision and Control, vol 209. Springer, Cham.

Ceja A.Y., Kane S. (2019, August). An Astroecological Model for characterizing exoplanet habitability // In AAS/Division for Extreme Solar Systems Abstracts (Vol. 4).

Chen C.-M. (J.) Penalty enforcement or cost reduction – which approach better improves supplier process yield? // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1755-1766.
We create an analytical model that compares the retailer’s penalty-enforcement and cost-reduction approaches in which the supplier must optimize its production process yield to minimize the total expected cost.

Chen Y., Ji W., Wang Q. A bayesian-based approach for public sentiment modeling // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.3053-3063.

Chen Y., Wu C.-L., Lau P.L., Tang N.Y.A., Ma N.K., Chung Y.S. Airport passenger shopping modeling and simulation: targeting distance impacts // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.524-535.
This paper first investigates the possible passenger shopping behavioral model through an exploratory Eye-tracking exercise.

Chennoufi M., Bendella F. (2019, April). Decision Making in Complex System // In 2019 5th International Conference on Optimization and Applications (ICOA) (pp. 1-7). IEEE.

Chicon L.A., Casas P.F. Evaluation of metaheuristic algorithms for the improvement of sustainability in the construction area // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2583-2594.

Chliaoutakis A., Chalkiadakis G. (2019, June). AncientS-ABM: A novel tool for simulating ancient societies // In International Conference on Practical Applications of Agents and Multi-Agent Systems (pp. 237-241). Springer, Cham.

Chumachenko D., Meniailov I., Bazilevych K., Chumachenko T. (2019, September). On intelligent decision making in multiagent systems in conditions of uncertainty // In 2019 XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT) (pp. 150-153). IEEE.

Conti J.C., Ursini E.L., Martins P.S. Modeling and simulation of the bottlenecks of an online reservation system // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2617-2628.
This work intends to present an analytical and a simulation model for an online reservation system and examine its performance associated with its bottlenecks.

Dabholkar S., Swanson H., Wilensky U. (2019). Epistemic considerations for modeling: understanding the usefulness and limitations of models with Emergent Systems Microworlds // In a Related Paper Set, Using Technology to Promote Students’ Modeling Practice and Complex Systems Thinking. The Annual Meeting of the National Association of Research in Science Teaching (NARST), Baltimore, MD, USA.

Dalle Nogare D., Chitnis A.B. (2019, December). NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium // In Seminars in Cell & Developmental Biology. Academic Press.

Davies B., Romanowska I., Harris K., Crabtree S.A. (2019). Combining geographic information systems and Agent-Based Models in archaeology: Part 2 of 3 // Advances in Archaeological Practice, 7(2), 185-193.

Davis C. W.H., Giabbanelli P.J., Jetter A.J. The intersection of agent based models and fuzzy cognitive maps: a review of an emerging hybrid modeling practice // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1292-1303.

Deenen P.C., Adan J., Stokkermans J., Adan I.J.B.F., Akcay A. Wafer-to-order allocation in semiconductor back-end production // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2360-2371.
This paper discusses the development of an efficient algorithm that minimizes overproduction in the allocation of wafers to customer orders prior to assembly at a semiconductor production facility.

De la Fuente R., Gatica J., Smith III R.L. A simulation model to determine staffing strategy and warehouse capacity for a local distribution center // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1564-1578.
Capacity and workforce management in a distribution center can have significant impacts on the overall supply chain. This paper examines the effects of workforce staffing strategies employed in the warehouse operations of a beverage distribution center located in the Bio-Bio Region, Chile.

Delcea C., Cotfas L.A. (2019). Increasing awareness in classroom evacuation situations using agent-based modeling // Physica A: Statistical Mechanics and its Applications, 523, 1400-1418.

Delcea C., Milne R.J., Cotfas L.A., Craciun, L., Molanescu A.G. (2019). Methods for Accelerating the airplane boarding process in the presence of apron buses // IEEE Access, 7, 134372-134387.

Ding F., Pan W. (2019). Simulation research on large passenger flow guidance of urban rail transit based on Multi-Agent // Academic Journal of Computing & Information Science, 2(1).

Dragoni A.F. (2019). An Agent-Swarm Simulator for dynamic vehicle routing problem empirical analysis // In Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection: 17th International Conference, PAAMS 2019, Ávila, Spain, June 26-28, 2019, Proceedings (Vol. 11523, p. 246). Springer.

Ehm H., Neau C., Martens C.J., Lauer T., Ponsignon T., Garcia J. Research opportunities regarding tree and network product structure representations in a semiconductor supply chain // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2429-2440.

Ehm H., Ramzy N., Moder P., Summerer C., Fetz S., Neau C. ECSEL digital reference – a semantic web for semiconductor manufacturing and supply chains containing semiconductors // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2409-2418.

Elbert R., Muller J.P. Analyzing the influence of costs and delays on mode choice in intermodal transportation by combining sample average approximation and discrete event simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1837-1848.
The paper on hand combines a Sample Average Approximation approach with Discrete Event Simulation for Service Network Design with stochastic transportation times, including the corresponding vehicle routing problem for road vehicles.

Eldabi T., Tako A.A., Bell D., Tolk A. Tutorial on means of hybrid simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.33-44.
This paper aims to explore several concepts related to Hybrid Simulation modelling and design.

Erickson J.M., Heath G.D. Closing the gap between simulations for training and wargaming // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2515-2523.

Esmaeili Bidhendi M. (2019). The Study of CO Symptoms' impacts on individuals, using GIS and Agent-based Modeling (ABM) // Pollution, 5(3), 463-471.

Falcionelli N. et al. (2019). An Agent-Swarm Simulator for dynamic vehicle routing problem empirical analysis // Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection Lecture Notes in Computer Science, 26 June 2019, pp. 246–250., doi:10.1007/978-3-030-24209-1_23.

Febriandini I.F., Sutopo W., Hisjam M. (2019, May). Analysis daily newspaper distribution in Solo by Agent Based Simulation // In IOP Conference Series: Materials Science and Engineering (Vol. 528, No. 1, p. 012033). IOP Publishing.

Fitwi A.H., Nagothu D., Chen Y., Blasch E. A distributed agent-based framework for a constellation of drones in a military operation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2548-2559.

Fishwick P., Mustafee N. Broadening participation in modelling // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1316-1327.

Frahm E., Kandel A.W., Gasparyan B. (2019). Upper palaeolithic settlement and mobility in the Armenian highlands: Agent-Based Modeling, Obsidian Sourcing, and Lithic analysis at Aghitu-3 Cave // Journal of Paleolithic Archaeology 2, 418–465. https://doi.org/10.1007/s41982-019-00025-5.

Franceschini R., Van Mierlo S., Vangheluwe H. Towards adaptive abstraction in agent based simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2725-2736.
In this paper, we study and compare multiple modelling and simulation techniques for switching between abstractions.

Gao S., Song X., Ding R. (2019). Dynamic Agent-Based Simulation of information transfer in collaborative project network // In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation (pp. 602-610). Reston, VA: American Society of Civil Engineers.

García-Pena C., Gutierrez-Robledo L.M., Cabrera-Becerril A., Fajardo-Ortiz D. (2019). Team assembly mechanisms and the knowledge produced in the Mexico’s national institute of geriatrics: a network analysis and Agent-Based Modeling approach // Scientifica, 2019.

Gehlot V. From Petri nets to colored petri nets: a tutorial introduction to nets based formalism for modeling and simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1519-1533.
This tutorial introduces the reader to the vocabulary and constructs of both Petri Nets and Colored Petri Nets (CPN) and illustrates the use of CPN Tools in creating and simulating models by means of familiar simple examples.

Gerrits B., Mes M., Schuur P. Simulation of real-time and opportunistic truck platooning at the port of Rotterdam // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.133-144.
This paper proposes an agent-based simulation model to evaluate a matchmaking system for trucks to find a suitable partner to platoon with.

Ghandar A., Theodoropoulos G., Zhong M., Zhen B., Chen S., Gong Y., Ahmed A. An agent-based modelling framework for urban agriculture // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1767-1778.
This paper contributes a modelling framework for urban agriculture, and an implementation in a scenario based on the fast growing mega city of Shenzhen located near Hong Kong in southern China.

Ghorpade T., Rangaraj N. Rolling horizon models for inter-depot empty container repositioning // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1825-1836.

Gibson J.B., Page J., Mukhlish F. (2019, September). Simulation of an unmanned aerial vehicle search and rescue swarm for observation of emergent behaviour // In Australasian Simulation Congress (pp. 95-105). Springer, Singapore.

Giner Sanz J.J., García Gabaldon M., Ortega Navarro E.M., Shao Horn Y., Pérez Herranz V. (2019, September). A NetLogo model for introducing students to genetic algorithms // In IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red (pp. 88-101). Editorial Universitat Politècnica de València.

Glasser S., King C. System dynamics for estimating suas operations // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.476-487.
This paper provides an overview of the model, its relevance to Federal Aviation Administration forecasting of sUAS adoption and operations, and a case study to demonstrate the “what if” capability of the model.

Glynn P.W., Zheng Z. Estimation and inference for non-stationary arrival models with a linear trend // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.3764-3773.
This paper is concerned with building statistical models for non-stationary input processes with a linear trend.

Gold I., Ehm H., Ponsignon T., Afridi M.T. Applying diffusion models to semiconductor supply chains: increasing demand by funded projects // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2384-2395.

Gomes C., Vangheluwe H. Co-simulation of continuous systems: a hands-on approach // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1469-1481.
This tutorial introduces co-simulation of continuous systems, targeted at researchers that want to develop their own co-simulation units and master algorithms, using the Functional Mock-up Interface Standard.

Gorgich M. (2019) A targeted study on simulation and optimization of shipping systems // Journal of Computational and Theoretical Nanoscience, 16 (12). P. 5282-5286.

Grabis J., Rasnacis A. Simulation based evaluation and tuning of distributed fraud detection algorithm // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.786-796.

Groen D., Bell D., Arabnejad H., Suleimenova D., Taylor S.J. E., Anagnostou A. Towards modelling the effect of evolving violence on forced migration // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.297-307.
We present a modelling approach to investigate the evolution of violent events on the forced displacement of people in affected countries.

Gurkan C., Rasmussen L., Wilensky U. (2019). Effects of visual sensory range on the emergence of cognition in early terrestrial vertebrates: an Agent-Based Modeling approach // The 2019 Conference on Artificial Life, Newcastle upon Tyne, UK. No. 31, 475-476.

Gutlein M., Djanatliev A. Coupled traffic simulation by detached translation federates: an HLA-based approach // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1378-1389.

Hall S.N., Thengvall B.G., Schauer R.L. Simulating a maritime anti-air warfare scenario to optimize a ship’s defensive system // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2536-2547.

Ham A. Transfer robot task scheduling in semiconductor manufacturing // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2248-2256.
This paper studies a simultaneous scheduling of production and material transfer in a semiconductor manufacturing. The simultaneous scheduling approach has been recently adopted by warehouse operations, wherein transbots pick up jobs and deliver to pick-machines for processing that requires a simultaneous scheduling of jobs, transbots, and machines.

Haryadi F.N., Imron M.A., Indrawan H., Triani M. (2019, October). Predicting rooftop photovoltaic adoption in the residential consumers of PLN using Agent-Based Modeling // In 2019 International Conference on Technologies and Policies in Electric Power & Energy (pp. 1-5). IEEE.

Hasan M., Lu M., Ritcey C. Simulation-based approach to systematic project planning and scheduling at a bridge girder fabrication shop // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.3019-3030.
This paper addresses a practical planning problem in bridge steel girder fabrication in an attempt to illuminate why the identified problem does not lend it well to existing solutions for construction planning.

Hassoun M., Kopp D., Monch L., Kalir A. A new high-volume/low-mix simulation testbed for semiconductor manufacturing // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2419-2428.

He Z., Yuan H., Li Z., Gao L., Zhang E., Yao Y., Zhang X. (2019, December). Automatic route guidance method based on VANETs // In 2019 6th International Conference on Information Science and Control Engineering (ICISCE) (pp. 1009-1012). IEEE.

Helsing J.E., Gwalani H., Mikler A.R., Alshammari S.M. Validation and evaluation of emergency response plans through agent-based modeling and simulation // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.239-250.
This paper presents validating emergency response plan execution through simulation, a novel computational system for the agent-based simulation of biological emergency response plan activation. This system integrates raw road network, population distribution, and emergency response plan data, and simulates traffic in the affected region using SUMO, or Simulations of Urban Mobility.

Henderson J.A., Bryce R.M. Verification methodology for discrete event simulation models of personnel in the Canadian armed forces // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2479-2490.
In this work we propose a methodology to verify workforce simulations and we discuss its use for verification of the Force Flow Model. We demonstrate precise agreement with an analytic model when the FFM parameters are matched to exactly solvable analytic scenarios.

Hernandez-Betancur J.E., Montoya-Restrepo L.A., Montoya-Restrepo I. (2019). Deliberate strategy deconstructing event for the arising of the emergent strategy // Journal of Engineering and Applied Sciences, 14(22), 8452-8463.

Hill B., Vukcevic D., Caelli T., Novak A. Insights into the health of defence simulated workforce systems using data farming and analytics // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2491-2502.

Hoffmann B., Chalmers K., Urquhart N., Guckert M. (2019, February). Athos-A Model Driven approach to describe and solve optimisation problems: an application to the vehicle routing problem with time Windows // In Proceedings of the 4th ACM International Workshop on Real World Domain Specific Languages (pp. 1-10).

Holbert N., Wilensky U. (2019). Designing educational video games to be objects-to-think-with // Journal of the Learning Sciences, 28(1), 32–72. https://doi.org/10.1080/10508406.2018.1487302.

Hu Z., Deng X., Goode B.J., Ramakrishnan N., Saraf P., Self N., Adiga A., Korkmaz G., Kuhlman C.J., Machi D., Marathe M.V., Ravi S. S., Ren Y., Cedeno-Mieles V., Ekanayake S. On the modeling and agent-based simulation of a cooperative group anagram game // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.169-180.

Huber D., Horne G., Kallfass D., Hodicky J., de Reus N. Data farming services: micro-services for facilitating data farming in NATO // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2455-2466.

Hundscheid B.H.H., Peeters K., Adan J., Martagan T., Adan I.J.B.F. A hybrid genetic algorithm for the k-bounded semi-online bin covering problem in batching machines // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.2142-2153.

Hupman A.C., Zhang J. Simulating profit loss in behavioral newsvendor problems // Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds. 2019. Maryland, USA. P.1859-1870.
This paper examines the impact on profit by comparing the expected profit of suboptimal decisions with that of optimal decisions.

Hutchins N.M., Biswas G., Maroti M., Ledeczi A., Grover S., Wolf R., ... & McElhaney K. (2019). C2STEM: a system for synergistic learning of physics and computational thinking // Journal of Science Education and Technology, 1-18.





Яндекс.Метрика