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ABSTRACT

Recent developments are summarized concerning Sequest and Sequem, sequential procedures for estimating
nonextreme and extreme steady-state quantiles of a simulation output process. The procedures deliver point
and confidence-interval (CI) estimators of a given quantile, where each CI approximately satisfies given
requirements on its coverage probability and its absolute or relative precision. The public-domain Sequest
software now includes both procedures. The software is applied to a user-supplied dataset exhibiting
warm-up effects, autocorrelation, and a multimodal marginal distribution. For the simulation analysis
method of standardized time series (STS), we also sketch an elementary proof of a functional central
limit theorem (FCLT) that is needed to develop STS-based quantile-estimation procedures when the output
process satisfies a conventional density-regularity condition and either (i) a geometric-moment contraction
condition and an FCLT for a related binary process, or (ii) conventional strong-mixing conditions.

1 INTRODUCTION

To evaluate long-run performance or risk for complex systems, steady-state simulations play a fundamental
role in a wide range of disciplines. On one hand, the steady-state expected value of an ergodic output
process equals the long-run average of a time series of such outputs almost surely (a.s.). On the other hand,
under broadly applicable conditions a steady-state quantile of the selected output can measure the long-run
performance or risk for each individual output as well as overall system performance. For example, in a
production-system simulation, let Xi denote the cycle time of the ith departing job (i.e., the job’s time in the
system), where i≥ 1. In the evaluation of an existing or proposed system design, an important performance
measure may be x0.95, the steady-state 0.95-quantile of each job’s cycle-time distribution because as i→∞,
the long-run probability is 95% that Xi does not exceed x0.95.

To formalize the discussion, we assume that {Xi : i≥ 1} is stationary with cumulative distribution function
(c.d.f.) F(x)≡ Pr{Xi≤ x} and probability density function (p.d.f.) f (x) for all x∈R, where f (x) is continuous
on its support. Given p ∈ (0,1), the p-quantile of this distribution is xp ≡ F−1(p)≡ inf{x : F(x)≥ p}. If
{Xi : i = 1, . . . ,n} consists of independent and identically distributed (i.i.d.) outputs, then we can compute
standard point and confidence-interval (CI) estimators of xp (Serfling 1980, Section 2.3.3 and Section 2.6.1).
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If the simulation is not initialized in steady-state operation or {Xi : i ≥ 1} is autocorrelated, then
the estimation of steady-state quantiles involves substantial challenges. In particular, successive responses
generated by a simulation are rarely i.i.d. normal random variables (r.v.’s). For example, in a queueing network
simulation that has the empty-and-idle initial condition but substantial long-run congestion, successive
observations {Xi : i ≥ 1} of time in the system for departing customers are contaminated by warm-up
effects that depend on the customer index i; hence those observations are neither independent nor identically
distributed. As another example, successive losses or gains {Xi : i = 1, . . . ,n} in the value of a financial
portfolio over a given n-period time horizon are not mutually independent because of their joint stochastic
dependence on the economic conditions prevailing over that time horizon. Moreover, in both of these
examples the associated p.d.f. f (x) often has highly nonnormal properties such as pronounced skewness
or multiple modes. See Alexopoulos et al. (2017, p. 22:3) and Alexopoulos et al. (2019b, pp. 2–3) for a
brief review of previous work on quantile estimation for steady-state simulation.

In this paper we summarize our recent work on two sequential procedures for estimating a steady-state
quantile whose order p is given—namely, Sequest (Alexopoulos et al. 2019b), which is designed for
estimating nonextreme quantiles (i.e., 0.05≤ p≤ 0.95); and Sequem (Alexopoulos et al. 2017), which is
designed for estimating extreme upper quantiles (i.e., 0.95 < p≤ 0.999). Section 2 provides an overview
of our approach to delivering improved point and CI estimators of a given quantile based on batching and
sectioning as well as the deletion of any warm-up period and the adjustment of each CI’s half-length to
compensate for any harmful effects of autocorrelation or nonnormality. In Section 3 the public-domain
Sequest software (now including Sequem) is applied to a user-supplied dataset exhibiting warm-up effects,
autocorrelation, and a multimodal marginal distribution. For the analysis method of standardized time
series (STS), in Section 4 we sketch an elementary proof of a functional central limit theorem (FCLT)
that is needed to develop STS-based quantile-estimation procedures when the output process satisfies a
conventional density-regularity condition and either (i) a geometric-moment contraction condition and an
FCLT for a related binary process; or (ii) conventional strong-mixing conditions, which are much harder to
check than (i). In Section 5 we discuss our ongoing work on steady-state simulation quantile estimation.

2 OVERVIEW OF SEQUEST

Sequest uses the methods of batching and sectioning to estimate xp. From the simulation-generated time
series {Yi = Xw+i : i = 1, . . . ,n} of length n = bm that has been observed beyond the end w of any warm-up
period deleted by Sequest, we form b nonoverlapping batches each of size m so that for j = 1, . . . ,b, the
jth batch consists of the subseries {Y( j−1)m+1, . . . ,Yjm}. We sort the observations in the jth batch into
ascending order to obtain the order statistics Yj,(1) ≤ ·· · ≤ Yj,(m) ; and ŷp( j,m)≡ Yj,(dmpe) is the jth batch
quantile estimator (BQE) of xp. Similarly from the entire warmed-up sample {Y1, . . . ,Yn}, we compute
the order statistics Y(1) ≤ ·· · ≤ Y(n); and ỹp(n)≡ Y(dnpe) is the sectioning-based estimator of xp. (Here we
use the conventional definition of ỹp(n) to simplify the discussion and save space; see Alexopoulos et al.
(2019b, Equation (16)) for the refined version of ỹp(n) that is used in Sequest and Sequem.) We also
compute an estimator of the variance of the BQEs, S̃ 2

ŷp
≡ (1/b)∑

b
j=1
[
ŷp( j,m)− ỹp(n)

]2 . Let ϕ̂ ŷp(b,m)

and B̂ŷp(b,m) respectively denote the sample lag-one correlation and sample skewness of the BQEs{
ŷp( j,m) : j = 1, . . . ,b

}
.

Let A = max
{[

1+ ϕ̂ ŷp(b,m)
]/[

1− ϕ̂ ŷp(b,m)
]
, 1
}

denote the multiplicative adjustment to the half-
length of the CI for xp that is designed to compensate for correlation of the BQEs. From the sample
skewness B̂ŷp(b,m) of the BQEs, compute the skewness-adjustment parameter β = B̂ŷp(b,m)

/(
6
√

b
)

;
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and define the skewness-adjustment function,

G(ζ )≡


ζ if |β | ≤ εs ,

[1+6β (ζ −β )]1/3−1
2β

if |β |> εs ,

 for all ζ ∈ R,

where in general ω1/3 ≡ sign(ω)|ω|1/3 for all real ω and εs is an arbitrarily small positive number. The
correlation- and skewness-adjusted CI estimator of xp has midpoint ỹp(n) and half-length

H = max
{∣∣G(t1−α/2,b−1)

∣∣, ∣∣G(tα/2,b−1)
∣∣}[AS̃ 2

ŷp
(b,m)

/
b
]1/2

.

Sequest progressively increases m until the termination condition H ≤H∗ is satisfied, where H∗ = r∗
∣∣ỹp(n)

∣∣
if the relative-precision level r∗ is given, and H∗ = h∗ if the absolute-precision level h∗ is given. Let n†

denote the final sample size. See Alexopoulos et al. (2019b, Section 2) for a discussion of (i) the theoretical,
heuristic, and practical considerations leading to our use of the point estimator ỹp(n†) and the CI estimator
ỹp(n†)±H in the design of Sequest; and (ii) a formal algorithmic statement of Sequest and an explanation
of the steps of the procedure. See Alexopoulos et al. (2017, Section 2) for a similar discussion of Sequem.

The Sequest software (now including Sequem) has a graphical user interface, enabling the user to do
the following: (i) specify the parameters of any test process detailed in Alexopoulos et al. (2017, Section
4) or Alexopoulos et al. (2019b, Section 3), and apply either quantile-estimation algorithm automatically
to a realization of the selected process that is generated by the software in real time; or (ii) apply Sequest or
Sequem semiautomatically to a user-supplied dataset contained in a plain-text file. In both cases, the user
has the ability to specify an upper bound on the total sample size. If in case (ii) the dataset is sufficiently
large to allow normal termination of Sequest, then the selected algorithm delivers point and CI estimators of
xp that (approximately) satisfy the user-specified requirements on CI coverage and precision; otherwise, the
selected algorithm terminates after providing an estimate of the sample size required to continue execution
in the current step. The numerical example presented in Section 3 illustrates the use of Sequest and Sequem,
including screenshots showing the results of running the software on a user-supplied dataset.

We developed stand-alone, public-domain software implementations of Sequest that include Sequem
and can run under the Linux, MacOS, and Windows operating systems. Stable links to these implementations
are provided in Alexopoulos et al. (2019a).

3 EXPERIMENTATION WITH THE SEQUEST SOFTWARE PACKAGE

The performance of the Sequest and Sequem procedures was evaluated using the aforementioned test
processes. This evaluation was based on estimation of various performance metrics (e.g., the absolute
bias of the point estimate, the CI coverage probability, the CI relative half-length, and the overall sample
size) based on independent replications of each test process. In this section we demonstrate the software
package using a single sample path generated from a simulation model for the aircraft maintenance facility
in Problem 2.32 of Law (2015). Although this setting does not allow a thorough evaluation of the two
procedures, it illustrates the functionality of the software with a model that is more “realistic” than the
processes in Alexopoulos et al. (2017, 2019b), which were designed for stress-testing of the procedures.

An aircraft inspection/repair facility handles seven different types of jets, as described in Table 1 below.
The times between successive plane arrivals of type ` (` = 1,2, . . . ,7) are exponentially distributed with
mean a`; all times are in days. The facility uses c = 12 parallel (identical) service stations, each of which
sequentially handles the inspection and (if necessary) repair of all the engines on a plane, but can deal with
only one engine at a time. For example, a type-2 plane has three engines, so when it enters service, each
engine must undergo an inspection-and-possible-repair process before the next engine on this plane can
begin service; and all three engines must be inspected and (if necessary) repaired before the plane leaves
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the service station. Each service station is capable of dealing with any type of plane. A plane arriving
to find an idle service station goes immediately into service, while an arriving plane finding all service
stations busy must join a single FIFO queue.

Table 1: Model parameters from Problem 2.32 of Law (2015).

Plane Number of
type (`) engines a` A` B` p` r`

1 4 8.1 0.7 2.1 0.30 2.1
2 3 2.9 0.9 1.8 0.26 1.8
3 2 3.6 0.8 1.6 0.18 1.6
4∗ 4 8.4 1.9 2.8 0.12 3.1
5 4 10.9 0.7 2.2 0.36 2.2
6 2 6.7 0.9 1.7 0.14 1.7
7∗ 3 3.0 1.6 2.0 0.21 2.8

Two of the seven types of planes are classified as wide-body (denoted by an asterisk in Table 1), while
the other five are classified as regular. For each engine on a type-` plane, the following process takes place,
where Erlang(k,µ) denotes the gamma distribution with integer shape parameter k and mean µ:

• The engine is initially inspected, taking an amount of time distributed uniformly on (A`,B`).
• A decision is made as to whether repair is needed; the probability that repair is needed is p`. If no

repair is needed, inspection of the jet’s next engine begins; or if this was the last engine, the jet
leaves the facility.

• If repair is needed, it is carried out, taking an amount of time distributed as Erlang(2,r`).
• After repair, a second inspection is done, taking an amount of time distributed uniformly between

A`/2 and B`/2. The probability that the engine needs further repair is p`/2.
• If the initial repair is successful, the engine is done. If the engine fails the second inspection,

it requires a second repair, taking an amount of time from the Erlang(2,r`/2) distribution. For
each inspection-repair cycle after the first cycle, the inspection times are uniformly distributed
between A`/2 and B`/2, the probability of failing inspection is p`/2, and the repair time has the
Erlang(2,r`/2) distribution. These cycles continue until the engine finally passes inspection.

While the full model in Law (2015) also involves operational costs and entails the evaluation of designs
involving nonpreemtive priority assigned to wide-body jets in a single waiting line or allocation of a subset
of stations to wide-body jets, we focus on the simplest setting and the estimation of various quantiles
of the time-in-system of an arbitrary plane in steady state. We note that the basic facility is an M/G/c
queueing system: the overall arrival process is Poisson with a rate of λ = 1.439 planes per day; and the
service times (including the associated inspection times) are a mixture of seven distributions containing
geometrically distributed random sums. To compute the first two moments of the service time conditional
on the type of plane, we evaluated the event that initial repair is needed for each engine; and from the
number of secondary repairs and inspections required for each engine, we obtained the mean service time
for an arbitrary plane E[S] = 6.702 and the respective variance Var[S] = 8.033. Hence ρ = λE[S]/c = 0.804
is the long-run fraction of the facility’s total service capacity that is busy.

Exact calculation of selected steady-state quantiles for the time-in-system process is difficult. Instead we
computed nearly exact estimates of those parameters based on a single run starting in the empty-and-idle state,
and we deleted the first 10,000 observations from the simulation-generated dataset

{
Xi : i = 1, . . . ,5×106

}
to eliminate any warm-up effects. Figure 1 depicts a histogram of the truncated dataset. The sample
minimum, mean, standard deviation, skewness, kurtosis, and maximum of the truncated dataset were 1.602,
7.458, 4.160, 1.085, 1.458, and 47.097, respectively. The sample lag-one autocorrelation in the warmed-up
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dataset was 0.1165. Using the exact values of λ , E[S], and Var[S] given above, we computed the standard
approximation E[Yi]≈ 7.337 days for the steady-state expected time in the M/G/c queueing system (Whitt
1993, Equation (2.14)); and the closeness of the sample mean Y = 7.458 days to this approximation partially
validates the simulation. From Figure 1 we concluded that the steady-state p.d.f. f (x) of the process {Xi}
had four modes (near 2.5, 4, 6, and 9.5 days) and three antimodes (near 3, 5, and 8 days).

Figure 1: Histogram of times in system from the model in Section 3.

Table 2 displays experimental results from Sequest (for all values of p) and Sequem (in bold typeface for
p≥ 0.95) in the absence of a precision requirement. For each value of p in the first column, each estimation
procedure was supplied with the entire dataset of size 5 million and stopped as soon as a sufficiently large
sample size was identified. Column 2 lists the nearly exact sample quantiles obtained from the truncated
data set

{
Xi : i = 104 +1, . . . ,5×106

}
that was used to create the histogram in Figure 1. Columns 7–9 list

the truncation point w, the batch size m, and the overall sample size n = w+bm. Column 3 lists the point
estimate obtained from Sequest based on the truncated sample of size n† = n−w after the removal of the
initial w observations, and column 4 displays the absolute bias of the point estimate ỹp(n†). Columns 5
and 6 list the absolute and relative half-lengths of the 95% CIs for xp, where each CI’s relative half-length
is expressed as a percentage of its absolute midpoint.

An examination of Table 2 reveals that both methods performed very well with regard to this output
process: (a) in all cases the length of the warm-up period w was practically negligible relative to the overall
sample size n, and it was much smaller than the truncation point used for the computation of the point
estimates in column 2; (b) the estimates of the absolute bias and the CI relative precision in columns 4 and
6 were small; and (c) the overall sample sizes required to obtain such accurate 95% CIs were also relatively
small. The variability of the sample size in the neighborhoods of the modes is partially attributable to the
skewness of the quantile estimators obtained from the nonoverlapping batches; a heuristic explanation of this
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phenomenon is given in Section 4.2 of Alexopoulos et al. (2018) and in Section EC.3 of the e-companion
of Alexopoulos et al. (2019b). As p increased from 0.98 to 0.995, Sequem required progressively larger
sample sizes than Sequest (from one to two orders of magnitude); this is a reasonable compromise for the
superior CI coverage probability delivered by Sequem under no CI precision requirements (Alexopoulos
et al. 2017).

Table 2: Experimental results for point and 95% CI estimators of the p-quantile xp of the time-in-system
process from Problem 2.32 of Law (2015).

No CI Precision Requirement

p xp ỹp(n†)
∣∣Bias

[
ỹp(n†)

]∣∣ H CI Rel.
Prec. (%) w m n

0.05 2.351 2.354 0.003 0.013 0.533 256 4,180 134,016
0.10 2.674 2.671 0.003 0.018 0.678 437 5,844 187,445
0.15 3.156 3.194 0.038 0.094 2.938 437 3,152 101,301
0.20 3.850 3.876 0.026 0.068 1.745 437 2,452 78,901
0.25 4.349 4.346 0.003 0.073 1.765 437 3,996 128,309
0.30 4.932 4.961 0.029 0.080 1,614 437 2,452 78,901
0.35 5.305 5.305 0.000 0.042 0.794 437 4,128 132,533
0.40 5.545 5.530 0.015 0.020 0.354 437 13,916 445,749
0.45 5.928 5.895 0.033 0.039 0.665 437 13,916 445,749
0.50 6.528 6.515 0.013 0.079 1.214 437 6,952 222,901
0.55 7.147 7.135 0.012 0.068 0.950 437 7,880 252,597
0.60 7.798 7.784 0.014 0.077 0.990 437 8,268 265,013
0.65 8.495 8.483 0.012 0.079 0.935 437 7,836 251,189
0.70 9.150 9.121 0.029 0.068 0.742 437 9,368 300,213
0.75 9.772 9.745 0.027 0.048 0.495 437 13,916 445,749
0.80 10.576 10.534 0.042 0.073 0.694 437 13,916 445,749
0.85 11.690 11.644 0.046 0.108 0.924 437 9,836 315,189
0.90 13.138 13.079 0.059 0.055 0.417 437 25,312 810,421
0.92 13.891 13.843 0.048 0.063 0.455 437 24,584 787,125
0.94 14.834 14.802 0.032 0.125 0.848 384 12,432 398,208
0.95 15.416 15.377 0.039 0.119 0.776 437 15,320 490,677

15.408 0.008 0.204 1.327 512 4,978 319,104
0.96 16.116 16.082 0.034 0.172 1.071 437 9,836 315,189

16.195 0.113 0.329 2.030 512 2,234 143,488
0.98 18.184 18.732 0.548 0.642 3.428 256 512 16,640

18.248 0.064 0.252 1.379 768 2,048 328,448
0.99 20.145 20.862 0.711 0.667 3.196 256 512 16,640

20.218 0.073 0.239 1.182 512 1,450 464,512
0.995 22.028 22.739 0.717 0.532 2.338 256 612 19,840

22.001 0.027 0.183 0.830 1,536 2,048 1,377,792

Below we illustrate the functionality of the Sequest method with regard to the estimation of the 99th
percentile of our time-in-system process with a relative precision of 1% for the 95% CI for x0.99. Figure
2 displays the initial (experimental) screen of the application, where the user specifies the method choice
(in this case, Sequest) and the fact that a dataset will be read from a text file. Figure 3 depicts a portion
of the next screen, where we have inserted the location of the input file and we have imposed an artificial
upper bound on the sample size (to mimic a more-realistic situation where the user has a smaller dataset).

Figure 4 depicts a portion of the subsequent screen where we specified the estimation of the 99th
percentile with a relative precision of 1% for the relative half-length of the 95% CI and then hit the Finalize
Inputs button. The user proceeds by hitting the Continue button at the bottom of this screen and then
hitting the Start button at the next screen. Figure 5 displays a caption of the first outcome, where Sequest
points out that the supplied sample size is insufficient for computing a 95% for x0.99 with a relative precision
of 1%.

At this junction we hit the Back button twice, raise the upper bound on the sample size to 500,000, and
repeated the steps in the previous paragraph. (If we used the sample sizes recommended by Sequest, we
would have to perform this cycle three times.) Figure 6 displays the final output of the method. Notice that
the overall sample size required to obtain the 95% CI, namely x0.99 ∈ 20.065±0.151, with an estimated
relative precision of 0.750% increased from 16,640 from the case of no precision requirement (Table 2) to
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Figure 2: Initial experimental screen of Sequest.

Figure 3: Partial screen of Sequest with the file path containing the data set in Section 3 and an upper
bound of 100,000 on the sample size.

433,504; this increase is reasonably close to the well-known ratio (3.196/0.750)2 ≈ 18.160. Note that the
latter performance metrics are on par with the output of Sequest under no CI precision requirement.
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Figure 4: Partial screen of Sequest with the entries for p, confidence level (1−α) for the CI for xp, and a
relative precision requirement of 0.01.

Figure 5: Partial screen of Sequest noting the inadequacy of the sample size with regard to the experimental
setup in Figure 4.
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Figure 6: Final partial screen of Sequest for the estimation of x0.99 with the 95% CI precision requirement
of 0.01.

4 AN APPROACH TO QUANTILE ESTIMATION USING STANDARDIZED TIME SERIES

To formulate point and CI estimators of xp based on the method of standardized time series using the
warmed-up process {Yi : i≥ 1}, we let Z≡ {0,±1,±2, . . .}; and for each x∈R and i≥ 1, we let Ii(x)≡ 1 if
Yi ≤ x, and Ii(x)≡ 0 otherwise. We assume that {Yi : i≥ 1} and the associated binary process {Ii(xp) : i≥ 1}
satisfy the following conditions.

Geometric-Moment Contraction (GMC) Condition: The process {Yi : i≥ 0} is expressed in terms of a
function ξ (·) of a sequence of i.i.d. random variables {ε j : j ∈ Z} such that Yi = ξ (. . . ,εi−1,εi) for i≥ 0;
moreover, there exist constants ψ > 0, C > 0, and r ∈ (0,1) such that for two independent sequences
{ε j : j ∈ Z} and

{
ε

†
j : j ∈ Z

}
each consisting of i.i.d. random variables with the same distribution as ε0 ,

E
[∣∣ξ (. . . ,ε−1,ε0,ε1, . . . ,εi)−ξ

(
. . . ,ε†

−1,ε
†
0 ,ε1, . . . ,εi

)∣∣ψ ]≤Cr i for i≥ 0.

Density-Regularity (DR) Condition: The p.d.f. f (x) is continuous at every x ∈R with supx∈R f (x)<∞;
and at the quantile xp to be estimated, f (xp)> 0 and the derivative f ′(xp) exists.

Functional Central Limit Theorem for {IIIiii(((xxxppp)))}: Let I(xp,n)≡ (1/n)∑
n
i=1 Ii(xp) for n≥ 1. We define

the autocorrelation function ρI(xp)
(`) ≡ Corr

[
Ii(xp), Ii+`(xp)

]
at each lag ` ∈ Z; and we assume that

∑`∈Z
∣∣ρI(xp)

(`)
∣∣ <∞ so we have the corresponding variance parameter σ2

I(xp)
≡ limn→∞ nVar

[
I(xp,n)

]
=

p(1− p)∑`∈Z ρI(xp)
(`) ∈ (0,∞). Finally we assume that the sequence of random functions

In(t; p,xp)≡
1

σI(xp)n
1/2

bntc

∑
i=1

[Ii(xp)− p] for t ∈ [0,1] and n≥ 1

satisfies the functional central limit theorem (FCLT)

In(·; p,xp) =⇒n→∞ W (·), (1)
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where b·c denotes the floor function; W (·) denotes standard Brownian motion on [0,1]; and =⇒n→∞ denotes
weak convergence as n→∞ in the space D of real-valued functions on [0,1] that are right-continuous
with left-hand limits (Billingsley 1999, Section 12).

From the jth batch {Y( j−1)m+1, . . . ,Yjm}, we compute the jth batch mean of the associated binary
r.v.’s, I j(xp,m)≡ (1/m)∑

m
`=1 I( j−1)m+`(xp) for j = 1, . . . ,b, where the batch count b is fixed. Let Zb denote

a b× 1 standard normal random vector. If {Qm : m ≥ 1} is a sequence of r.v.’s and {rm : m ≥ 1} is a
sequence of positive constants, then the notation Qm = Oa.s.(rm) means there is a (bounded) r.v. U such that
|Qm/rm| ≤U for m≥ 1 a.s. Based on this setup, Alexopoulos et al. (2019b) prove the following result.

Theorem 1 If {Yi : i≥ 1} satisfies the GMC and DR conditions as well as the FCLT (1), then

ŷp( j,m) = xp−
I j(xp,m)− p

f (xp)
+Oa.s.

{
[log(m)]3/2

m3/4

}
as m→∞

for j = 1, . . . ,b; and m1/2
[
ŷp(1,m)− xp, . . . , ŷp(b,m)− xp

]T
=⇒m→∞

[
σI(xp)

/
f (xp)

]
Zb .

As in Section 2, we let ỹp(n) denote the conventional sectioning-based estimator of xp based on the
warmed-up time series {Yi : i = 1, . . . ,n} of length n; and we consider the asymptotic behavior as n→∞
of the centered-and-scaled quantile-estimation process

Xn(t; p,xp)≡
bntc

{
ỹp(bntc)− xp

}
n1/2 =−

σI(xp)In(t; p,xp)

f (xp)
+Oa.s.

{
[log(n)]3/2

n1/4

}
for t ∈ [0,1], n≥ 1. (2)

Theorem 2 If {Yi : i≥ 1} satisfies the assumptions of Theorem 1, then[
f (xp)

/
σI(xp)

]
Xn(·; p,xp) =⇒n→∞ W (·). (3)

Proof. Let U∗ denote a (bounded) r.v. such that in Equation (2), we have∣∣Oa.s.{[log(n)]3/2/n1/4}
∣∣≤U∗[log(n)]3/2/n1/4 for n≥ 1 a.s. (4)

For x ∈ D, let ‖x‖ ≡ sup{|x(t)| : t ∈ [0,1]}; and let Λ denote the class of strictly increasing, continu-
ous mappings of [0,1] onto itself, where I ∈ Λ denotes the identity map. For x,y ∈ D, let d(x,y) ≡
infλ∈Λ

{
max

[
‖I−λ‖, ‖x− y ◦λ‖

]}
denote the distance between x and y in the Skorohod metric on D

(Billingsley 1999, Equation(12.13)). From Equations (2) and (4), we see that

d
[

f (xp)Xn(·; p,xp)

σI(xp)
,−In(·; p,xp)

]
≤

f (xp)U∗[log(n)]3/2

σI(xp)n
1/4 =⇒n→∞ 0; (5)

and Equation (3) follows from the FCLT (1), Equation (5), and the convergence-together theorem (Billingsley
1999, Theorem 3.1).

Finally we obtain the FCLT required for an STS-based quantile-estimation procedure. Let

An(t)≡
(
bntc

/
n1/2

)[
ỹp(bntc)− ỹp(n)

]
for t ∈ [0,1], n≥ 1

denote the STS quantile-estimation process; and let B(t)≡W (t)− tW (1) for t ∈ [0,1] denote a standard
Brownian bridge that is independent of W (1) (Billingsley 1999, pp. 101–104).
Theorem 3 If {Yi : i≥ 1} satisfies the assumptions of Theorem 1, then[

f (xp)
/

σI(xp)

]{
n1/2[ỹp(n)− xp

]
,An(·)

]}
=⇒n→∞ [W (1),B(·)]. (6)
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Proof. Define the map Θ : D 7→ R×D as Θ(y) ≡ [y(1),y(t)− ty(1)] for y ∈ D, where R×D has the
metric τ(·, ·) defined as follows: for si = (ri,xi) ∈ R×D (i = 1,2), we have τ(s1,s2) ≡

{
(r1− r2)

2 +

[d(x1,x2)]
2
}1/2. Let Disc(Θ) denote the discontinuity points of Θ. We show that Θ(·) is continuous at

every y ∈C so Pr{W ∈Disc(Θ)}= 0. By the continuous-mapping theorem (Whitt 2002, Theorem 3.4.3),
[ f (xp)/σI(xp) ]Θ(Xn) =⇒n→∞ [W (1),B(·)]. Let Bn(t) ≡ Xn(t; p,xp)− tXn(1; p,xp) for t ∈ [0,1]. Since

n1/2
[
ỹp(n)−xp

]
=⇒n→∞

[
σI(xp)

/
f (xp)

]
W (1), we see that

∥∥An(·)−Bn(·)
∥∥ =⇒n→∞ 0 by Slutsky’s Theorem.

Equation (6) follows by the convergence-together theorem.

Remark 1 Comparable results hold if the GMC condition is replaced by an appropriate φ -mixing condition
(Bradley 2005, Equations (1.2) and (2.2)). For example, Sen (1972) derives a Bahadur representation with
a remainder term of the form Oa.s.[log(n)/n1/8] under the assumption that (i) f (x) satisfies the DR condition
and f ′(x) is positive and bounded in some neighborhood of xp; and (ii) {Yi : i ≥ 1} is φ -mixing with
∑

∞
`=1[φ(`)]

1/2 <∞. In this situation Billingsley (1968, Theorem 21.1) ensures that the FCLT (1) holds,
and hence Theorems 2 and 3 hold. The φ -mixing condition (ii) is much harder to verify compared with the
GMC condition, which can at least be checked empirically as discussed in Alexopoulos et al. (2012). J

Remark 2 We can show comparable results if the GMC condition is replaced by an appropriate ρ-mixing
condition (Bradley 2005, Equations (1.2) and (2.2)); but it is unclear such results hold for any α-mixing
condition (Bradley 2005, Equations (1.1) and (2.2)). Wang et al. (2011) derive a Bahadur representation with
a remainder term of the form Oa.s.{[log(n)]3/4/n1/2} by assuming (i) f ′(x) is bounded in some neighborhood
of xp; and (ii) {Yi : i≥ 1} is α-mixing with α(`)≤ C/`h for `≥ 1 and some constants C> 0 and h> 11. We
are unaware of any result for α-mixing processes comparable to Theorem 21.1 of Billingsley (1968) (for
φ -mixing processes) or Theorem 19.3 of Billingsley (1999) (for ρ-mixing processes) that ensures either
FCLT (1) or FCLT (6) holds. In any case, the relevant α- and ρ-mixing conditions are hard to verify. J

Remark 3 Using the FCLT (6), we can construct an STS-based sequential procedure for estimating
steady-state quantiles with the following batching techniques: nonoverlapping batch means, batched STS
area estimators, and overlapping batch means (Alexopoulos et al. 2016). The development in this section
parallels to some extent the approach of Calvin and Nakayama (2013) for deriving STS-based point and
CI estimators of xp. However, the latter approach assumes the {Yi : i ≥ 1} are i.i.d. and requires deeper
analysis than the approach in this section. J

5 CONCLUSIONS

In this article we reviewed some new developments concerning the Sequest and Sequem sequential procedures
for estimating nonextreme and extreme steady-state quantiles, respectively. We presented an example
illustrating how the associated software is applied to a simulation output process exhibiting warm-up effects,
autocorrelation, and nonnormality. Finally we established a readily-accessible theoretical foundation for
STS-based quantile-estimation procedures when the output process satisfies the usual DR condition and
either the GMC condition or certain mixing conditions. Ongoing work includes (i) further improvements
to the Sequest and Sequem procedures and their associated implementations in a public-domain software
package; and (ii) sequential quantile-estimation procedures based on the STS method.
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