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ABSTRACT 

Several factors influence traffic congestion and overall traffic dynamics. Simulation modelling has been 
utilized to understand the traffic performance parameters during traffic congestions. This paper focuses on 
driver behavior of route selection by differentiating three distinguishable decisions, which are shortest 
distance routing, shortest time routing and less crowded road routing. This research generated 864 different 
scenarios to capture various traffic dynamics under collective driving behavior of route selection. Factors 
such as vehicle arrival rate, behaviors at system boundary and traffic light phasing were considered. The 
simulation results revealed that shortest time routing scenario offered the best solution considering all forms 
of interactions among the factors. Overall, this routing behavior reduces traffic wait time and total time (by 
69.5% and 65.72%) compared to shortest distance routing.  

1 INTRODUCTION 

Traffic congestion at intersections refers to the delay caused by vehicles or traffic volume in urban 
conditions. The key to the sustainability, safety and reliability of surface transportation is to minimize travel 
time due to congestion intensity by implementing innovations and predicting methods in transportation 
management systems (Litman 2016; Parsa et al. 2019). Optimization of transportation system operation, 
especially at signalized intersections, has been one of the most complex tasks of urban design. Incorrectly 
or poorly designed intersections result in traffic congestion and traffic delay. Previous research has proven 
that one third of everyday urban traffic congestion is a consequence of intersection traffic (Yu et al. 2013; 
Zhang and Batterman 2013). Therefore, there is a need to study efficient signalized intersections, 
considering not only urban design requirements, but also human cognitive essentials (Pakdamanian et al. 
2018; Talebpour and Mahmassani 2014) through analysis, modeling, and simulation.  

In recent years, due to technology advancement, modeling and simulation of signalized intersections 
have become significantly more useful for studying congestion issues (Kamrani et al. 2018). The most 
common techniques have been modeling and analyzing traffic demands and flows by using static 
parameters (i.e., average of traffic). Due to the role of intersections, the efficiency of the signalized 
intersection has been measured differently, using the delay, length of queue, and number of stops. These 
measurements can be used to analyze psychological processes at intersections due to how much time is 
wasted in traffic, by measuring the difference between the actual and desired time to traverse the 
intersection . However, questions still remain: 1) how reliable is this analysis without applying parameters 
associated with human behind the wheel, and 2) will static parameters be useful when fully- and semi-
autonomous vehicles be commercialized and entirely frame how people commute? To address these 
questions, a more comprehensive model for relieving intersection traffic congestion is needed, one which 
considers the interplay between intersection traffic status and driver decision processes (Arvin et al. 2019). 
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The current study proposed an extensive simulation effort to design a more efficient traffic flow by 
integrating conditionally changing decisions at intersections.  

 This study developed a novel approach to simulating driver decision-making behavior at an 
intersection. The scenarios were generated based on route selecting behavior, as well as traffic light status 
and decisions at the system boundary. The three routing decisions at an intersection which were 
conceptualized in the simulation were the shortest distance, the shortest time, and the least crowded. This 
study believes that the understanding of driving behavior in route selection can be further expanded into 
routing algorithms for autonomous vehicles, with the aim of reducing future traffic congestion.   

2 LITERATURE REVIEW 

Since the rate of access to motor vehicles in urban areas is higher than infrastructure growth, traffic 
congestion has become an increasing problem. (Redman et al. 2013). Roads are overloaded and, as a result, 
people spend more time in traffic than ever. Road intersections have become bottlenecks in urban traffic 
congestion where vehicles wait in queue for hours. In general, the urban traffic system can be seen as a 
queuing system in which roads, junctions, and traffic signals serve the traffic flow. Generally the capacity 
of the intersection in urban areas are much lower than all the entering roads.  In order to produce the most 
effective schedules for smooth functioning of intersections, it is necessary to make an estimate of the 
waiting times in the system (Bowman and Miller 2016). The most common way for this purpose is to 
employ traffic simulation. 
 Simulation assists traffic designers and engineers in building an intersection and evaluating its status 
in order to discover the designs with the least amount of traffic load. More importantly, simulation-based 
methodology has been used to help traffic designers’ study and analyze intersections, and ultimately solve 
bottleneck issues (D’Ambrogio et al. 2009). Since more than 10 percent of future cars will be fully 
autonomous by 2035 (Mosquet et al. 2015), modeling reasonable behaviors of the vehicles or drivers in a 
way that it is capable of performing high-level and critical decisions would be needed in the future. The 
majority of traffic design studies, efforts and simulation-based methodologies have been devoted toward 
analyzing the various behavioral decisions made by human drivers in various traffic conditions (Hamdar et 
al. 2008; Hamdar 2009; Hu et al. 2012). However, despite notable improvements, most of the studies in the 
area of traffic signalization, whether they have analyzed field data (Kazama et al. 2007; Amborski et al. 
2010) or simulation data (Chin et al. 2011) have not considered the main component of the system, “the 
human driver.” In the world of the future, with vehicles equipped to communicate with other vehicles 
(vehicle-to-vehicle) or with the infrastructure systems and to make decisions according to data received by 
perception subsystems (Furda and Vlacic 2011), it would be a remarkable innovation to design a relevant 
conceptual model.  
 If drivers were provided several route options to get to their desired destination, their final decision 
could be affected by external (surrounding environment and road status) or internal (behavioral 
anticipation) information (Cunningham et al. 2015). The internal component of the final decision is 
contingent to the quality of external information. Therefore, many studies have focused on the perceived 
information. Wang et al. (2014) applied the Monte Carlo method and queuing theories to study how wrong 
decisions and traffic congestion are caused by external information: time interval between the cars (time 
gap), space between the cars (space gap), and waiting time. Future advancement of vehicle technologies 
could resolve these external components through vehicle-to-vehicle (V2V) technology (Naranjo et al. 
2003). This communication method constantly sends and receives information about nearby vehicles’ 
speed, distance, and location.  For this paper, the fundamental effectiveness of V2V technology, which has 
the potential to solve vehicle queuing problems at intersections, was modeled by integrating the discrete 
dynamic system and the external components which were missing in the previous study done by Wang et 
al. (2014): shortest distance, shortest time and least crowded road. 

Macroscopic models, such as network flow models, do not consider details to the extent that can be 
done through microscopic models, (e.g., simulations models), in which the individual behavior of each 
vehicle can be considered. In surface transportation, discrete-event simulation methodology was used to 
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compare a proposed signal controller with what currently exists at signalized intersections (Pranevičius and 
Kraujalis 2012). The suggested model performed better the fuzzy logic controller in high-volume traffic 
situations. In order to prove how ARENA is capable of simulating traffic systems and suggesting 
improvements for traffic flow at intersections, Salimifard and Ansari used ARENA modules for modeling 
signalized intersections (Salimifard and Ansari 2013). Although their model provided an optimal duration 
for the green phase signal similar to the majority of routing studies which only considers an optimization 
problem (Huang et al. 2014; Yu et al. 2019) to minimize the length of the queue at a signalized intersection, 
the researchers did not consider more complex models by which the movements and decisions of individual 
vehicles might be controlled at the microscopic level (Kamrani et al. 2014). 
 One of the few attempts to utilize simulation at the microscopic level, with more complex models, was 
done by Backfrieder et al. (2017).  In their study, rerouting was used with the assistance of a predictive 
congestion-minimization algorithm (PCMA) developed with consideration of the current road conditions 
and predicted future congestion. Current road conditions assumed utilization of vehicle-to-X 
communication for transmission of vehicle data from the current position to the desired destination. This 
study enables the transmitting of data for intelligent selection of routes and even to allow rerouting in case 
of a congestion.  
 This study considered how to expand the number of logical decisions for route selection at an 
intersection, instead of being limited to a user defined threshold, to understand the overall traffic 
performance of a semi-closed loop system. Our proposed model takes under consideration three main 
logical decisions that a driver can take at an intersection to avoid traffic: (1) shortest distance routing, (2) 
shortest time routing and (3) least crowded road routing. The goal of this research is to expand on the 
limitations mentioned above and to observe how human behaviors influence the overall system. 

3  METHODOLOGY 

3.1 Simulation Model and Components 

Developed in ARENA (v.14.7), the simulation models contain fundamental components such as roads, 
intersections, a sub-model for traffic light phasing, decision criteria at the intersection and decision criteria 
for exiting the system boundary and looping. This study has expanded the work of Benzaman et al. (2016) 
by considering bi-directional vehicular flow in a semi-closed looped traffic network and integrating routing 
decisions.  

3.1.1 Road Segments, Concepts of Congestion and Intersection 

To simulate the concept of congestion, the roads were considered as an array of road segments (Benzaman 
et al. 2016). Each road segment was depicted by a seize module with a single resource meaning once a 
vehicle seizes a road segment (RS) resource, it cannot be occupied by other vehicles. Thus, the traffic flow 
logic was constructed as a series of seize – delay – seize (next road segment) – release (previous road 
segment) modules. Each delay module was imagined as time taken by a vehicle to complete that segment 
distance if the road segment immediately in front of it was empty. The delay time for this road segments 
was considered to follow a uniform distribution of (1,2) seconds. A congestion would occur, if the road 
segment in front was occupied.  
 In this study, an intersection was defined as a junction of four roads - coming from east, west, north 
and south direction. Within the simulation model, four intersections were constructed to see how the 
vehicles interacted with each-other and other components. With bi-directional single lane vehicle flow 
being assumed at an intersection, a vehicle can only be directed to go to three different directions (left, right 
and straight) based on the decision- making criteria. Conceptually two different types of vehicles were 
simulated to enter into the system – (1) General Transport (GT) and (2) Focused Transport (FT). The rule 
of thumb or the logical limitation for the focused transport was that they would not be able to exit through 
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the north or south side, whereas, the general transport will be able to do so. This is because FTs have a 
certain aim or an exit point (the exit point of the 4th intersection) whereas GT acted as filler vehicles.  

3.1.2 Simulating Traffic Light Behaviors 

As a queue build up occurs when the traffic light is red, the process of a traffic light state and vehicles can 
be imagined as a server system. Ideally there are four such systems directing vehicle flow to east, west, 
south and north side. Each of these systems can have multiple sequence of activities but this study assumed 
that, when one traffic light system is on green state, the rest are in red and a sequence follows on which 
traffic light system will turn green next. For example, if traffic light “A” is currently green, “B” would turn 
green next, then “C” and finally “D”. After that, the process loops back.  
 In simulation, this was modelled with a series of 4 process modules. When the entity is being processed 
at process module 1 (WIP=1), WIP = 0 in other modules. WIP = 0 signifies the traffic light is at red state 
in the respective traffic light system. After the first process module, the entity moves onto the second 
process module and thus turning it green as WIP = 1 while all others are red. As the entity moves further 
down these modules the process continues until finally it gets looped back to the first module after fourth. 
Depending on the state of the process modules, logical expressions were formulated into decisions to direct 
vehicular flow at the intersections.  

3.1.3 Semi-Close Road Network and Decisions Regarding Exiting System Boundary and Looping  

The road network has been considered as a grid patterned semi-closed system as per Figure 1. In addition 
to this, a vehicle can loop back from the system boundary allowing it to go back to the previous 
intersections. When a vehicle leaves an intersection and go towards north or south, it decides whether to 
stay within the system boundary or exit it. The decision process here is based on chance instead of logically 
integrating with traffic light sub-models. Afterwards the vehicle decides whether to loop back e.g. from 2nd 
Intersection (IT.S.) to 1st IT. S or to move forward towards next intersection e.g. from 2nd IT. S to 3rd 
IT.S. 
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    Figure 1: Flow of traffic at outer regions of semi-closed road network. 
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Figure 2: Decision making structure for looping and exiting system boundary. 

3.1.4 Decision Making at Intersections 

When a car is waiting before the traffic light, a driver can make certain decisions in choosing a route which 
can be distinguished by shortest distance, shortest time and less crowded road. When a driver makes such 
decisions, the overall traffic performance parameters change. These decisions are described below: 

3.1.4.1 Shortest Distance (SD) Routing Rule 

The shortest distance routing rule takes under consideration about the shortest distance the car will travel 
while going from point A to point B. However, this rule will impact the total travel time because the waiting 
time at the intersection is the highest. The reason being if the car wishes to straight, then it needs to wait 
until the traffic light in its direction turn green. 
 

 

    
 

Figure 3: Shortest distance rule decision making criteria. 

 Simulating this decision of shortest distance routing rule was achieved by linking with the traffic light 
behavior. Considering a scenario in which a vehicle is waiting at the 1st intersection on traffic light TL1.a, 
meaning the traffic light is red and in the traffic light simulation model there is no entity in process module 
TL1. a. The logical two-way decision was that, “Is WIP TL 1.a = 1” meaning, “Is the signal green”; when 
it was the case the vehicles could go. When it is red light, the logic would fail and a Hold module was used 
by integrating with the logic of “hold until WIP TL 1.a = 1”, meaning hold that vehicle on the intersection. 
The minimum and maximum time a vehicle will wait in the intersection will be 90 seconds and 180 seconds 
respectively when the traffic light behaviors are desynchronized. When it is synchronized, the maximum 
time a vehicle will wait will be 135 seconds. 

3.1.4.2 Shortest Time (ST) Routing Rule 

The shortest time routing rule concept is based on waiting the least amount at the intersection (Karimpour 
et al. 2019). The main objective of this routing rule is to comprehend whether, the gain from waiting less 
in the intersection is larger than going through a different route. The concept is similar to the shortest 
distance routing rule, however, a driver in this case has many options to choose from if he or she faces a 
red light. 
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Figure 4: Shortest time routing rule decision making criteria. 

As shown in the previous figure, if a vehicle approaches from the West going towards East, it will come 
across at TL 1.a. If the traffic light is red, meaning WIP TL 1.a = 0 then it will seek a green light state or 
WIP TL 1.b =1 or WIP TL 1.c = 1. And if the logic of one of these three choices is met, then it will proceed 
to that specific direction. Since the looping at main intersection is not assumed in this paper, the logic WIP 
TL 1.d = 1 will not be considered and the vehicle has to wait until WIP TL 1.a.=1.   

3.1.4.3 Less Crowded (LC) Routing Rule 

The less crowded routing rule states that, if a vehicle has the option to go on a different way when the traffic 
light is green, it should go towards the less crowded road to reduce its delay time on the road. In this paper, 
only two options were considered (without the protective left turn) – (1) going straight or (2) going right. 
It was assumed to mimic traffic flow behavior in USA. In order to simulate the less crowded road, a logical 
decision concerning the total vehicles in queues for the road segments was considered. It was done by taking 
the summation of the queue states of the seize modules of road segments on those two routes.  

For simulating a two-way logical decision of the less crowded route, summation of queue length in the 
road segments shown as road 1 and summation of queue length in road 2 were taken. The road with the less 
queue was chosen to be the route. 
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Figure 5: Illustration of two options to route to next intersection.        
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Figure 6: Less crowded road routing rule decision criteria. 

3.2 Model Assumption 

While developing a simulation model based on the intersection illustrated above, the following assumptions 
were considered:  

• The simulation model was constructed where four intersections were considered as per Figure 1. 
The outside branches of this semi-closed loop system did not have any signalized intersections. 
The road segments between any intersection were six. For example, if a car were to take the outside 
portion of the road, it would travel a total of 18 road segments.  

• The acceleration and deceleration of the vehicles were not considered for this study instead a delay 
of (1,2) seconds were considered normally distributed.   

• Road segments were simulated in way that each segment can hold only one vehicle except for the 
entry point segment. To offset the limitation of the ARENA software, the entry point road segments 
had very high capacity to hold vehicle queues. Intersections did not have any road segments. 

• The phase timing of the traffic lights were assumed to be 45 seconds when synchronized and 
(30,60) normally distributed when desynchronized. Traffic light synchronization at subsequent 
intersections is an assumption but may happen in real life if vehicle arrival rate is very low.  

• Only one routing behavior was considered in each scenario to understand the traffic dynamics.  
• It was assumed that the Focused transports wished to exit the system boundary from the west side 

only (after cross 4th intersection). Thus any FT leaving the system boundary from the east side will 
not be included into the response variable “Total FT Exited the System” (Table 1).         

4 DESIGN AND ANALYSIS OF EXPERIMENT 

For this study, six factors have been considered with levels ranging from two to four, as shown in Table 2. 
By changing different factors related with arrival rates of the vehicles, traffic light behaviors and various 
decision criteria at the intersection and vehicle behavior at the system boundary, this conceptual model 
produced 864 scenarios. Each of the scenarios were ran for 24 hours with 30 replications. Table 1 highlights 
the four response variables that have been considered for this study. The significance of response variables 
total time, waiting time and WIP of the focused transportation were considered with the minimization goal 
whereas the total focused transportation exiting the system were considered with a maximization goal.  

(1) Total time of the FT: total time spent in minutes by a FT after arrival into the system boundary  
(2) Waiting time of the FT: total waiting time spent in minutes by a FT due to congestion, traffic light 

or other system behaviors 
(3) Total FT exited the system: Number of FT exiting the system boundary within the simulation run,  
(4) WIP of FT within system: Number of FT remaining within the system boundary after completion 

of simulation run 
Table 1: Objectives of the design of experiment. 

Response Name Goal 
Total Time and Waiting Time of the FT, WIP of the FT within system  Minimize 

Total FT Exited the System Maximize 
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Table 2: Factors and levels associated with the simulation model. 
Traffic Routing Rule (TRR) ST Routing SD Routing LC Road Routing 
Inter-Arrival Time of General 
Transport: Poisson Distribution 

20 sec 40 sec 60 sec 120 sec 

Inter-Arrival Time of Focused 
Transport: Poisson Distribution 

20 sec 40 sec 60 sec 120 sec 

General Transport Exiting 
System Boundary (GTESB) 

50% 70% 90% 

Transport Looping Back (TLB) 10% 15% 20% 
Traffic Light (TL) Behavior Synchronized Light:  

45 seconds Constant 
Desynchronized Light:  

UNIF(30,60) 

5 RESULTS 

5.1 Statistical Analysis  

The response variables were observed to be most desirable for ST routing followed by less crowded routing 
rule, with a desirability of (0.8287). In JMP v.12.0 (statistical software developed by SAS), this result was 
obtained considering the effects of all the 6 factors and interactions among them to the degree of 6. As 
shown in Figure 7, the response variables (total time, waiting time and WIP of the focused transport) 
supports the minimization goal for the shortest time routing goal. The shortest time routing also helps to 
maximize the overall transport to exit the system. This simulation model based finding also supports the 
idea of collective socially aware routing behavior (Çolak et al. 2016). The results also support that the traffic 
light behavior has a great impact on the overall traffic performance.   
 The overall desirability could have been maximized even further (0.8919) if the inter-arrival time is 
increased (from 20 sec to 120 sec) for GT and FT. Even though the inter-arrival time of the vehicles has 
direct impact, it is something that cannot be controlled. This can be explained however by the peak vs off-
peak times of the day. It is somewhat intuitive that during off peak times of the day, the traffic volume 
would be less and thus the response variables discussed above would be smaller.  
 Once the effects between the factors were kept to 2, the prediction profiler revealed counter-intuitive 
results. It was seen that when the traffic light behavior was de-synchronized, the best results were obtained 
if the driver routing behavior followed shortest time decision rule (desirability – 0.5621) shown in Figure 
8. On the other hand, shortest distance driving routing rule offered best solution if the traffic light behavior 
is synchronized (desirability – 0.7285) shown in Figure 9. However, this scenario is unlikely to happen in 
real life as some of traffic light phasing logic depends on traffic volume itself. In addition The reason why 
some of the wait times and total times for some scenarios are hyperinflated, due to the limitation of the 
ARENA software itself. During peak traffic volume scenarios, the initial Seize module was observed to 
have very high queue build up. This constituted higher wait time and total time. 

Figure 10 below provides a simple comparison of values obtained from the simulation model which 
supports both conclusions drawn from Figure 8 and Figure 9. As per the simulated results, on a collective 
scale, shortest time routing behavior reduces the overall average wait time (illustrated by red blocks) and 
average total time (illustrated by blue blocks) by 69.5% and 65.72% (in minutes) compared to the shortest 
distance routing rule. The box-plot shows that during the synchronized TL behavior the values are very 
closely packed but they are more spread out when the TL behavior is desynchronized. The outliers and the 
skewness are caused during low inter-arrival time scenarios due to the limitation of ARENA and modeling 
structure. Analyzing the effects test, it was observed that 4 factors – TL Behavior, TRR, Inter Arrival Time 
of the FT, Inter Arrival Time of the GT and the 2 degree interactions between them, all were highly 
significant. This also rules out behaviors of looping back or TLB (convincingly) and GTESB 
(unconvincingly, as some effects are significant for some response variables) and interaction effect 
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Figure 7: Prediction profiler of complete interactions analysis among factors. 

 

Figure 8: Prediction profiler for shortest time routing with desynchronized TL.  
 

associated with them. Even though these factors are insignificant, amount of vehicles at any given time 
which is governed by the inter-arrival time of the FT & GT into the system boundary impacted the response 
variables greatly.  
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Figure 9: Prediction profiler for shortest distance routing with synchronized TL. 
 

 
Figure 10: Comparison of waiting time and total time for different routing behaviors. 

 

                      Table 3: Summary of effects test for the response variables and significance. 
Source Waiting Time 

of the FT 
Total Time 
of the FT 

Total FT Exited 
the System 

WIP of the FT 
within System 

TL Behavior <0.0001** <0.0001** <0.0001** <0.0001** 
TRR  <0.0001** <0.0001** <0.0001** <0.0001** 
General Transport Exiting System Boundary (GTESB) 0.0240* 0.0257* 0.0324* 0.0519 
Transport Looping Back (TLB) 0.9825 0.9819 0.5983 0.9962 
Inter Arrival Time of FT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
Inter Arrival Time of GT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
TL Behavior*TRR  <0.0001** <0.0001** <0.0001** <0.0001** 
TRR*Inter Arrival Time of FT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
TRR*Inter Arrival Time of GT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
TRR*GTESB 0.4342 0.4432 0.1991 0.4696 
TRR*TLB 0.9911 0.9911 0.8318 0.9989 
TL Behavior* GTESB 0.6704 0.6725 0.4238 0.8884 
TL Behavior*Inter Arrival Time of FT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
TL Behavior*Inter Arrival Time of GT POIS(sec) <0.0001** <0.0001** <0.0001** <0.0001** 
TL Behavior*TLB 0.9201 0.9214 0.5179 0.9700 
GTESB*TLB 0.9997 0.9997 0.7483 0.9999 
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GTESB*Inter Arrival Time of FT POIS(sec) 0.9877 0.9893 0.7630 0.6218 
GTESB* Inter Arrival Time of GT POIS(sec) 0.0527 0.0573 0.3135 0.1544 
TLB*Inter Arrival Time of FT POIS(sec) 1.0000 1.0000 0.8311 1.0000 
TLB*Inter Arrival Time of GT POIS(sec) 0.9999 0.9998 0.8554 1.0000 
Inter Arrival Time of FT POIS(sec)* Inter Arrival Time of 
GT POIS(sec) 

<0.0001** <0.0001** <0.0001** <0.0001** 

Note: The table shows the level of significance of the main effects of the factors as well as 2-level interaction effects.  
* p < 0.05 , ** p <0.01. 

 

6 CONCLUSIONS AND FUTURE RESEARCH 

This study has generated 864 scenarios to check the impact of 3 different routing behavior on overall traffic 
flow performance in a semi-closed traffic system. Three discrete event simulation models were built in 
ARENA (v.14.7) and 6 factors were manipulated. It was found that shortest time routing principle was 
favorable on a collective scale. However, considering traffic light behavior – it revealed shortest distance 
to be favorable under synchronized scenario. Even though, such scenario is unlikely to happen as most of 
traffic light phasing depends on awaiting traffic volume.  

By integrating all three SD, ST and LC routing rules, more complex decision-making criteria can be 
introduced at the intersection that will generate more random route selection. Novel concepts of driver 
foreknowledge can be introduced and integrated into the decision-making criteria, where a driver before 
reaching an intersection how much time is remaining for traffic light phase change. This can have a 
significant impact on the route selection and overall traffic performance. Additionally introduction of 
roundabouts as an intersection elements can provide a different perspectives from a signalized intersection.  

Even though this study has conceptualized traffic routing behavior in a simulation environment, not 
being able to support, validate the findings or do sensitivity analysis is one of the biggest limitation of this 
study. Future researches should include efforts to validate results obtained from the simulation model to 
check the accuracy of the models. This can be done by test users or drivers using GPS trackers from a single 
point of entry to a pre-defined exit point. Although some of the response variables such as total transport 
out from the system and WIP within a system would be difficult to accurately validate.  

Future research should utilize more robust simulation software and simulation methodologies to 
overcome the limitations of ARENA software. With ARENA software and the methodology illustrated in 
this paper, it was challenging to simulate a realistic micro-level traffic flow, without skewing results of the 
response variables specially during high traffic volume scenarios.  
 
REFERRENCES  
 
Amborski, K., A. Dzielinski, P. Kowalczuk, and W. Zydanowicz. 2010. “Simulation of Traffic Lights Control”. In 24th European 

Conference on Modelling and Simulation, Kuala Lumpur, Malaysia, 88-92. 
Arvin, R., M. Kamrani, and A. J. Khattak. 2019. “How Instantaneous Driving Behavior Contributes to Crashes at Intersections: 

Extracting Useful Information from Connected Vehicle Message Data”. Accident Analysis & Prevention 127:118-133. 
Backfrieder, C., G. Ostermayer, and C. F. Mecklenbräuker. 2017. “Increased Traffic Flow Through Node-Based Bottleneck 

Prediction And V2X Communication”. IEEE Transactions on Intelligent Transportation Systems 18(2):349-363. 
Barceló, J., J. Casas, J. L. Ferrer, and D. García. 1999. “Modelling Advanced Transport Telematic Applications With Microscopic 

Simulators: The Case Of AIMSUN2”. In Traffic and Mobility, 205-221.  
Benzaman, B., A. Al-Dhaheri, and D. Claudio. 2016. “Discrete Event Simulation of Green Supply Chain with Traffic Congestion 

Factor”. In Proceedings of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier, R. Szechtman, 
E. Zhou, T. Huschka, and S. E. Chick, 1654-1665. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.   

Chin, Y. K.,  K. C. Yong,  N. Bolong,  S. Yang, and K. T. K. Teo. 2011. “Multiple Intersections Traffic Signal Timing Optimization 
with Genetic Algorithm”. In Control System, Computing and Engineering, 2011 IEEE International Conference on, 454–459. 

Çolak, S.,  A. Lima, and M. C. González. 2016. “Understanding Congested Travel in Urban Areas”. Nature communications, 7, 10793. 
D’Ambrogio, A.,  G. Iazeolla,  L. Pasini, and A. Pieroni. 2009. “Simulation Model Building of Traffic Intersections”. Simulation 

Modelling Practice and Theory 17(4):625–640.  
Furda, A., and L. Vlacic. 2011. “Enabling Safe Autonomous Driving in Real-World City Traffic Using Multiple Criteria Decision 

Making”. IEEE Intelligent Transportation Systems Magazine 3(1):4–17. 

1811



Benzaman and Pakdamanian 
 
Galceran, E.,  A. G. Cunningham, R. M. Eustice, and E. Olson. 2015. “Multipolicy Decision-Making for Autonomous Driving via 

Changepoint-based Behavior Prediction”. In Robotics: Science and Systems 41(6):1367-1382.  
Hamdar, S. H. 2009. Modeling Driver Behavior as a Stochastic Hazard-Based Risk-Taking Process. Ph.D. Dissertation, 

Department of Civil And Environmental Engineering, Northwestern University, Evanston, Illinois.  
Huang, J.,  X. Huangfu, H. Sun, H. Li,  P. Zhao,  H. Cheng, and Q. Song. 2014. “Backward Path Growth for Efficient Mobile 

Sequential Recommendation”. IEEE transactions on Knowledge and Data Engineering 27(1):46-60. 
Hu, X., S. Gao,  Y. C. Chiu, and D. Y. Lin. 2012. “Modeling Routing Behavior for Vacant Taxicabs in Urban Traffic 

Networks”. Transportation Research Record 2284(1):81-88. 
Kamrani, M.,  S. M. H. E Abadi, and S. R. Golroudbary. 2014. “Traffic Simulation of Two Adjacent Unsignalized T-Junctions 

During Rush Hours Using Arena Software”. Simulation Modelling Practice and Theory 49(1):167-79. 
Kamrani, M., R. Arvin, and A. J. Khattak. 2018. “Extracting Useful Information from Basic Safety Message Data: an Empirical 

Study of Driving Volatility Measures and Crash Frequency at Intersections”. In Transportation Research Record: 
Journal of the Transportation Research Board 2672(38):290-301. 

Karimpour, A.,  A. Ariannezhad and Y. J. Wu. 2019. “Hybrid Data-Driven Approach for Truck Travel Time Imputation”. IET 
Intelligent Transport Systems. 

Kazama, T.,  N. Honda, and T. Watanabe. 2007. “Evaluating a Signal Control System Using a Real-Timetraffic Simulator 
Connected to a Traffic Signal Controller”. In International Congress on Modeling and Simulation, December 4th – 7th, 
Christchurch New Zealand, Australia, 3051–3057.  

Litman, T. 2016. “Smart Congestion Relief: Comprehensive Analysis of Traffic Congestion Costs and Congestion Reduction 
Benefits”.Victoria Transport Policy Institute. 

Mosquet, X., T. Dauner, N. Lang., M. Russmann, A. Mei-Pochtler, R. Agrawal, and F. Schmieg. 2015. “Revolution in the Driver’s 
Seat: The Road to Autonomous Vehicles.” Bcg.perspectives.  Boston, Boston Consulting Group, Paril 21. 

Naranjo, J. E.,  C. González,  J. Reviejo,  R. García, and T. De Pedro. 2003. “Adaptive Fuzzy Control for Inter-Vehicle Gap 
Keeping”. IEEE Transactions on Intelligent Transportation Systems 4(3):132-142. 

Pakdamanian, E., L. Feng, and I. Kim. 2018. “The Effect of Whole-Body Haptic Feedback on Driver’s Perception in Negotiating 
a Curve”. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting 62(1):19-23. 

Parsa, A. B., H. Taghipour, S. Derrible and A.K. Mohammadian. 2019. “Real-Time Accident Detection: Coping With Imbalanced 
Data”. Accident Analysis & Prevention 129:202-210. 

Pranevičius, H., and T. Kraujalis. 2012. “Knowledge Based Traffic Signal Control Model for Signalized Intersection”. Transport 
27(3):263–267.  

Salimifard, K., and M. Ansari. 2013. “Modeling and Simulation of Urban Traffic Signals”. International Journal of Modeling and 
Optimization 3(2):172–175.  

Talebpour, A., and H. S. Mahmassani. 2014. “Modeling Acceleration Behavior in a Connected Environment”. In Symposium 
Celebrating 50 Years of Traffic Flow Theory, August 11th, Portland, Oregon, 87-91. 

Wang, F., C. Ye, Y. Zhang, and Y. Li. 2014. “Simulation Analysis and Improvement of the Vehicle Queuing System on 
Intersections Based on MATLAB”. The Open Cybernetics & Systemics Journal 8(1):217-223.  

Yu, X.,  S. Gao,  X. Hu, and H. Park. 2019. “A Markov Decision Process Approach to Vacant Taxi Routing with E-
Hailing”. Transportation Research Part B: Methodological 121:114-134. 

Yu, J.,  L. Wang, and X. Gong. 2013. “Study on the Status Evaluation of Urban Road Intersections Traffic Congestion Base on 
AHP-TOPSIS Modal”. Procedia-Social and Behavioral Sciences 96:609-616. 

Zhang, K., and S. Batterman. 2013. “Air Pollution and Health Risks Due to Vehicle Traffic”. Science of the Total Environment 
450:307–316. 

AUTHOR BIOGRAPHIES 

BEN BENZAMAN is a Senior Consultant in EY within Supply Chain and Operations sector. He completed his Master of 
Science from the Department of Industrial and Mechanical Engineering at Montana State University. His research interests include 
Human Factors, Systems Engineering, and Manufacturing. His email address is benzaman.bd@gmail.com 
 
ERFAN PAKDAMANIAN is a Ph.D. student in the Department of Systems and Information Engineering at the University of 
Virginia. He received his M.S. in Industrial Engineering from Montana State University. His research focuses on driver in 
transportation safety and human computer interaction. His email address is ep2ca@virginia.edu 

1812

mailto:benzaman.bd@gmail.com
mailto:ep2ca@virginia.edu

