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ABSTRACT 

The inland waterways in the United States (U.S.) are used to transport approximately 20% of America’s 
coal, 22% of U.S. petroleum products, and 60% of farm exports making these waterways a significant 
contributor to the U.S. multimodal transportation system. In this study, data about natural extreme events 
affecting inland waterways are collected and used to predict possible occurrences of such events in the 
future using a spatio-temporal statistical model. We also investigate the waterways disruptions effect on 

interconnected transportation systems using a simulation tool built on a statistical model. The developed 
methods are centered on inland waterways but can be used broadly for other local, regional and national 
infrastructures. A case study based on the Mississippi River and the McClellan–Kerr Arkansas River 
Navigation System (MKARNS) is provided to illustrate the use of the simulation tool in interdependence 
modeling and decision making for the operation of a multimodal transportation network. 

1 INTRODUCTION 

The physical distribution infrastructure is critical to national security, economic well-being, global 
competitiveness, and quality of life in the U.S. (Ellis et al. 1997). The distribution infrastructure, referred 
to as the transportation network, includes, but is not limited to, the interconnected network of ports and 
inland waterways, highways, and railroads. The transportation network in the U.S. includes almost 4 million 
miles of public roads and highways, more than 360,000 interstate trucking companies and 20 million trucks 
for business, and 1,900 seaports and 1,700 inland river terminals on 11,000 miles of inland waterways 

carrying grain, chemicals, petroleum products, and import and export goods (USDOT 2017; USACE 2019). 
Given that many industries rely on the U.S. transportation network, the economic impacts of possible 

disruptions affecting the network are potentially enormous. Indeed, such disruptions can cause a cascading 
effect that can become widespread due to the spatial and temporal distributions of commodity flows (Pant 
et al. 2015). In fact, even without large-scale disruptions, the Federal Highway Administration (FHWA) 
estimated the trucking industry losses to be around $8 billion a year due to highway congestion (Herr 2008; 

Pant et al. 2015). Such losses are expected to increase in the future because of the forecasted increase in 
the U.S. domestic freight tonnages by 50% in the next 15 years (NCFRP 2010; USDOT 2009). In addition 
to highway network impacts, railways are expected to experience more significant congestions and 
breakdowns due to the increased demand on Class I railroads (Cambridge Systematics Inc. 2007).  

The U.S. Maritime Administration, an agency of the U.S. Department of Transportation, has called for 
investment in the domestic waterways for freight movement (USDOT 2011), recognizing the need to reduce 
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road and rail congestion. The increased use of 25,000 miles of inland waterway freight transport will 
probably result in less congestion on U.S. roads as well as a reduction in risk of road and rail transport 
accidents and possibly even reduce emissions of air pollution (Pant et al. 2015). Barge transport is 

frequently cheaper than rail and truck alternatives, and there are many products which are too large for 
other transport methods. The nation’s waterways are used to transport approximately 20% of America’s 
coal, 22% of U.S. petroleum products, and 60% of farm exports between 38 states summing up the annual 
weight transported to around 630 million tons (USACE 2019). 

Although general freight movements via the inland waterways are expected to increase in the upcoming 
years due to economic and logistic drivers, current studies addressing the impacts of disruptions on 

waterways operation and multimodal commodity flow along with the economic analysis are limited. Indeed, 
one reason for the limited number of studies may be the lack of tools to facilitate research in this area by 
providing data-driven models. There is an urgent need to protect and coordinate the nation’s multimodal 
transportation infrastructures to support strong economic growth and national security. Without a doubt, 
inland waterways along with road and rail transport have huge impact on various businesses operations in 
the U.S., especially in America's heartland along hundreds of miles of the Mississippi River. However, 

inland water transportation is significantly affected by the weather, current and future waterway conditions, 
and operation strategies at different locks, dams and ports (Schweighofer 2014). For example, in case of 
flooding or drought, inland water transport will be constrained by the water levels of dams and ports, and 
the effects will propagate downstream. In response to such emergency situations, goods on cargo vessels 
need to be offloaded and re-routed through the available ground transportation system. Since these 
infrastructures are managed by different governing agencies (USACE 2019), multiple stakeholders need to 

understand the characteristics of these Interdependent Critical Infrastructures (ICIs) that cross 
administrative boundaries. Considering the large potential impact and lack of actual data availability, this 
research will generate simulated data on multimodal transportation systems. 

Many studies have investigated modeling and simulation of ICIs through empirical approaches, agent-
based approaches, network-based approaches and other approaches (Ouyang 2014). However, only few 
ones addressed simulation of inland waterways transportation. Bush et al. (2003) developed an iterative 

technique between optimization and simulation models to check the feasibility of barge routings suggested 
by the optimization model based on a sampled dataset. Biles et al. (2004) proposed a simulation model of 
traffic flow in inland waterways with the incorporation of the Geographic Information System (GIS) to 
improve vessels scheduling. Desquesnes et al. (2018) proposed a simulation architecture of inland 
waterways based on Markov Decision Process (MDP) and climate projections under uncertainty. All these 
studies do not consider predicting disruptions in advance based on statistical models, multimodal 

transportation, and do not allow users to control the lock and dam system to generate different scenarios. 
The ultimate goal of this research is to create methods and research application opportunities from 

which the nation’s economic growth and homeland security can significantly benefit, and to provide open-
sourced multi-regional multi-industry data-driven statistical models and simulation tools to decision-
makers, researchers and other stakeholders in order to build a good understanding of multimodal freight 
movement processes that combine different data sources. Thus, various data elements from historical events 

of natural inland waterway disruptions such as floods and droughts in the Mississippi River and the 
MKARNS were used to develop a spatio-temporal statistical model (Cressie and Wikle 2011; Kyriakos’s 
and Journel 1999) to predict disruptions such as floods at different locations on both rivers, which guide 
the movement of multi-industry cargo vessels, lock-and-dam system in the area, and decisions regarding 
other modes of transportation for products shipped from or to inland ports. 

Simulated data will be derived from actual data on ICIs. The ICIs related data includes: 1) inland 

waterway and ground transportation networks (e.g., road type and capacity of road network) (HSIP 2019); 
2) locations of dams and locks (Dams  2019; Locks 2019; USDOT 2017); 3) locations of major ports and 
their top commodities (USACE 2019; USDOT 2017); 4) historical hydrological observation data at ports 
and locks including water depth, changes in waterways, and the normal capacity of inland water transport 
(Flood 2019); 5) major types of cargo vessels and barges classified by their capacity and usual transport 
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speed; and 6) weather data covering the studied regions (NOAA Climate 2019). Moreover, the Maritime 
Transportation Research and Education Center (MarTREC) at the University of Arkansas (MarTREC 2019) 
provides the Transportation Resource Data Bank (MarTREC DataBank 2019) that compiles rich 

information, such as freight commodity flow and ports.  
The remainder of this paper is organized as follows. Section 2 describes the development of the spatio-

temporal statistical model used in this study along with the basic features of the model. Section 3 introduces 
the simulation tool we developed based on an open-source platform. Section 4 presents a case study to 
illustrate the capabilities of the tool. Section 5 provides concluding remarks and future research directions.  

2 METHODOLOGY  

A hybrid methodology combining statistical tools and simulations is applied. The statistical modelling is 
used with two purposes: to map the spatial fluctuations of gage height on a given river across sites, 
interpolating spatially unobserved points on a river and to forecast the gage height measurements on the 
sites of interest and anticipate possible interruptions in the flow of vessels. The simulation-based modelling 
is used to create scenarios for the flow of vessels and trucks taking as input the results from the statistical 
models. The dynamic interaction of different input parameters and simulation controls allow to estimate 

various metrics.  

2.1 Geo Spatial Model 

Environmental variables are among the factors affecting the reliability of critical infrastructures. As part of 
the modeling of the waterway transportation network, modeling relevant variables of the corresponding 
water bodies, e.g. rivers, becomes central in understanding the processes that affect the availability of the 
infrastructures of interest.  The selected statistical modeling methodology must be capable of making 

appropriate predictions and estimate variation intervals for relevant variables on the selected sites. 
 For this purpose, the application of a model capable of capturing the underlying relationship between 
the selected variables, the spatial correlation among the selected measuring sites and the associated 
variations in time is one of the performed tasks in this stage of the project. The selected framework is 
spTimer (Bakar et al. 2015), a Spatio-Temporal Bayesian modeling package using the R language for 
statistics. The main variable of interest is the Gage Height (GH), a measure of the depth of the water filling 

the waterways on the measurement sites. The main purpose of this model is to generate data to estimate the 
GH on unobserved sites of interest. In this context, unobserved sites are selected locations that have no 
available measurements data and it is necessary to infer it from the observed sites. The model will learn a 
spatio-temporal mapping for the GH data from the observed sites and generate interpolations for new 
coordinates of interest along the same rivers. 

2.1.1 Data 

The data used corresponds to the hourly measurements of GH and lock availability data in 18 different sites. 
This is equivalent to 18 geo-related time series with 17542 observations each. There are 22,961 missing 
measurements, representing 7.3% of total observations. Table 1 shows a general statistical summary of the 
Gage Height measurements. The time window used starts on February 22, 2016 and finishes on February 
21, 2018. The observed sites are shown in Figure 1. The sites are classified as connected to the MKARNS 
(red) or the Mississippi River (green). Selected unobserved locations of interest are marked with “X”.  

Table 1: Statistical summary of gage height data. 

Min 1st Quartile Median Mean 3rd Quartile Max 

0.00 7.45 11.83 14.04 19.43 44.63 
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2.1.2 Theoretical Background 

To model the GH data, we use a dynamical model depending on an underlying Independent Gaussian 
Process with Bayesian estimation of parameters (Bakar et al. 2015), using the implementation found in the 

spTimer R package. The hierarchical model used is shown below with description of variables and inputs: 

 

Figure 1: Measurement sites by river. 

𝐙𝑙𝑡 = 𝐎𝑙𝑡 + 𝛜𝑙𝑡,  𝐎𝑙𝑡 = 𝐗𝑙𝑡𝛃 + 𝛈𝑙𝑡       (1)  

 Let 𝑙 and 𝑡 be the two units of time where 𝑙 denotes the longer unit (month), 𝑙 =  1, . . . , 𝑟, and 𝑡 denotes 
the shorter unit (hour), 𝑡 =  1, . . . , 𝑇𝑙  where 𝑟  and 𝑇𝑙  denote the total numbers of two time units, 
respectively. Let 𝑍𝑙(𝑠𝑖, 𝑡)  denote the observed point-referenced data and 𝑂𝑙(𝑠𝑖, 𝑡)  be the true value 

corresponding to 𝑍𝑙(𝑠𝑖, 𝑡) at site 𝑠𝑖, 𝑖 =  1, . . . , 𝑛 at time denoted by two indices 𝑙 and 𝑡. From (1), let 𝒁𝑙𝑡  =
 (𝑍𝑙(𝑠1, 𝑡), … , 𝑍𝑙(𝑠𝑛, 𝑡))

𝑇
and 𝑶𝑙𝑡  =  (𝑂𝑙(𝑠1, 𝑡), . . . , 𝑂𝑙(𝑠𝑛, 𝑡))𝑇. Let 𝑁 =  𝑛 ∑ 𝑇𝑙

𝑟
𝑙=1  be the total number of 

observations to be modeled.  
 𝝐𝑙𝑡  =  (𝜖𝑙(𝑠1, 𝑡), . . . , 𝜖𝑙(𝑠𝑛, 𝑡))𝑇 will be used to denote the pure error term, assumed to be independently 
normally distributed 𝑁(𝟎, 𝜎𝜖𝑰𝑛) . The spatio-temporal random effects will be denoted by 𝜼𝑙𝑡 =
 (𝜂𝑙(𝑠1, 𝑡), . . . , 𝜂𝑙(𝑠𝑛, 𝑡)𝑇 and these will be assumed to follow 𝑁(𝟎, Σ𝜂) independently in time. The spatial 

correlation matrix 𝑆𝜂 is obtained from the general Matérn correlation function (Matérn 1986). This function 
(2) is well suited to quantify two dimensional correlations based on distance measurements and can be seen 
as a generalization of a Gaussian radial basis function: 

𝜅(𝐬𝐢,  𝐬𝒋; 𝜙, 𝜈) =
1

2𝜈−1Γ(𝜈)
(2√𝜈‖𝐬i − 𝐬𝒋‖𝜙)

𝜈
Κ𝜈(2√𝜈‖𝐬𝒊 − 𝐬𝒋‖𝜙), 𝜙 > 0, 𝜈 > 0   (2) 

where 𝛤(𝜈) is the standard gamma function, 𝐾𝜈  is the modified Bessel function of second kind with order 
𝜈 . Let 𝜽 =  ( 𝛽, 𝜎𝜖

2, 𝜎𝜂
2, 𝜙 , 𝜈)  denote all the parameters of this model and let 𝜋(𝜽)  denote the prior 

distribution that we shall specify later. The logarithm of the joint posterior distribution of the parameters 
and the missing data, represented by z*, for this GP model (Bakar et al. 2015) is given by:  
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𝑙𝑜𝑔 π (𝛉, 𝐎, 𝐳∗|𝐳) ∝
𝑁

2
𝑙𝑜𝑔 σ𝜖

2 −
1

2σϵ
2 ∑ ∑ (𝐙𝑙𝑡 − 𝐎𝑙𝑡)⊺(𝐙𝑙𝑡 − 𝐎𝑙𝑡)𝑇𝑙

𝑡=1
𝑟
𝑙=1 −

∑ 𝑇𝑙
𝑟
𝑙=1

2
𝑙𝑜𝑔|ση

2𝑆η|   

−
1

2σϵ
2 ∑ ∑ (𝐎𝑙𝑡 − 𝐗𝑙𝑡𝜷)⊺𝑆η

−1(𝐎𝑙𝑡 − 𝐗𝑙𝑡𝜷)𝑇𝑙
𝑡=1

𝑟
𝑙=1 + 𝑙𝑜𝑔 π (𝛉)  

The spTimer can fit and predict, spatially and temporally, using three models: Gaussian Processes using 

Gibbs sampling (GP), Auto Regressive (AR), and Gaussian Processes using knot locations for the random 
effects (GPP). Markov chain Monte Carlo (MCMC) computational techniques are used to calculate 
estimations. Integration with other R packages that handle large spatio-temporal datasets, prognostics and 
estimations and graphics is possible. Using the collected GH data, the model was applied using R. Different 
model configurations were tested. The steps to select the final model configuration and the validation 
strategy is presented as follows: 

 
1. Load data and transform to a spatio-temporal data frame. 
2. Separate data by river to fit an appropriate model for each river:  MKARNS, Mississippi River. 
3. Separate data in training and validation sets. For MKARNS, sites 1, 2, 3, 5, 6, and 7 are for training. 

Validation site is number 4. Unobserved site, 24. For Mississippi River, sites 8, 10, 11, 12, 14 ,15, 
16, and 17 are for training. Validation site is number 13. The unobserved sites are 19, 20, 21, 22, 

and 23. These numbering of sites follows Figure 1. 
4. Estimate the model using the training set: fit a mean function by river across all sites on a river. To 

account for seasonality along the year, calculate the river mean across years for any given time 
point. Use the mean function and dummy variables that encode different seasonality periods as 
covariates into the model then create predictions for the validation set. 

5. Evaluate the MSE of the predictions vs. the real measurements on the validation sites. Table 2 

shows a summary of different performance metrics used to evaluate the models. 
6. Repeat steps 3-5 for different model configurations. Select the one with the lowest MSE.  

 
Using this strategy, the MSE for MKARNS is 7.95 and, on the Mississippi River, 43.72. The predicted 
interpolation is shown graphically in Figure 2, where the red line represents the interpolation and the blue 
line the observed measurements. Using the river mean function across year, the effects of seasonality are 

reasonably represented by the model. 

Table 2: Selected performance measures for the spatial models for the validation sites. 

Model MSE RMSE MAE MAPE BIAS 

Arkansas River 7.95 2.82 2.62 22.06 2.53 

Mississippi River 43.72 6.61 5.70 188.69 3.58 

2.2 Time Series Forecasting 

To assess future GH levels for the observed sites, an appropriate forecasting method is required and a 

variety of models were tested. Given desirable performance properties, flexibility, scalability, and 

capability of detecting and capturing seasonality, Facebook’s Prophet framework (Taylor and Letham 2018) 

was selected and implemented through the R package called Prophet. 

The Prophet framework models a time series using Generalized Additive Models (GAM), regression 

models with potentially non-linear smoothers applied to the regressor. In this case, time is the regressor and 

different functions of the time series are used as components. The series is decomposed into three main 

components: trend, seasonality and special events. These are denoted by g(t), s(t) and h(t) respectively in 

the following equation: 

 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡          

 

1394



Bipasha, Azucena, Alkhaleel, Liao, and Nachtmann 

 

 

 

Figure 2: Spatial interpolation for the Mississippi River validation site. 

 The trend function models non-periodic changes, the seasonality function models periodic changes over 

a defined time period (day, week, month or year) and the special events identify known irregular 
disturbances on the time series. The model is fitted to the data using L-BFGS (Taylor and Letham 2018). 
 For the trend component, a piecewise logistic growth model is used. To account for constraints in the 
GH levels, maximum and minimum possible values are set. The constraints account for the non-negativity 
of the measurement and an assumed maximum of 50 feet. The fitting allows for automatic change-point 
detection in the trend. The adjustments at change-points are computed as: 

 

𝛾𝑗 = (𝑠𝑗 − 𝑚 − ∑ 𝛾𝑙) (1 −
𝑘+∑ 𝛿𝑙𝑙<𝑗

𝑘+∑ 𝛿𝑙𝑙≤𝑗
)𝑙<𝑗          

 

where 𝛿𝑗 represent rate adjustments in the time series that occur at a detected change-point 𝑠𝑗. The rate at 
any time is the base rate 𝑘 plus all the rate adjustments up to that point. 𝒂(𝑡) is a vector of indicating 
variables that take the value of 1 for any time t after the detected change-point. An offset parameter 𝑚 is 
used to connect endpoints in different segments. The piecewise logistic growth model is: 
 

𝑔(𝑡) =
𝐶

1+exp (−(𝑘+𝒂(𝑡)⊺𝜹)(𝑡−(𝑚+𝒂(𝑡)⊺𝜸))
         

 
where C represents the assigned capacity for each observed site. For the current model, these capacities are 
fixed and constant across sites, but there is flexibility to vary them if needed.  
 For the seasonality component, a Fourier series is used to provide flexibility to periodic effects. Given 
P, the regular period as the number of observations that conform that period, the seasonal effects are 
smoothed using: 

𝑠(𝑡) = ∑ (𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑃
))𝑛=1         

  
where the 2N parameters 𝜷 = [𝑎1, 𝑏1, … 𝑎𝑛, 𝑏𝑛] are estimated constructing a matrix of vectors for each 

value of t. Some smoothing priors are set on these parameters to make estimation easier. 
 Two complete years of data for each site were used for learning, and a forecast of the next three months, 
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unobserved by the model, is evaluated for validation. For data generation, this model is fitted on the 
observed sites and used to forecast unobserved time periods. A one year ahead forecast is used as input into 
the simulation model. 

2.3 Spatio-temporal Interpolation  

Using the generated forecasts, unobserved time periods can be interpolated in unobserved locations using 
the output of the temporal forecast as input for the geo spatial model. This methodology is proposed to 
generate data for the unobserved locations and use it as input for the simulation model. 

3 HYBRID SIMULATION MODEL 

This simulation model is developed using NetLogo, which is an agent-based programming language and 

simulation platform offered as freeware (Wilensky 1999). NetLogo is also a cross-platform and integrated 
environment for modeling both simple and complex systems that evolve over time. “Agents” (turtle, link, 
patch, and observer) are the integral part of NetLogo world and capable of following instructions given by 
the designers. . Turtles move around in the two-dimensional world, whereas the world contains a grid of 
patches. Every patch is like a square piece of land. All these agents can operate simultaneously without 
interfering one another. NetLogo permits users to run the simulation in a browser or desktop application, 

interact with it, and analyze its behavior under various settings (Tisue and Wilensky 2004). 

3.1 Overview of the Simulation Model  

Our model has been built on four extensions of NetLogo: GIS, R, NW, and CSV. GIS extension provides 
the ability to load vector GIS (Geographic Information System) data in the form of ESRI shapefiles. We 
use it to import several maps in our model. Initially, we load the map of the United States as the base of 
NetLogo environment. Then, we import maps of inland waterways and highways on top of that. However, 

we focus primarily on MKARNS and Mississippi River during simulation. Figure 3 shows NetLogo’s user 
interface after opening and setting the basic environment of the model. The graphic window makes the two- 
dimensional “world” of the model visible. It is divided up into a grid of patches that have coordinates pxcor 
and pycor. The basic idea here is creating a NetLogo graph (nodes and links) by importing the GIS maps 
and creating vessel and truck "agents" which travel along the links. The main components of the program 
are: 

 
 A map of the United States, drawn on NetLogo in a simplified form. Each state is filled with vivid 

colors to make them look more distinct. In Figure 3, we see a zoomed version of the map. 
 Maps of navigable waterways and highways. Both are made of nodes (turtles with own variables) 

connected by links. While the waterways/highways are only figurative, the nodes play an active 
role in the simulation. 

 Vessels; these are turtles with their own variables such as current location, destination, distance-
traveled, speed, vessel-category, product-weight, product-type, extreme-events, total-delay, etc. 

 Trucks; these are also turtles with their own variables such as current location, destination, distance-
traveled, speed, product-weight, product-type, etc. 

 Ports (turtle breeds) along the waterways. We have shown eight ports (located in Tulsa, Fort Smith, 
Little Rock, Mississippi, Baton Rouge, Helena, Memphis, and St. Louis) along MKARNS and 

Mississippi River. In Figure 3, the yellow nodes represent the ports. 
 Fifteen locks along MKARNS. They are also made of nodes (turtle breeds) with their own variables 

such as id and location. In Figure 3, the green crosses on MKARNS depict the locks. 
 Twenty-four sites (turtle breeds) along MKARNS and Mississippi River. In each site, we check the 

Gage Height level and make a decision about whether the vessels will move forward or not. The 
red nodes in Figure 3 represent the sites. 
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Figure 3: Simulation model interface on NetLogo.  

 An algorithm that makes the vessels and trucks move on the waterways and highways, respecting 
some interaction rules between source and destination, navigation time and speed, and other agents. 

For example, during the simulation, the vessel always takes the shortest path between its source 
and destination.  
 

 The main assumptions of our model are as follows: 
 

 No random variable is used in the model. Randomization is initiated by the user when they choose 

different values for lock switches, GH threshold slider and fleet size chooser. 
 Vessels are uniformly distributed based on annual demand. 
 The speed of vessels varies with its capacity and size. The smallest vessel is the fastest one with an 

average speed of 9 mph. The medium sized vessel moves at 7 mph where the largest one moves 
with 5 mph. 

 Each vessel and truck carries only one commodity. 

 All the vessels and trucks travel only once to their predefined destinations and do not return to their 
origin ports. 

3.2 Setup Procedure 

Model controls (Figure 4) quickly adjust the settings of the initial environment. They are represented by 
buttons, sliders, etc. To initiate the simulation after setting up the environment, the user is allowed to input 
various attributes through sliders, choosers, and switches. The steps are as follows: 

 
 Step 1: First of all, press “Spatial Temporal Analysis” button to run the spatio-temporal model to 

generate the forecasted Gage Height and Lock availability data. 
 Step 2: Press the “Setup Environment” button. This button is used to initialize the model; it is a 

“once-button” that runs its code once. After this step, all the maps will be drawn on the interface. 
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 Step 3: Click “Add Ports” button to draw eight circles on the waterways that depict as the ports of 
our consideration. 

 Step 4: Use the “Add Locks & Sites” button to initialize and draw all fifteen locks and twenty-four 

sites with their variables. Then click “Add Vessels” to draw vessels on the ports based on the data. 
The vessels are categorized by size and speed into three groups and they carry two types of 
products: petroleum and crops. 
 

After completing the above steps, the user may set a value for “Simulation-Time” which indicates for 
how many months the simulation will run; the available options are 3, 6, 9 and 12 months. “Fleet-Size” 

provides the value of the number of trucks required to carry products from one vessel through the highways 
when vessels reach to their destinations, and also when they are unable to move for a certain amount of 
time due to extreme events. The slider “GH-Threshold” may need to be adjusted to a reasonable value. This 
value acts as the threshold value of Gage Height which is being compared with the hourly value of gage 
height at each site. We recommend setting a value between 30 and 45 for a better result. We can change the 
value at runtime. There are fifteen switches each of which acts as controllers to turn on/off a lock. The 

selection can be changed in runtime too. When one lock is closed, the vessels that are supposed to pass 
through it will wait nearby and would not move forward until the status changes. After all the settings are 
done, click the “Start Simulation” button. When this button is pressed, the vessels at each port start moving 
towards their predefined destination. In the meantime, each vessel checks for any unsafe circumstances at 
the locks and sites along its route and takes decision accordingly. 

4 A CASE STUDY 

In the simulation, we analyze the system to measure certain representative quantities based on the input 
parameters listed in Table 3. In addition, Figure 4 represents a sample run and Figure 5 shows plots that 
were generated during the simulation. We generate an output file at the end of the simulation which presents 

 

Figure 4: Simulation running on NetLogo. 
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all the measurements listed above. The simulation time is set for 6 months, fleet size is 20 trucks and GH 
threshold is 30 feet. Initially, vessels started from the ports of Tulsa, Baton Rouge, Little Rock, Mississippi 
and Helena, and the locks were all open. The vessels were moving towards their destination ports and 

extreme events were checked by measuring gage height and lock availability at each site. For example, the 
vessels passing the sites (with GH more than 30 feet) between the LA-MS route along the Mississippi River 
were not able to move and had to wait until the GH level falls below 30. Whenever a vessel faces any 
extreme event and stops moving forward, it turns red in color to broadcast this event. The vessel gets back 
to its original color when it resumes movement. At some point during the simulation, we decided to close 
one of the locks, “Robert Kerr”, manually by turning the switch off; which resulted in discontinuation of 

vessel’s movement through that lock along MKARNS. Due to this extreme event, the average speed drops 
significantly along TUL–LA route. In Figure 5, the “Avg speed of Vessels” plot depict these changes in 
speed; the green line TUL–LA represents the average speed of vessels traveling from Tulsa to Baton. If any 
extreme event occurs and the resulted delay continues for more than 5 days, the cargo from the vessels will 
be unloaded and transferred by trucks through highways. 

Table 3: Simulation model input and output.  

Model Input Model Output 

• Gage Height from a spatio-
temporal model 

• Supply and demand between ports 

(movement of commodities) 
• Gage height threshold limit 
• Lock availability 
• Vessel distribution at each port 
• Fleet size  
• Number of trucks 

 

• Average speed of each vessel category between every two 
ports (mph) 

• Number of delays between every two ports 

• Total time lost due to extreme events (hour) 
• Total number of vessels delayed and their tonnages 
• Overall average speeds for the 3 types of vessels (mph) 
• Number of extreme events and length (time) in MKARNS 

and Mississippi River 
• Number of vessels from each category traveled and arrived 

between every two ports 
• Average speed of trucks for each product type (mph) 

Figure 5: Sample of plots generated during simulation. 

Moreover, when a vessel reaches to the destination port, trucks are used to carry its products to the final 
destinations. Figure 5 (left) shows the number of vessels that were used to carry products (crops) between 
two ports. At the end of the simulation, we generate an output report summarizing different statistics of 
vessels (e.g. average speed and number of extreme events) and trucks along with graphical plots (e.g. 
boxplots) that help the user understand all different aspects of the hybrid model. 
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5 CONCLUSION 

In this study, several contributions are made to ICIs risk analysis and economic studies literature. First, a 
spatio-temporal statistical model was developed to capture extreme natural events causing disruptions in 

inland waterways and predict them in the future to facilitate commodity flow planning and response actions. 
The statistical model was developed and tested on the Mississippi River and the MKARNS. Second, we 
built a simulation tool that captures the effect of inland waterways disruptions on the commodity flow 
through other ICIs which provides a broad understanding of the multimodal transportation system 
interdependencies in action. Third, the simulation tool will be available as an open-sourced tool for 
researchers, decision makers and other stakeholders to push the research in multimodal transportation 

forward. This work can be extended to include emergency services responses and detailed analysis of ports 
operations which are the next steps in this research. 
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