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ABSTRACT

This paper is concerned with building statistical models for non-stationary input processes with a linear
trend. Under a Poisson assumption, we investigate the use of the maximum likelihood (ML) method to
estimate the model and establish limiting behavior for the ML estimator in an asymptotic regime that
naturally arises in applications with high-volume inputs. We also develop likelihood ratio tests for the
presence of a linear trend and discuss the asymptotic efficiency. Change-point detection procedures are
discussed to identify an unknown point when the model switches from a stationary mode to non-stationarity
with a linear trend. Numerical experiments on an e-commerce data set are included. Incorporating a linear
trend into an input model can improve prediction accuracy and potentially enhance associated performance
evaluations and decision making.

1 INTRODUCTION

Simulation is often used as a planning tool to help determine optimal production capacities or to help assess
the number of staffing representatives needed at a service operations facility. In such settings, there often is
an observed time series available to help statistically model the exogenous inputs to the simulation model.
For example, the time series may describe historical demand for a product or historical arrivals at the
service facility. When the time series is of long duration, the time series may exhibit some non-stationarity.
This paper is concerned with fitting the simplest such models, namely in describing time series in which
the non-stationarity is governed by a linear trend model.

In particular, many discrete-event simulation models are fed by point processes describing customer
arrivals, customer demands, etc. In such settings, a natural starting point is to assume that the underlying
point process is a non-stationary Poisson process with an affine intensity function. In this paper, we discuss
some of the key statistical issues that arise in building such statistical models. First, we use the maximum
likelihood (ML) method to estimate parameters for the linear trend model, which naturally handles the
heteroskedasticity due to the non-stationarity. We study the arising optimization problem when the ML
method is applied. One challenge is that there is generally no closed form optimizer of the likelihood
function. We show that the optimization problem is convex and identify mild conditions for the uniqueness
of the ML optimizer.

The study of the limiting behavior for the ML estimator and its associated tests has been focused on
the asymptotic regime in which the sample size goes to infinity, a regime that is particularly popular in
the contexts where the observed samples are independent and identically distributed (iid); see Lehmann
and Casella (2006). In the non-stationary modeling context with a linear trend in presence, we consider an
alternative new asymptotic regime in which the magnitude of the baseline intensity goes to infinity, while
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the relative change in intensity due to the trend is fixed. This regime is especially suitable in scenarios
when the observed input is high-volume.

The ML formulation permits the construction of confidence intervals, goodness-of-fit tests, and hy-
pothesis tests. In particular, we establish the limiting behavior (consistency and central limit theorem) for
the ML estimator in the new asymptotic regime. Asymptotically valid confidence intervals can therefore
be constructed for the ML estimators. Section 3 discusses a likelihood ratio (LR) test on whether the
observed data supports the hypothesis of a statistically significant linear trend. We argue that the proposed
LR test has optimal efficiency in the new asymptotic regime. Massey et al. (1996) also consider the ML
estimation problem for a Poisson model with linear rate, with a focus on comparing the ML method to least
square approaches in terms of estimation efficiency. Zheng and Glynn (2017) discuss the ML estimation
problem for a nonhomogeneous Poisson process with a continuous piecewise linear intensity and solve
the estimation problem via convex optimization. See also Chapter 6 of Nelder and Wedderburn (1972) for
a comprehensive study of estimation problems for Poisson models. Kuhl et al. (1997) is the first paper
to address the trend estimation issue in Poisson modeling and simulation. They discuss estimation and
simulation methods for Poisson processes with trend and cyclic features; their definition of trend is based
on the cumulative intensity function, which is different from ours and therefore the two methods fit different
sets of applications.

For scenarios in which the input time series switches from a stationary model to a non-stationary linear
trend model at an unknown change point, we provide in Section 4 an estimation and inference procedure to
identify and validate such a change point. The limiting distribution of the test statistic is provided. Akman
and Raftery (1986) and subsequent papers discuss inference procedures for a change point in Poisson
processes that involves a single-shot change to the intensity model (e.g., a switch between two constant
rates). Perry et al. (2006) discuss the estimation of the change point in the same setting as ours, but no
inference or limiting behavior were covered.

Our main contributions in this paper are:

• Development of a convex formulation of the maximum likelihood (ML) estimator for a Poisson
model with linear trend, as well as analysis of the uniqueness of the ML solution; see Section 2.

• Analysis of the limiting behavior (consistency and central limit theorem) of the ML estimator when
the baseline intensity tends to infinity; see Section 2.

• Construction of a likelihood ratio test for the significance of a linear trend, as well as discussion
on its asymptotic efficiency; see Section 3.

• Development of change-point estimation and inference when the intensity process switches from
stationary to non-stationary with a linear trend; see Section 4.

• A numerical study of the ML estimator and the test for trend implemented on a real-world data
set; see Section 5.

2 A POISSON MODEL WITH LINEAR TREND

Suppose that we observe a sequence of arrival counts in m consecutive time intervals (not necessarily
equally-spaced), namely N1,N2, . . . ,Nm. With a linear trend in presence, assume that Ni’s are independent
Poisson random variables (rv’s), with

ENi = λ (1+b∗ti),

in which λ > 0 is the base rate parameter and b∗ is the slope parameter. Note that the ti’s are fixed
instruments and without loss of generality we assume that

0≤ t1 < t2 < · · ·< tm.

For example, if ti = i−1, the model can be used on arrival count data that are observed over consecutive
operational periods (e.g., days). Therefore Ni can model the arrival count on the i-th day. If t1 = 0, the
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relative trend over the full time horizon is given by

ENm−EN1

EN1
= b∗tm.

2.1 Maximum Likelihood Estimation

We estimate λ and b∗ using the maximum likelihood (ML) method. The likelihood function is given by

L(γ,b) =
m

∏
i=1

e−γ(1+bti) (γ(1+bti))Ni

Ni!

and the log-likelihood function is

L (γ,b) = logL(γ,b) =−
m

∑
i=1

(γ(1+bti))+
m

∑
i=1

Ni log(γ(1+bti)).

The maximum likelihood estimator λ̂ , b̂ is therefore given by the solution to the optimization problem

max
γ,b

L (γ,b) (1)

s.t. γ ≥ 0

1+bti ≥ 0, for 1≤ i≤ m.

Note that the gradient of L is given by(
∂L
∂γ

∂L
∂b

)
=

(
−∑

m
i=1(1+bti)+∑

m
i=1 Ni

1
γ

−∑
m
i=1 γti +∑

m
i=1

Niti
1+bti

)
.

So, if the following equation has a unique solution that satisfies the non-negativity constraints as given in
(1), that solution will be the ML estimator.

λ̂ =
∑

m
i=1 Ni

∑
m
i=1(1+ b̂ti)

∑
m
i=1 ti ∑

m
i=1 Ni

∑
m
i=1(1+ b̂ti)

=
m

∑
i=1

Niti
1+ b̂ti

. (2)

In cases where the solution to (2) does not satisfy the non-negativity constraints, we provide a uniqueness
result for the general ML optimization problem (1).
Theorem 1 If ∑

m
i=1 1{Ni>0} ≥ 2, the ML optimization problem (1) is equivalent to a convex optimization

problem and has a unique solution.

2.2 Limiting Behavior of the Maximum Likelihood Estimator

We next derive the limiting behavior of the ML estimators when λ ∗ tends to infinity. This asymptotic
regime naturally arises in the contexts where the volume of input processes is high.
Theorem 2 Suppose that b > 0. Denote Z1,Z2, · · · ,Zm as a sequence of iid standard normal random
variables. When λ → ∞,

λ̂

λ
→ 1

b̂−b∗→ 0
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with probability one, and(
1 ∑

m
i=1 ti

∑
m
i=1(1+b∗ti)

1 1
∑

m
i=1 ti ∑

m
i=1

t2
i

1+b∗ti

)(√
λ ( λ̂

λ
−1)√

λ (b̂−b∗)

)
⇒

(
∑

m
i=1
√

1+b∗ti·Zi

∑
m
i=1(1+b∗ti)

1
∑

m
i=1 ti ∑

m
i=1

ti·Zi√
1+b∗ti

)
.

We discuss briefly the outline of the proof and defer the full proof to an extended version of this paper.
The consistency of the ML estimator is mainly due to the uniqueness of ML optimizer (so that the local
optimizer is also global), that the distribution of (N1,N2, · · · ,Nm) is distinct for different parameters, and
that the true value of parameter b lies in the interior of the parameter space. The central limit theorem
is built on the consistency of the ML estimator and on the smoothness conditions of the log-likelihood
function. Suppose that the ML estimator satisfies the gradient condition (2), we have

λ̂ −λ −
(

∑
m
i=1 Ni

∑
m
i=1(1+ b̂ti)

− ∑
m
i=1 Ni

∑
m
i=1(1+b∗ti)

)
−
(

∑
m
i=1 Ni

∑
m
i=1(1+b∗ti)

−λ

)
= 0

λ̂ −λ −
( 1

∑
m
i=1 ti

m

∑
i=1

Niti
1+ b̂ti

− 1
∑

m
i=1 ti

m

∑
i=1

Niti
1+b∗ti

)
−
( 1

∑
m
i=1 ti

m

∑
i=1

Niti
1+b∗ti

−λ

)
= 0.

This set of equations, is approximately (intended to carry no rigorous meaning in this proof outline)
equivalent to

1√
λ
(λ̂ −λ )+

( 1
λ

∑
m
i=1 Ni ∑

m
i=1 ti

(∑m
i=1(1+b∗ti))2

)√
λ (b̂−b∗) =

1√
λ

(
∑

m
i=1 Ni

∑
m
i=1(1+b∗ti)

−λ

)
1√
λ
(λ̂ −λ )+

( 1
λ

1
∑

m
i=1 t2

i

m

∑
i=1

Niti
(1+b∗ti)2

)√
λ (b̂−b∗) =

1√
λ

( 1
∑

m
i=1 ti

m

∑
i=1

Niti
1+b∗ti

−λ

)
.

Note that the coefficients of
√

λ (b̂−b∗) in both equations converge almost surely respectively to ∑
m
i=1 ti

and 1
∑

m
i=1 ti ∑

m
i=1

t2
i

1+b∗ti
as λ → ∞. The right-hand-side of the two equations is approximately normal. For

instance,
1√
λ

(
∑

m
i=1 Ni

∑
m
i=1(1+b∗ti)

−λ

)
=

1
∑

m
i=1(1+b∗ti)

( m

∑
i=1

(Ni−ENi)√
Var(Ni)

√
1+b∗yi

)
,

which is asymptotically normal at a proper scale as λ → ∞.
We next discuss the construction of confidence intervals using the central limit theorem in Theorem 2.

Let

Σ1 =

(
1 ∑

m
i=1 ti

∑
m
i=1(1+b∗ti)

1 1
∑

m
i=1 ti ∑

m
i=1

t2
i

1+b∗ti

)
, Σ2 =

 1
∑

m
i=1(1+b∗ti)

1
∑

m
i=1(1+b∗ti)

1
∑

m
i=1(1+b∗ti)

(
1

∑
m
i=1 ti

)2
∑

m
i=1

t2
i

1+b∗ti

 .

The limiting joint distribution of (√
λ ( λ̂

λ
−1)√

λ (b̂−b∗)

)
is

N
(
(0,0)>,Σ−1

1 Σ2(Σ
−1
1 )>

)
.

It is easy to notice that Σ1 is invertible when b∗ > 0. With the central limit theorem in hand, we can
conveniently construct asymptotically valid confidence intervals for λ , b∗ or confidence regions for (λ ,b∗).
For example, denoting Σ̃ = Σ

−1
1 Σ2(Σ

−1
1 )>, we can construct an asymptotic 100(1−α)% confidence interval[

b̂− z

√
Σ̃11

λ̂
, b̂+ z

√
Σ̃11

λ̂

]
in which z is selected as P(−z≤ N(0,1)≤ z) = 1−α .
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3 LIKELIHOOD RATIO TEST FOR THE SIGNIFICANCE OF TREND

In this section, we consider the construction of a likelihood ratio statistic for the significance of a linear
trend, namely a test of b∗ = 0 versus b∗ 6= 0. When b∗ 6= 0, the underlying model indeed contains a linear
trend, while when b∗ = 0, the underlying model is stationary. Fitting a Poisson model with linear trend to
an observed time series of data often gives us a non-zero estimator b̂. The question is whether or not the
estimated non-zero linear trend is statistically meaningful. If the test however shows that the linear trend
is not significant, then a stationary model could be sufficient and may also reduce a possible over-fitting.

This hypothesis test aims at inferring from the data whether there is a significant trend. The test statistic
T is constructed by

T = 2log
(maxγ,b L(γ,b)

maxγ L(γ,0)

)
.

The likelihood ratio test rejects the null hypothesis for a large value of T . We next show the limiting
distribution for the test statistic under the null hypothesis.
Theorem 3 Under the null hypothesis b∗ = 0, when λ → ∞,

T ⇒ χ
2
1

in which χ2
1 denotes the chi-squared distribution with one degree of freedom.

The proofs of Theorem 3 borrows ideas from Chernoff (1954) and Lehmann and Romano (2006). With
Theorem 3 in hand, we can choose the critical value zα for the likelihood ratio test at confidence level α

such that P(χ2
1 > zα) = α .

We next discuss the optimality of the likelihood ratio test as constructed above. Uniformly most
powerful tests (UMP) and its variants optimality principles UMP unbiased and UMP invariant are almost
restricted to one-parameter families, which do not fit our case. We consider another optimality principle,
the scale asymptotically uniformly most powerful (SAUMP).
Definition 1 For testing b∗= 0 versus b∗> 0, a sequence of tests {φλ ∗} indexed by {λ ∗ ∈Z+} is called scale
asymptotically uniformly most powerful (SAUMP) at asymptotic level α if limsupλ ∗→∞Eb∗=0(φλ ∗)≤α under
the null hypothesis and if for other sequence of test functions {ψλ ∗} satisfying limsupλ ∗→∞Eb∗=0(ψλ ∗)≤α ,

limsup
λ ∗→∞

sup{Eb∗(ψλ ∗)−Eb∗(φλ ∗) : b∗ > 0} ≤ 0.

This definition of asymptotic optimality is analogous to that of asymptotically uniformly most powerful
(AUMP). See section 13.3 of Lehmann and Romano (2006) for reference. In AUMP, the asymptotic limit
is considered when the size m of iid samples goes to infinity, while in SAUMP, the asymptotic limit is
considered when the scale λ ∗ is sent to infinity.
Theorem 4 The likelihood ratio test based on the test statistic T is SAUMP.

There are scenarios in which the one-sided test

H0 : b∗ = 0, vs H1 : b∗ > 0

is preferred over the two-sided test. In these scenarios, it is of interest to test whether there is a statistically
significant positive linear trend. For this one-sided test, we construct the associated likelihood ratio statistic

T o = 2log
(maxγ,b≥0 L(γ,b)

maxγ L(γ,0)

)
.

Theorem 5 Under the null hypothesis b∗ = 0, when λ ∗→ ∞,

T o⇒W

in which W is a rv that takes value 0 with probability 1/2 and follows the χ2
1 distribution with probability

1/2.
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4 CHANGE POINT DETECTION FOR A LINEAR TREND

Let N1,N2, . . . ,Nm be a sequence of independent Poisson random variables with rate parameters µ1,µ2, . . . ,µm.
This section derives estimation and test for a change point, at which the Poisson rates change from a constant
sequence to a sequence with linear trend. Specifically, the model is specified by

µ1 = λ
∗,

µi

µ1
=

{
1 i≤ τ∗

1+b∗(i− τ∗) τ∗ < i≤ m
,

in which 1≤ τ∗ ≤ m, λ ∗, b∗ are unknown positive parameters. The likelihood function is given by

LC(τ,γ,b) =
τ

∏
i=1

e−γ γNi

Ni!

m

∏
i=τ+1

e−γ(1+b(i−τ)) (γ(1+b(i− τ)))Ni

Ni!
.

The maximum likelihood estimators τ̂ , λ̂ , b̂ are given by

max
τ,γ,b

LC(τ,γ,b).

We construct a likelihood ratio statistic to test the hypothesis

H0 :
µi

µ1
= 1, 1≤ i≤ m vs H1 :

µi

µ1
=

{
1 i≤ τ∗

1+b∗(i− τ∗) τ∗ < i≤ m
, for some τ

∗ < m and b∗ > 0.

Denote the likelihood ratio R as

R =
LC(τ̂, γ̂, b̂)

maxγ LC(m,γ,0)
.

The tests rejects the null hypothesis for large values of R. Given the data, for small intensities, a bootstrapping
procedure can be employed to generate the confidence region of the test. For large intensities, we show
the following result.
Theorem 6 Under the null hypothesis,

2 log(R)⇒ max
1≤ j≤m−1

(∑m
i= j+1(i− j)Zi)

2

∑
m
i= j+1(i− j)2 ,

as λ → ∞, where Z1,Z2, · · · ,Zm are iid N (0,1) random variables.

5 EXPERIMENTS

We show implementations of the methods developed in this paper on a real data set.

5.1 Estimation and Tests

To illustrate the estimation and test procedures, we implement the proposed procedures on a data set from
a large online e-commerce company. Thousands of products are sold on the online platform. We focus on
the estimation and test for the trend in the daily demand time series for some of the best-selling products.
The daily demand for these products varies from the level of 50 to 1,000. The time range of the data is a
half year, and in the data pre-processing holidays are viewed as outliers and removed simultaneously for
all products. The length of the demand time series is m = 161 days after the data pre-processing.

We present results in Table 1 for the demand sequence of six representative products. For each product,
the size of demand sequence is m = 161. Therefore, in our model formulation, N1,N2, · · · ,Nm are given
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by the data, and the time stamps t1, t2, · · · , tm are given by the actual time sequence starting by t1 = 1. We
report the estimators (λ̂ , b̂), the estimated cumulative trend across the full time horizon tm · b̂, and the test
statistic T for the significance of trend. The 95% quantile of the χ2

1 distribution 3.8415 is provided as the
critical value. Specifically, P(χ2

1 > 3.8415)≈ 0.05.
Figure 1 to Figure 6 visualizes the daily demand sequence for Product 1 to Product 6. The tests suggest

that the demand time series for Product 1 and 2 is stationary, in the sense that a linear trend is not significant
in the data. The tests also suggest that a linear trend is a significant modeling element of the demand time
series for Product 3 to Product 6.

Table 1: Results for parameter estimation and significance tests.

Base-Rate Slope Cumulative Trend LR Test Statistic Trend Significance
λ̂ b̂ b̂ · tm T T > 3.84 ?

Product 1 74.85 1.88×10−5 0.31% 9.10×10−6 Not Significant
Product 2 66.06 −2.6×10−4 −4.2% 0.0033 Not Significant
Product 3 78.40 0.028 466% 22.04 Significant
Product 4 149.12 0.013 209% 46.37 Significant
Product 5 625.51 −0.0046 −75% 28.02 Significant
Product 6 466.20 −0.0051 −85% 136.70 Significant

5.2 Out-of-sample Prediction Performances

In this subsection, we compare the out-of-sample prediction performance using our non-stationary Poisson
model with a linear trend to that using a standard Poisson model without trend. Note that the full demand
time series is N1,N2, · · · ,Nm with m = 161. We presume that one has observed the demand for the first
k days and predicts the demand for the next l days, i.e., the k+ 1,k+ 2, . . . ,k+ l-th day. For a given
k ∈ [90,m− l], we choose a look-back window of w days to fit our model with a linear trend. Specifically,
the demand data in days k−w+1,k−w+2, . . . ,k are used to fit the model and infer the parameters. The
look-back window size is fixed such that for the prediction task for each k ∈ [w,m− l], the size of data
used is the same. Denote the fitted parameters as λ̂k and b̂k for a given k ∈ [w,m− l]. Then we use the
fitted model to predict the demand for the next l days, that is, N̂k+1, N̂k+2, · · · , N̂k+l . Specifically,

N̂k+ j = λ̂k(1+ b̂k(k+ j))

for j = 1,2, . . . , l. The relative prediction error ekl is defined as

ekl =
1
l

l

∑
i=1

|N̂k+i−Nk+i|
Nk+i

. (3)

We then compute the averaged relative prediction error êl by rolling over k from w to m− l. That is

êl =
1

m− l−w+1

m−l

∑
k=1

ekl. (4)

In the experiments using our trend model, we fix w = 90. Therefore, êl represents the error level for
predicting the future l days of demand using our model and input data of last 90 days. If otherwise the trend
is ignored, a stationary Poisson model is used to fit the historical data and predict the demand for the future
l days of demand. We denote w as the size of look-back window to fit the stationary model. Specifically,
if the historical demand in the first k days are available, the demand data that lies in the look-back window
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(Nk−w+1,Nk−w+2, · · · ,Nk) are used to fit the stationary model and predict the future demand. Specifically,
the stationary prediction for each of the daily demand on days k+1,k+2, . . . ,k+ l is the same, given by

1
w

k

∑
j=k−w+1

N j.

The computation of relative prediction error is the same as in (3) and (4).
Table 2 shows the results by selecting l = 7, such that the prediction of demand in the future 7 days is

of interest. A fixed size of look-back window 90 is selected for our trend model. Three different sizes of
look-back windows (w = 90,30,7) are considered for the stationary model. When w = 90, the stationary
model uses exactly the same data as the trend model. The choice of w = 7 reflects the idea that one only
uses very recent data to predict future demands, in order to mitigate nonstationary effects that might present
in a longer history. One possible downside of selecting a short look-back window is that the data size
is small and may cause statistical instability. The choice of w = 30 balances the other two choices. The
numerical results show that our trend model has a stronger out-of-sample performance than the stationary
model with any of the three choices of the look-back window size. For Product 1 and Product 2, as shown
in the table, the out-of-sample prediction performance is comparable for all models. This is consistent with
the hypothesis test result that there is no statistically significant trend in the demand data for Product 1
and 2. Meanwhile, the choice of look-back window size does not matter much for the demand prediction
of Product 1 and Product 2. For Product 3 to Product 6, the linear trend model demonstrates significantly
better out-of-sample prediction power compared to the stationary model with different look-back window
sizes. When there is a significant trend present in the data, a small look-back window mitigates some
nonstationarity and improves the prediction performance, but cannot match the performance of the Poisson
model with a linear trend.

Figure 1: Product 1. Figure 2: Product 2.
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Figure 3: Product 3. Figure 4: Product 4.

Figure 5: Product 5. Figure 6: Product 6.

Table 2: Relative errors for out-of-sample prediction with different models.

Out-of-sample Prediction Relative Error
Trend Model Stationary w = 7 Stationary w = 30 Stationary w = 90

Product 1 0.171 0.144 0.167 0.154
Product 2 0.163 0.158 0.167 0.159
Product 3 0.124 0.203 0.238 0.392
Product 4 0.109 0.127 0.143 0.239
Product 5 0.329 0.386 0.410 0.582
Product 6 0.185 0.217 0.353 0.561
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