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ABSTRACT

We formulate mixed integer programming (MIP) models to obtain approximate solutions to finite horizon
stochastic inventory models. These deterministic formulations of necessity make a number of simplifying
assumptions, but their special structure permits very short model solution times under a range of experimental
conditions. We evaluate the performance of these models using simulation optimization to estimate the
true optimal solutions. Computational experiments identify several demand and cost scenarios in which
the MIP models yield near-optimal solutions, and other cases where they fail, suggesting directions for
future research.

1 INTRODUCTION

Stochastic inventory models have been the subject of extensive study since the early work of Arrow et al.
(1951), and remain one of the most active areas of investigation in the fields of operations management
and production systems. However, the computation of optimal inventory policies remains challenging even
for apparently simple inventory systems such as single-stage periodic review models with independent
demands. While it is well known that a base stock policy is optimal (Clark and Scarf 1960), the only
general approach to computing the optimal base stock levels is stochastic dynamic programming, which
suffers from the curse of dimensionality to a degree that renders even the solution of quite small instances
extremely challenging. Non-stationary demand poses particular challenges for computing optimal policies.
As a result, a natural direction for research is the development of heuristics that can consistently provide
near-optimal solutions.

The problems of production planning, particularly those of planning the releases of work into capacitated
production systems over time, have also been addressed extensively in the literature. The most prevalent
mathematical approach to these problems has been deterministic mathematical programming models, which
have evolved to a widely accepted common structure. A finite planning horizon is divided into discrete
time periods, and decision variables (generally release quantities) are associated with each period. The
decision variables are used to compute the values of state variables such as inventory and backorder levels
associated with each period, which allow costs to be calculated. The vast majority of this work treats all
problem parameters as deterministic. It is interesting to note that developments in stochastic optimization,
such as multistage stochastic programming (Birge and Louveaux 1997), simulation optimization (Fu 2015),
and robust optimization (Bertsimas and Sim 1994) have as yet had relatively little impact on the production
planning domain.

It is interesting that despite their apparent common origin in the problems of supply chain planning and
management, research in the areas of production planning and inventory management has evolved almost
independently of each other. Inventory theory has focused on modeling the stochastic aspects of demand,
largely ignoring problems of capacity. Production planning, on the other hand, has largely avoided problems
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of stochastic demand to focus on modeling material flows and capacity constraints, as well as lot-sizing
issues. While safety stocks are a primary concern in the domain of inventory models, production planning
models generally treat them as an exogenous parameter. Attempts to integrate the planning of safety
stocks into production planning models are relatively recent. de Kok (2018) provides a simulation-based
methodology to determine optimal end-item safety stocks for mathematical-programming-based production
planning models.

Due to its heavy reliance on mathematical programming models, the domain of production planning
has benefited immensely from the developments in commercial mathematical programming solvers over
the last four decades. This suggests the possibility of exploiting these developments to build mathematical
programming models that obtain approximate solutions to finite-horizon stochastic inventory problems. In
this paper we present the results of an initial effort in this direction. The mixed integer programming (MIP)
models we propose share some characteristics with stochastic dynamic programming, in that the demand
distribution is discretized, yielding a very large number of binary variables. However, the special structure
of the resulting integer programs, together with improvements in solvers and computing power, allow them
to be solved in reasonable computation times.

The following section briefly reviews previous related work. Section 3 presents the formal problem
statement and the mathematical programming formulation, followed by the design of the computational
experiments in Section 4. Section 5 presents the results of our experiments, and Section 6 concludes the
paper with a discussion of the primary findings and their implications for future research.

2 PREVIOUS RELATED WORK

The first paper on determination of optimal base-stock levels in a serial supply chain was by Clark and Scarf
(1960). They developed an algorithm to solve for the exact base-stock levels in a finite-horizon system
and proved that this policy is indeed optimal. Federgruen and Zipkin (1984) proved the optimality of the
base-stock policy for infinite-time serial supply chains. Chen and Zheng (1994) extended the method of
Clark and Scarf and developed a recursive solution approach. Diks and De Kok (1998; 1999) developed
an algorithm to compute near-optimal order-up-to policies for divergent, multi-echelon systems. Shang
and Song (2003) developed a heuristic based on the solution of a number of newsvendor subproblems to
calculate approximately optimal base-stock levels for infinite-horizon serial systems by solving multiple
instances of the classic newsvendor model Snyder and Shen (2011) developed by Arrow, Harris, and
Marschak (1951). The heuristic is fast and easy to implement but does not guarantee optimality, although
extensive computational experiments demonstrate excellent performance. An overview of extensions to the
newsvendor model related to influenced customer demand, supplier pricing policies, and the risk profile of
buyers is given by Qin et al. (2011). Other extensions include multi-product systems, extensively treated by
Choi (2012), and multi-product systems under constraints, treated by Niederhoff (2007), Zhang (2010), and
Abdel-Malek and Otegbeye (2013). Of these, Niederhoff (2007) and Abdel-Malek and Otegbeye (2013)
use a separable programming approach that is particularly relevant to the work in this paper.

Parker and Kapuscinski (2004) show that a modified echelon base-stock policy is optimal for a 2-stage
serial supply chain that assumes a lower capacity at the most downstream stage and is applicable to both
infinite- and finite-horizon problems. Glasserman and Liu (1997) analyzed the multi-stage serial system
with capacity constraints under stochastic demand, for which they developed approximations of average
inventory, backorders, unfilled demand, and shortfalls.

In summary, several solution methods exist to obtain both exact and approximate base-stock levels in
serial supply chains with and without capacity constraints. However, time-dependent capacity constraints
and non-stationary demand have not been considered. Non-stationary demand can occur in many cases,
e.g., seasonal demand, phase out of a product, or new product introduction. Fluctuations in capacity can
occur, e.g., when repairs must be planned or available storage space varies. In this paper, we investigate
whether it is possible to incorporate time-dependent capacity constraints and non-stationary demand into
the optimization using mathematical programming models.
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3 MIXED INTEGER PROGRAMMING FORMULATION

We consider a single-echelon single-item capacitated inventory system under periodic review over a finite
planning horizon. We define the following notation, noting that period ¢ runs from time ¢ — 1 to time ¢.

T The set of discrete planning periods ¢t = 1,...,|T|

S Base-stock level in period ¢

hy Holding cost at time ¢

Ds Penalty cost for backorders at time ¢

Cr(S;) Total cost of system for a given set of echelon base stock values S;

A Width of each discretization interval

L Number of discretization intervals

D, Demand at time ¢

fi() Probability density function of demand in period ¢

X, Number of units ordered at the end of period r — 1 which arrive at the end of period ¢,
right after the incoming demand D; has been fulfilled. Thus, X; cannot be used to meet
demand D;.

Uy Mean demand in period ¢

I On-hand inventory at the end of period ¢

B; Backorders at the end of period ¢

Z Net inventory at the end of period ¢, given by I, — B;; note that X; is not included in Z;

Y Inventory order position at time ¢, given by Z; + all outstanding orders

O, Shortfall in period 7, defined as Q; = max{0,S; — Y }

G Capacity in period ¢

Demand in each period is independent, but not identically distributed. In each period ¢ the system can
replenish its inventory position by ordering up to a maximum of C; units. There are no fixed ordering costs.
At the end of each period, holding costs are incurred equal to &, times the number of units on hand, while
penalty costs incurred equal to p, times the number of units backlogged. Federgruen and Zipkin (1986)
have shown that the optimal policy for this problem has the form of a modified base stock policy, under
which a base stock level S; is determined for each period, and orders placed to bring the inventory position
Y; up to this level. However, due to the capacity constraint, it may not be possible to bring the inventory
position up to the base stock level S;. The amount by which the base stock level exceeds the inventory
position, given by Q; = max{0,S; — Y, }, is referred to as the shortfall for period 7.

Our mathematical programming formulation follows previous stochastic dynamic programming and
separable convex programming approaches in discretizing the demand distribution in each period using L
discretization intervals of with A. Binary decision variables are then used to emulate numerical integration
in the evaluation of the objective function. Auxiliary binary variables and constraints are implemented to
ensure that a base stock policy is correctly implemented. We begin by defining an objective function suitable
for the finite-horizon problem, followed by material balance equations and related constraints. Additional
constraints then ensure that order releases follow a modified base stock policy. The starting point of our
formulation is to express the base stock level S; associated with period ¢ in terms of the discretization
intervals, as

L
S = ZAyl,ta (1)
=1
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where A denotes the width of the discretization interval and y;; is a binary decision variable such that

{1 if S, > IA
Yir =

0 otherwise .
To ensure the correct definition of the base stock level S;, we enforce the constraint
Vi1 = Vit [=2,..LVteT. 2)

This constraint set is particularly important to the computational tractability of the MIP formulation, and
captures the order up to structure of the base stock policy. We shall now use this definition of S; to formulate
the objective function and constraints of our MIP model. For clarity of exposition we shall not substitute
the expression (1) for the base stock into each expression as we describe the model in more detail, allowing
the reader to see the parallels with the stochastic inventory model more clearly.

3.1 Objective Function

Since we consider only linear holding and penalty costs, we approximate the objective function by assuming
that at the start of each period the inventory position Y; is raised to its (time-dependent) base stock level
S;. This formulation neglects the possibility that it may not be possible to raise the inventory position to
the desired base stock level due to the limited capacity C;, i.e., the possibility of positive shortfall O, > 0.
However, the constraints of the mathematical program explicitly recognize that this may not be possible due
to capacity constraints (inducing positive shortfall), or to excess inventory carried from previous periods.
By discretizing the time-dependent demand probability functions and summing over all time periods the
objective function can be expressed as follows:

L L
Cr( Z{ Z t —IA)P+ (pr+ 1) Z {(lA— StPlt}(l_ylt)} 3)

where

Py = SO —05)8) + (1 +0.5)4)) @

This cost function essentially implements the classical newsvendor cost function in each period ¢
(Snyder and Shen 2011) using Equation (4) to implement the trapezoidal rule for numerical integration.
The first summation inside the braces computes the expected holding cost of the net inventory, and the
second the expected number of missed demands.

3.2 Material Balance Equations

The net-inventory at the end of each period 7 is the sum of the net-inventory of the previous period plus
the amount ordered minus the demand in this period. Therefore, the material balance equation (5) must
always hold at the end of every period.

2y =2 1+X1— D, ©)

However, since the period demand D, is a random variable, this constraint cannot be implemented in this
form in a mathematical programming model. In a scenario-based stochastic programming approach, this
would be enforced using a number of demand realizations (scenarios), but this results in exponential growth
in the size of the formulation with the number of realizations and planning periods. Hence, we take the
approach of enforcing Equation (5) in expectation, yielding the deterministic material balance constraint

Zi=2Zi 1 +X1— Uy (6)
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Finally, since the net inventory Z; can take negative values and the mathematical programming model
requires non-negative variables, we use the relation Z, = I, — B, to obtain the final form of the material
balance constraint given by

L—Bi=5L 1 —B 1 +Xi—1— U (N

If demand rises over time, the inventory can only be built up to the maximum that the capacity allows.
Therefore, the base-stock level cannot increase by more than the capacity C; from one period to the next:

St < Stfl +Ct (8)

We also assume that the sum of the previous period’s net inventory and the current period’s order will
always equal the base-stock level (cf. our discussion on the objective function above):

Zi + X+ X1 =5 )

A limitation of Equation (9) is that if demand drops after time ¢; the base-stock level at time ¢ must
be at least Z;_;. To allow the base-stock level at time ¢ to go below this, Equation (9) is relaxed if X, =0
and S; < S;—1 — W;—1. This is accomplished by introducing three new auxiliary binary decision variables
defined as follows:

1ifX, =0
S S (10)
0ifX, >0
1ifS <S8_1—
" — lf t r—1— -1 (11
0ifS: >8—1—W-1
1i =1
v, = faw (12)
0 l\fZﬂ/it =0
Constraint (9) can now be implemented using the constraints
Zt—1+Xt+Xt—1 ZSI (13)
Zi g+ X+ X1 <S8 +viM (14)

where M represents a very large number. If v, =0, Equations (13) and (14) enforce Equation (9). However,
if v, = 1, the right hand side of Equation (14) becomes sufficiently large that the constraint is no longer
binding. The following constraints then ensure the correct system dynamics:

(1-z)<X, WteT (15)
(1—z)M>X, VteT (16)

St+uM > S — W VteT (17)

S < S —w+(1—u )M VieT (18)
w<z WVteT (19)

vy < iy VieT (20)

v >z +u—1 VteT 21

The first two constraint sets link the values of the order quantity X; to the values of the binary decision
variable z;. These two constraints together ensure that X; > 0. The third and fourth constraint sets allow
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u; to take the correct values based on the relation between s;,S;,—; and L,. The final three constraint sets
ensure that the binary decision variables z; take values consistent with the values of u, and v;.
Finally, the incoming order can never exceed the available capacity:

X, <C (22)
The final formulation thus minimizes the objective function (3) subject to the constraints
(2),(7), (14) — (20) 23)
L>0 VteT (24
B, >0 VteT (25)
v €{0,1} I=1,.,LVteT (26)
z €40,1} VieT 27)
u € {0,1} VieT (28)
v, €{0,1} VieT (29)

The size of this formulation, and hence the computation time required for its solution, evidently depend
on several factors, whose values must be determined experimentally. These include the discretization unit
A and the number L of discretization intervals used. The formulation involves O(LT) decision variables
and O(T) constraints. Thus, the size of the MIP instance that must be solved is primarily determined by
the number of discretization intervals used to approximate the objective function.

The formulation described above is an approximation to the stochastic inventory problem that we
wish to solve. The first approximation takes place in the objective function (3), which assumes that the
inventory position can always be brought up to the base stock level S;; the probability of positive shortfall is
neglected. This can be expected to adversely effect the quality of the solution proposed by the formulation
when capacity constraints are binding a significant proportion of the time. The second approximation is
the assumption in the material balance Equation (6) that demand will always be realized at its mean level.
This is necessary to avoid the exponential growth in formulation size that would result from using specific
demand realizations, i.e., scenarios, but may result in suboptimal base stock levels. Our computational
experiments in the next section examine the degree to which these approximations affect the quality of the
solutions obtained from the formulation.

4 EXPERIMENTAL DESIGN

The objective of these exploratory experiments is to assess the potential of the MIP model presented in
the previous section to generate near-optimal solutions to the problem, and to develop an understanding of
the reasons for poor performance so that they can be enhanced and improved. The finite horizon consists
of 10 periods, with t € T,T = {0, 1,...,9}, and ¢t = 0 the time at which the calculation of future base-stock
levels is executed. In order to define the cost parameters in an intuitive manner, we set the values of p
and 4 to yield the specified service level (probability of no stockout) & in an uncapacitated newsvendor
problem, i.e., ﬁ = . The following parameters are varied:

Service level: 90% or 95%

Squared coefficient of variation (CV?) of period demand: 0.5, 1, or 2

e Mean period demand: constant, rising, decreasing, or constant with one peak. The variations used
for the mean demand per period are given in Table 1.

e Capacity per period: low, high, unlimited, or high with sudden decrease. For the unlimited capacity
case, a value must be defined as input, for which the value of 50 is chosen. The value 50 represents
unlimited capacity in this case, as it is very seldom reached with the demand levels currently
proposed. The variations used for the capacity per period are given in Table 2.
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Table 1: Mean demand profiles.

Variation \r |1 2 3 4 5 6 7 8 9 | Mean
Constant 99 9 9 9 9 9 9 9 9
Rising 5 6 7 8 9 10 11 12 13 9
Decreasing 9 10 11 13 11 9 7 6 5 9
Peak 7 7 7 7 10 12 17 7 7 9
Table 2: Capacity profiles.
Variation \¢ 1 2 3 4 5 6 7 8 9 |Mean
Low 10 10 10 10 10 10 10 10 10 10
High 12 12 12 12 12 12 12 12 12 12
Unlimited 50 50 50 50 50 50 50 50 50| 50
Sudden decrease | 13 13 13 13 4 4 13 13 13 11

Rather than presenting a full factorial design, we focus on the 15 cases presented in Table 3. Cases
1-4 are generated to examine the behavior of the MIP model under different capacity levels. Cases 5-12
are generated to test the behavior with capacity constraints, while Cases 13—15 examine the effect of the
value of CV2.

The MIP formulation was solved using CPLEX 12; solution times for the largest formulations were
of the order of 40 minutes, although times less than 5 minutes were typical. No attempt was made to
enhance the formulation using valid inequalities, and CPLEX was run with all settings at their default
values. The performance of the base stock levels obtained from the MIP model is evaluated by simulating
their execution for 2000 replications using Microsoft Excel.

Due to the difficulty of implementing an exact stochastic dynamic programming approach in the time
available to us, we use a simulation optimization approach to generate near-optimal solutions as a benchmark
for the MIP model. The search mechanism employed is a Genetic Algorithm (GA) implemented using
the Standard Evolutionary Engine in the Frontline Solver add-in to Microsoft Excel. Each chromosome
corresponds to a vector of base stock levels S;,# = 1,...,10. The algorithm was implemented using a
population size of 200, with the fitness of each chromosome being measured by the average cost of 2,000
independent simulation replications. A single Excel worksheet is implemented to simulate the performance
of a given vector of base stock levels, which are specified as the decision variables over which the GA
searches. Initial experiments sought to minimize the average cost over all 2,000 replications. However,
it was noted that in some instances the evolutionary algorithm generated very large base stock levels that
were clearly redundant in the presence of the capacity constraints. To prevent this behavior, a penalty
term equal to 5% of the sum of the base stock levels in all periods was added to the average cost over the
simulation replications, and used as the objective function for the simulation optimization. However, the
results reported in the next section do not include the penalty term. A maximum computation time limit
of 7,200 seconds was used for all runs, with the algorithm terminating if the current best solution was not
improved in 30 minutes. The average run time for the simulation optimization procedure was of the order
of one hour on a MacBook Pro with a 2.5 GHz Intel Core i7 processor and 16GB RAM.

We recognize that the solutions provided by the simulation optimization procedure cannot be guaranteed
to be optimal. However, there are several results in the literature proving that a GA will, when run for
sufficiently long time under the right parameterization, reach a global optimal solution with probability 1
(Goldberg 1989). Thus, we use a very long run of the GA as an admittedly imperfect surrogate for the
exact optimal solution to the stochastic optimization problem.

1702



Bluemink, de Kok, Srinivasan, and Uzsoy

Table 3: Experiment cases.

Case | Servicelevel [CVZ [ #: [ 1 2 3 4 5 6 7 8 9
I 95% 05 | ¢ 550 560 50 580 590 ég é(l) ;(2) ég
2 95% 0.5 Z 590 590 590 590 590 590 590 590 590
3 95% 05 Zﬁ 570 570 570 570 ég éé ég 570 570
4 95% 0-5 gﬁ 590 ;8 ;(1) ;(3) ;(1) 590 570 560 550
5 90% ! Z 190 190 190 190 190 190 190 190 190
6 90% ! Zj 193 193 193 491 491 193 193 193 193
7 90% I g 150 160 17 0 180 190 ig i(l) ié }(3)
8 90% ! ﬁj 152 162 172 182 192 i(z) g g B
9 0% ! gﬁ 190 }8 }(1) 1(3) }(1) 190 170 160 150
10 90% 1 Z 192 ig 1; B i; 192 172 162 152
1 90% ! gﬁ 170 170 17 0 170 }8 }g 13 170 170
12 90% 1 é 172 172 172 172 }(2) g g 172 172
13 95% 05 | & 150 160 170 180 190 18 i(l) 1(2) ig
14 95% I g; 150 160 170 180 190 ig i(l) ié }(3)
15 95% 2 | & 150 160 0 180 190 18 i(l) 1(2) ig
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S COMPUTATIONAL RESULTS

We present the experimental results in two separate sections. In the first set of experiments, shown in
Table 5, we examine the impact of different capacity levels on the performance of the MIP formulation.
Each row of the table gives the average cost of the policy suggested by the MIP model (Avg.), its standard
deviation (SD), and the lower and upper limits of a 95% confidence interval for the mean cost (LL and UL,
respectively). The C; column gives the capacity, i.e., the maximum order size that can be shipped in any
period. The final column gives the ratio of the average cost of the MIP policy to that obtained using the
GA, which we use as a surrogate for the optimal value. Ratios below 1 indicate cases where the simulation
optimization was not able to improve on the MIP solution; this is probably due to becoming trapped in a
local optimum, or the presence of the term penalizing high base stock levels in the GA.

It is immediately apparent that when C; = 50, i.e., capacity constraints are not binding, the MIP produces
solutions of essentially the same quality as the simulation optimization procedure. Under this condition,
the assumption in the objective function that the base stock can always be achieved is valid, although the
assumption of mean demand in the material balance equation (6) is not. When C; = 12, the performance of
the MIP again improves, except for Case 3. Case 3 experiences a peak in mean demand in periods 6 through
8, requiring inventory to be accumulated ahead of this temporary bottleneck. In the intermediate capacity
cases of C; =11 or 12, the maximum deviation of the MIP solution from that obtained by simulation
optimization is 15%, which occurs, rather surprisingly, in Case 2 where the demand distribution remains
constant in all periods. It is interesting to observe that the simulation optimization procedure consistently
yields higher base stock levels than the MIP, despite the fact that high base stock levels are explicitly
penalized in the fitness measures used in the simulation optimization procedure.

Table 4: Results for Cases 1 through 4.

Case | C; | Avg. SD LL UL MIP/GA
50 | 194.23 | 121.99 | 189.74 | 198.72 0.98
| 10 | 343.24 | 495.63 325 361.49 1.15
11 | 278.12 | 365.71 | 264.66 | 291.58 1
12 | 257.45 | 346.72 | 244.69 | 270.21 1.03
50 | 206.15 | 122.24 | 201.65 | 210.64 1
) 10 | 311.84 | 481.07 | 294.13 | 329.54 1.08
11 | 290.88 | 456.8 | 274.07 | 307.69 1.15
12 | 25498 | 342.49 | 242.38 | 267.59 1.02
50 | 214.21 | 131.5 | 209.37 | 219.05 0.99
3 10 | 392.3 | 578.44 | 371.01 | 413.59 1.09
11 | 347.57 | 493.85 | 329.4 | 365.75 1.08
12 | 326.79 | 476.65 | 309.25 | 344.34 1.11
50 | 218.06 | 134.02 | 213.13 223 1.02
4 10 | 321.8 | 581.79 | 300.39 | 343.21 0.98
11| 292.58 | 503.1 | 274.07 | 311.1 1.07
12 | 269.36 | 419.6 | 253.91 | 284.8 1

The results for Cases 5 through 15 are shown in Table 5. The CAP/GA column gives the performance
of a policy that orders the capacity in each period, i.e., X; = C; for all periods ¢. In this case, the maximum
error, except for Case 10, is 13%, suggesting that overall the MIP formulation produces solutions that are
very reasonable given the severity of the assumptions it makes. In Case 10, mean demand is decreasing
over time, implying that the variability of demand is also decreasing since the CV is held constant across
the planning horizon. Case 9 has the same demand pattern, but has Cy = 10 while Cjo = 12. This case
is particularly difficult as in the later periods it is frequently not necessary to order, due to the higher
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probability of inventory remaining on hand from earlier periods. Examining the base stock levels generated,
the simulation optimization has higher base stocks in the earlier periods than the MIP, and lower ones in
the final periods.

The CAP/GA column also yields some interesting insights. In all cases except Cases 9 and 10, ordering
up to the full capacity in each period appears to perform very well. Cases 9 and 10 are, of course, the
cases with declining mean demand over time, where ordering up to capacity in the later periods will yield
high levels of excess inventory. Comparison to the MIP/GA results suggests that the MIP is systematically
setting its base stock levels too low, since due to the capacity constraints no base stock level will yield
higher order quantities than those from the CAP policy. This bias towards lower base stock levels is to
be expected from the mean demand assumption in the material balance constraints (6), which ignores the
variability in demand that creates the need for safety stock. On the other hand, the objective function
contains an explicit description of the demand distribution in each period, limited by the accuracy of the
discretization used and the assumption that the inventory position can always be brought up to the specified
base stock level S;, which effectively relaxes the capacity constraint in the objective function.

Table 5: Computational results for Cases 5 through 15

Case | Avg. SD LL UL MIP/GA | CAP/GA
5 395.16 | 545.16 | 375.09 | 415.22 1.1 0.99
6 32990 | 346.98 | 317.13 | 342.67 1.15 1.09
7 364.59 | 446.56 | 348.15 | 381.02 1.09 1.00
8 3243 | 410.74 | 309.18 | 339.41 1.12 1.04
9 |407.82 | 599.97 | 385.73 | 429.9 1.03 1.06
10 | 419.23 | 649.89 | 395.31 | 443.15 1.22 1.26
11 | 398.97 | 509.33 | 380.22 | 417.72 1.04 1.02
12 | 342.03 | 424.29 | 326.41 | 357.65 1.01 1.07
13 | 334.58 | 312.53 | 323.08 | 346.08 1.14 1.02
14 | 47495 | 661.29 | 450.61 | 499.29 1.07 0.94
15 | 747.21 | 1133.52 | 705.49 | 788.93 1.13 0.96

6 CONCLUSIONS AND FUTURE DIRECTIONS

Taken as a whole, the results from our experiments are quite encouraging given the potentially severe
approximations made by the MIP formulation. The formulation ignores the capacity constraint in the
objective function, but enforces it in expectation through the material balance constraints linking the
periods. In contrast, the objective function has a complete description of the demand distribution, but the
material balance constraints use only the mean demand in each period. The generally good results obtained
suggest that the trade-offs made in modeling the constraints and objective function compensate for each
other to some degree, although not enough to avoid poor performance under some experimental conditions,
notably the decreasing demand scenarios of Cases 9 and 10. However, we are well aware that the results
reported here are exploratory in nature. A larger computational experiment with a better benchmark for
the optimal solution, ideally an exact optimal solution, is necessary to draw generalizable conclusions.

The MIP models have proven to be computationally tractable, allowing relatively large instances to
be solved in reasonable, although not always very short, CPU times. The computational efficiency of the
formulation is in large part due to the consecutive ones structure implied by constraints (2), but we have
made no other effort to enhance the formulation. Improving the computational efficiency of the formulation
by developing valid inequalities and formulating tighter constraints remains an interesting direction for
future research.
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The exploratory results presented here raise a number of interesting questions for future work. The
simulation optimization procedure seems to suggest that there are a large number of alternative policies
that have very similar average cost values in the neighborhood of the optimal solution. While this makes
it difficult to obtain the global optimum using simulation optimization without using a large number of
replications for each evaluation of the fitness measure, it also suggests that obtaining a near-optimal solution
using an approximate approach may be quite practical. There is also the possibility of enhancing the MIP
formulation in several ways. One of these may be to include a limited number of carefully selected demand
realizations to guide the MIP model, e.g., by assuming a two-point distribution with the same mean and
variance as the original demand distribution. Another enhancement might be the inclusion of chance
constraints to enable a better description of demand uncertainty in the material balance constraints.
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