
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

ENHANCING REALISM IN SIMULATION THROUGH DEEP LEARNING

Muhammad Shalihin Bin Othman
Gary Tan

Department of Computer Science, School of Computing
National University of Singapore

13 Computing Drive
Singapore City, 117417, SINGAPORE

ABSTRACT

Modeling and simulation have been around for years and its application to study several different systems
and processes have proven its practical importance. Various research has sought to optimize its performance
and capabilities, but few address the issues of generating realistic inputs for simulating into the future.
In this paper, some issues in the commonly used simulation flow were identified and deep learning was
introduced to enhance realism by learning historical data progressively, so as to generate realistic inputs to
a simulation model. We focus on improving the input generation phase and not the model of the system
itself. To the best of our knowledge, this is the first work that realizes the possibility of integrating deep
learning models directly into simulation models for general-purpose applications. Experiments showed
that the proposed methods are able to achieve higher overall accuracy in generating input sequences as
compared to current state-of-art.

1 INTRODUCTION

In today’s world, systems and business processes are sought to be improved and optimized day to day.
Modeling and simulation is a powerful tool that has been used to improve and optimize systems and
processes (Carson 2005), with applications in several disciplines such as Engineering, Medicine and many
more. Input data to a simulation model is the foundation of a good simulator (Ungureanu et al. 2005).
It drives the simulation and can be generated either by identifying a theoretical distribution if a good fit
for the data exist, or an empirical distribution if there is not, or even information gathered from different
sources such as expert’s opinion if no data exist (Biller and Gunes 2010). While these methods have been
successfully used for several works (Frost and Melamed 1994), there is still much that can be argued as to
how effective these generated data can represent a system under study. This invoked several questions that
our research aims to seek a solution for. What if a system changes significantly over time? What if some
of the system variables are dependent on certain events? How can we influence the input generator based
on such events effectively? What if there is a relationship between data from further back in the historical
records? How can a generator ”remember” such representations of data?

A theoretical distribution certainly will not be able to accommodate such changes in the system without
manual intervention. An empirical distribution, may have the flexibility (Shanker and Kelton 1991) to
change its distribution as the system changes, but does not have the properties of ”remembering” events that
are repeating itself or ”relate” the influence an event might have to the data sample. If an input generator
could effectively recognize such events and ”remember” them based on historical data, the realism of the
simulation can certainly be improved, yielding results for a more effective analysis. Thus, we investigate
the use of Representation Learning (RL), also known as Machine Learning (ML), that has been successfully
used in several applications (Witten et al. 2016) over the years.

2795978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Othman and Tan

Machine learning is a set of algorithms that allow the automatic discovery of representations from raw
data needed for detecting features or classification. Another form of representation learning that has gained
much popularity in recent years uses deep neural networks (DNN), also known as Deep Learning (DL). It
has achieved close to perfect accuracy on applications such as visual imagery with the Inception-ResNet
(Szegedy et al. 2017) for image classification, the Recurrent Neural Network (RNN) on text classification
(Liu et al. 2016), and many more.

This paper aims to explore the issues in current state-of-art for generating inputs to a simulation model
and apply deep learning techniques to overcome these issues. We will leave the realistic modeling of the
system to the modeller and focus our research on improving the realism of input data generation. Hence, our
main contribution to the state-of-art in the input generation phase, is the novel method for generating inputs
and not the model of the system itself. The aims and objectives of this paper are to produce a conceptual
contribution for integrating deep learning techniques into simulation modeling in order to achieve a better
sense of realism and propose a novel method to generate realistic inputs to a simulation model based on
historical data learned over time. In this paper, we use the term ”enhancing realism” to refer to our novel
method of using deep learning to learn from data and generate more realistic inputs to a simulation model,
as opposed to current methods of modeling stochastic distributions. We would like to highlight that we
are not making any contributions to existing deep learning algorithms, but rather to leverage on recent
successes to improve a specific part of the simulation framework, the input generation phase. Additionally,
the scarcity of data may prevent the effective use of our methods due to its learning needs. However,
moving towards a future of Internet-of-Things (IoT), we can see that data can be much easily collected.
The novelty of this paper also comes from the idea that if we have enough data, we can utilize them to
carry out better simulations with accurate measurements for effective analysis.

We start off by looking at the literature of some related works done in these areas in Section 2. Section 3
will formally define the problem this paper aims to solve and Section 4 will delineate the proposed methods.
The experiments and evaluation of methods proposed will be presented in Section 5. A simple simulator
implemented with the proposed methods is described in Section 6. Finally, we conclude along with further
work in Section 7.

2 RELATED WORK

Modeling and simulation has been around for years and its evolution is accredited to the advancements
of diverse disciplines in Computer Science such as Systems Theory, Systems Engineering, Software
Engineering, Artificial Intelligence, and more. In this paper, we review some related work that concerns
the input modeling phase in simulation.

Shanker et. al. (Shanker and Kelton 1991) highlighted the problem of input-distribution selection in
simulation modeling and suggested that any estimator of a true distribution should be generalizable and
have the capability of modeling a variety of distributional shapes. Hence, empirical input distributions
was proposed as an alternative to standard input distributions for simulation modeling since the observed
data themselves would be used in some way to form a distribution function. This allows the input model
to be more flexible to changes in data. In a tutorial paper by Biller et. al (Biller and Gunes 2010), the
authors reviewed standard input models and identified cases where they fail to adequately represent the
input data concerned. The authors reviewed cases where an input process may have characteristics not
captured by standard distributions, cases where data exhibit dependence, and cases where data changes
over time. However, the paper concludes with separate solutions for each case without reviewing data
where all 3 characteristics may be involved. In a paper by Zouaoui et. al. (Zouaoui and Wilson 2001), the
authors proposed a Bayesian approach to probabilistic input modeling. The proposed methods accounts for
the parameter and stochastic uncertainties in the data, that yields valid predictive inferences about outputs
of interest. An experimental performance evaluation demonstrated the advantages of their approach. This
brings us to the advancements in simulation that involves some form of learning in order to make better
predictions.

2796

Othman and Tan

Although a number of research that aims to improve realism in simulation and modeling have been
explored (Kimko and Lee 2017), not much work have been done to enhance realism in simulation using deep
learning. A paper by Fishwick et. al. (Fishwick 1989) made a comparison for traditional methods and a
Multi-Layer Perceptron (MLP) model as a simulation model. However, accuracy problems arise because the
neural network model does not capture the system structure characteristic of all physical models. Following
this work, a paper on a hybrid model that aims to integrate big data and deep learning into simulation (Tolk
2015), also used an MLP model to capture correlation in huge amounts of data so as to model the system
under study more accurately. The paper proposed big data processing to evaluate the information, then
deep learning to harmonize the processes by discovering underlying common functionality. Simulation is
then used to execute the resulting system of systems representations. In another related work, a conceptual
framework for integrating ML models into simulation, Elbattah et. al. (Elbattah and Molloy 2018) proposed
a few key ideas that were somewhat similar to our work. However, no experiments or projects were done to
realize the concept. This paper also supports our idea for incremental learning that would enable automated
updates to the models, where variables may constantly change, without human intervention.

In our recent work (Othman et al. 2017), a Multi-Layer Perceptron & Linear Regression (MLP-LR)
model was proposed to predict congestion in traffic. Thereafter, we proposed a traffic simulation model
(Othman and Tan 2018b; Othman and Tan 2018a) that is able to take possible congestion into account
when running simulations. However, they are focused on predicting a specific variable and therefore not
general enough for other applications. To the best of our knowledge, this is the first work that realizes the
integration of deep learning models directly into simulation models, focusing on a general method to use
deep learning in generating inputs that influences the system behaviour.

3 ISSUES IN CURRENT PRACTICE

The process of building a typical simulation model starts by collecting the essential data for the purpose of
studying the system. The distribution of the data are then studied to find the best function that can generate
values randomly throughout the simulation time. These values are then fed to a simulation model that
replicates the system under study, and produces output measurements for analysis. Our focus, which is the
input generation phase and not the model of the system itself, includes the processing of data, analyzing
the data, and using the data to generate meaningful synthetic data for use in a simulation model, either to
test the robustness of a system or seek optimization strategies. As mentioned in Section 1, we will discuss
the two main categories for deriving data distributions to generate synthetic data.

3.1 Theoretical Distributions

A theoretical distribution simply studies the distribution of data and fits a known distribution, such as
Poisson, Exponential, Gamma, etc., by optimizing the goodness of fit through statistical tests such as the
χ-square or KolmogorovSmirnov (K-S) test, etc. However, this method is not capable of modeling a variety
of distributional shapes.

To illustrate an example, in traffic management, transport authorities would like to improve the public
transportation services by providing commuters with services that meet their needs and at the same time
cost effective for the transport operators. In this instance, commuters would want the shortest waiting time
possible while transport operators would want their services to be fully utilized. In order to achieve this, the
frequency at which buses are deployed should be regulated. Here, the frequency can be tuned and outputs
to show the bus utilization will be dependent on passenger volumes as well as the transport service travel
times. Based on our initial experiments, we find that the data for travel times from the same day and the
same route, just different yet consecutive weeks, produced very different best-fit theoretical distribution.
However, both their sequence of average travel time per hour between 2 bus stops throughout a typical
weekday shows common patterns that reflects real-world expectations.

2797

Othman and Tan

Spikes in the travel times are experienced during peak periods, for buses that travel along busy roads
and tend to get caught in congestion when people would be going to work and coming back home from
work. Since a theoretical distribution is fixed once sample data is computed, it can only generate values
based on data it has seen. If the system changes over time, this method would not be flexible enough to
capture the changes in distributional shapes.

3.2 Empirical Distribution

In order to tackle the issues of inflexibility, an empirical distribution is used. This method is useful for
data samples that cannot fit into a known theoretical distribution. Since the computation for its cumulative
probability distribution (CDF) includes the data samples, an empirical cumulative distribution function
(ECDF) is more flexible to changes in the system’s behaviour. The ECDF is computed as follows, given
a data sample X1 . . .Xn:

ECDF(τ) =
1
n

n

∑
i=0

1Xi≤τ

The ECDF of τ simply computes the number of elements lesser than or equal to τ divided by the total
number of elements in the sample. This would give us the probability of τ occurring in the sample. We
can then create a random number generator from data samples, by estimating the inverse ECDF function
using interpolation. The line plot of the ECDF Random Number Generator (RNG) against data samples for
the actual sequence of travel times on the same route for two consecutive Mondays showed that although
the actual data changes between the 2 weeks, the Empirical RNG is still able to adapt to the change and
generate values accordingly to the latest data samples, with a root mean squared error (RMSE) of only
0.08. However, if we consider simulating into the future using this method, the distribution can only be
based on the latest week where data is available. Thus, it assumes that the next week would have the
same distribution as the current week. As we have discovered in Section 3.1, this may not be true for
variables that are dependent on time or events. Hence, we found that the current state-of-art for input data
generation is lacking in the sense for future simulations where it does not retain any memory of data and
make relations to realistically predict future weeks where data is not yet available, for example; congestion
during peak hours, etc.

Therefore, if an input generator is able to make such connections, simulations into the future would
certainly benefit from more realistic outputs. Several researches, as discussed in Section 2, have been
involved in trying to improve or speed up simulation, but none are focused on enhancing the level of realism
in predicting the inputs for simulation into the future.

4 PROPOSED METHODS

Inputs that are time-dependent or event-dependent cannot be produced realistically by current state-of-art
methods, resulting in inaccurate output analysis. Hence, a deep learning approach, using the Long-Short-
Term Memory (LSTM) network, is proposed to generate inputs in a sequence that is both time dependent
and conforms to the distribution of data. Other deep/machine learning models were also considered,
however, for sequence to sequence prediction that we need for generating inputs, LSTM stands as the
current state-of-art.

The LSTM, well known for its ability to remember sequences through time, was proposed specifically
to tackle the issue of long term dependencies that a regular Recurrent Neural Network (RNN) suffers
from. It does so by introducing the cell state Ct and feeding it to the next LSTM together with the output,
instead of just the output alone like the RNN. The logical sequence of LSTM is quite straightforward as it
commits to retaining and disposing information just like the neurons in our brains would (Hochreiter and
Schmidhuber 1997).

2798

Othman and Tan

The LSTM has seen many successes over the years and is indeed an ideal solution for sequence
prediction, although optimal hyper-parameter tuning is still an ongoing research area. The novelty of this
paper is also attributed to the usage of the LSTM for generating realistic input sequences from learned
data since this has not been done before or made any significant impact with regards to generating inputs
to a simulation model. Thus, this work explores that possibility, coming up with an improved general
framework that can integrate seamlessly with the rest of the simulation flow. Figure 1 shows the general
concept we proposed, for a typical simulation flow using the LSTM for input generation.

Figure 1: Overview of a typical simulation flow with deep learning.

Based on the simulation flow in Figure 1, entities are created and passed through a series of processes
where an input distribution is required to determine how long an entity will spend in the process or how
the process should affect the entity. At each process, an LSTM model can be used to generate sequences of
inputs throughout the simulation time. Output measurements would then be recorded during the simulation
before all entities are disposed. For each variable that needs a sequence to be fed to the simulation model,
we can train the model as shown in Figure 2.

Figure 2: Training sequences with LSTM.

Training sample x1, ...,xn is the sequence of the variable under study through a single day. Input x1, ...,xn
will produce outputs y1, ...,yn that represents the following week’s sequence. The following week’s sequence
is used to propagate back through the LSTM, correcting its weights and biases, before it is fed as the input
for the next forward propagation phase. By training the LSTM in this manner, the LSTM will be able to
learn the sequence pattern for a specific variable through the day, week after week. The weights and biases
for the LSTM are learned using back-propagation through time (Werbos 1990), where errors at the end
of each time step are computed and derivatives are calculated to correct the weights and biases as it rolls
back through the time sequence using the chain rule.

2799

Othman and Tan

After training the model, predictions can be made by passing in a full day sequence as inputs and get
a full day sequence as output. For example, if we would like to predict for the whole day tomorrow, we
can pass in the sequence gathered from today as input to the model that returns an output representing
tomorrow’s sequence. With the output sequence, we can also feed it back to the model to get the predicted
sequence for the following day. It can go on for as long as required for the simulation. Intuitively, the
accuracy would certainly start to decrease as we try to predict further into the future. Different configurations
of the LSTM model were explored, such as using different number of hidden layers, different number
of neurons, as well as applying different configurations to the parameters. The final LSTM model used
consists of 3 hidden layers with 20, 40 and 10 neurons respectively and trained using an Adam Optimizer
(Kingma and Ba 2015) with 0.01 learning rate over 500 epochs. A dropout layer with 0.05 dropout rate
was also added between each hidden layer and finally, a dense layer before producing the output sequence.
The dropout layer was introduced to ”forget” some measure of the outputs so that we would not retain
information that has not occurred in a long time.

As this is a general concept for applying deep learning methods to a simulation model, we will focus
our experiments on the capability of the deep learning model in generating sequences that are more realistic
so as to effectively simulate into the future.

5 EXPERIMENTS AND RESULTS

The measurements and outputs from a simulation model are dependent on its inputs. Hence, we can justify
that regardless of the case scenarios applied in simulation, the input parameters will ultimately determine
the accuracy of the outputs. Therefore, it is sufficient to show that the model can predict sequences and
distributions more accurately than a random number generator based on a distribution function. Since
we have shown in Section 3 that theoretical distributions are inflexible to data changes over time, we
make comparisons in our experiments for the LSTM against random values generated from an empirical
distribution function. Since the ECDF we have discussed is the most common method for generating
stochastic data that does not conform to a known distribution, we will evaluate the accuracy of predicting
sequences as well as the hypothesis test for data generated by the LSTM model, against values generated
by the ECDF.

5.1 Experimental Setup

To narrow down the scope and achieve certainty in the experiments, traffic data was chosen as the primary
focus. This is because in traffic management, variables such as travel time or passenger volumes (bus
utilization), etc., are time-dependent as well as event-dependent, i.e. changes during peak and non-peak
periods, working days and non working days, holidays, etc. We will discuss the sources of data and how
we generate input values from the LSTM as well as the Empirical RNG.

The Land Transport Authority (LTA) of Singapore has published a wide variety of transport-related
datasets. The datasets include several information such as real-time incidents, scheduled maintenance,
schedules and routes of public transports, etc. More specifically, we will be using the following datasets
provided through the API; (a) Bus Services, (b) Bus Routes and (c) Bus Stops. In order to carry out a
thorough experimentation, 8 different bus services going through congested and non congested routes, were
selected for Monday to Sunday. Figure 3 shows the congested and non-congested stretch of road, where
the 8 different bus services travel on. The routes circled in red (top 4) are congested routes while the routes
circled in green (bottom 4) are non-congested routes.

Firstly, information for the 8 different bus services were collected from API (a) and the routes for each
service were retrieved through API (b). This will give us a list of bus stop codes covered by a specified
bus service. We can then get detailed bus stop information for each bus stop code from API (c) such as
the latitudes and longitudes.

2800

Othman and Tan

Figure 3: Selected road stretch for experiments.

Since the arrival times from LTA’s API are fixed and does not reflect the actual distribution and sequence
well, we use Google Maps Distance Matrix API to get the actual travel time from 1 stop to another. Google
Maps incorporates real-time congestion in their API through the ”duration in traffic” variable. We repeat
this process for Monday to Friday over 12 weeks, which is roughly 3 months’ worth of data. Now, we
have 12 samples for each bus stop to bus stop for Monday through to Sunday. Each sample will have
the sequence of travel times for the whole day. The length of the sequence may differ for different bus
services hence for training, the average over 20 intervals were computed so that we have the average travel
time per hour throughout a particular day. After some analysis, we found that for travel times in traffic,
the distribution changes from day to day. Hence, we modelled each day independently based on the data
collected for the day through 12 consecutive weeks. Therefore, for each day, we have 12 independent
samples for training and evaluation.

Based on the model we explained and built in Section 4, using Google’s Tensorflow (Abadi et al.
2016) library, and the 12 samples we have collected, the LSTM model was trained over 9 weeks worth
of data, where the 9th week’s data was trained using the 10th week’s data. The 10th week’s data was then
used to predict Week 11’s sequence and the predicted sequence was fed back to the model to predict the
sequence for Week 12. Since we have the actual data for Week 11 and Week 12, we can realistically
evaluate the predictions made by the LSTM model. Hence, the LSTM model itself will not see any data
from Weeks 11 and 12. For comparisons with current state-of-art methods, a random number generator
(RNG) based on the Empirical Cumulative Distribution Function (ECDF) described in Section 3.2 was
created by estimating its inverse using interpolation. Uniformly distributed random values are then passed
through the RNG to produce input values. In order to make comparisons with the predicted values from
the LSTM model, we used Week 1 to Week 10’s data to generate values for Week 11 and Week 12. This
is fair since the LSTM model only sees data up to Week 10 as well. Therefore, both the values from the
ECDF and LSTM would generate inputs to represent the travel time throughout a particular day. The data
generated by the empirical random number generator will be simply referred to as RNG in the following
sections.

2801

Othman and Tan

5.2 Sequence Accuracy of LSTM vs RNG

The synthetic data generated by the RNG and the predicted sequence produced by the LSTM model are
plotted against the actual data for a congested route in Figure 4(a) for Week 11 and Figure 4(b) for week
12, as well as for a non-congested route in Figure 5(a) for Week 11 and Figure 5(b) for Week 12.

(a) Bus 64 Week 11 (b) Bus 64 Week 12

Figure 4: Travel time sequence for congested routes.

(a) Bus 17 Week 11 (b) Bus 17 Week 12

Figure 5: Travel time sequence for non-congested route.

We can roughly see from Figures 4 and 5 that the LSTM is able to learn the sequence through training
and eventually produce a sequence prediction better than the RNG. Experiments were repeated for different
days of the week on the 8 different routes and results were consistent. Even though some routes that were
less busy produced a rather uniformed sequence, the LSTM model was still able to capture it and predict
fairly accurate future sequences simply based on the previous week’s data. In order to clearly distinguish
the performance of the two different techniques, we computed the Root Mean Squared Error (RMSE) of
the actual data against the LSTM model and the RNG as follows:

RMSE =
2

√
∑

n
i=0(xi− yi)2

n

2802

Othman and Tan

Table 1 shows the error scores for the LSTM and the RNG for Week 11 while Table 2 shows the scores
for Week 12. Only 2 bus services for congested route (64 & 21) and 2 bus services for non-congested
route (72 & 17) for Monday, Thursday and Saturday are presented for visual clarity.

Table 1: Week 11 RMSE Scores for LSTM vs RNG.

Bus
Services

Mon Thu Sat
LSTM RNG LSTM RNG LSTM RNG

64 0.08 0.06 0.07 0.08 0.16 0.17
21 0.10 0.10 0.08 0.09 0.08 0.10
72 0.05 0.06 0.07 0.09 0.11 0.08
17 0.08 0.09 0.08 0.10 0.11 0.11

Table 2: Week 12 RMSE Scores for LSTM vs RNG.

Bus
Services

Mon Thu Sat
LSTM RNG LSTM RNG LSTM RNG

64 0.08 0.10 0.09 0.08 0.10 0.08
21 0.06 0.09 0.09 0.10 0.09 0.11
72 0.10 0.08 0.07 0.09 0.10 0.12
17 0.08 0.07 0.09 0.07 0.08 0.08

The scores in bold text indicates the LSTM performing better than the RNG. Basically, the deep learning
model outperforms the RNG more than 70% of the time. This justifies that the LSTM model can generate
sequences more accurately to actual data than the RNG.

5.3 Hypothesis Testing: LSTM Sequence Prediction

In order to show that the LSTM can produce samples similar to the actual data, we evaluate the generated
data from the LSTM model using the t-distribution test. We first we define a null hypothesis (H0) and its
alternate hypothesis (H1) as follows:

Hypothesis H0. Deep learning can generate accurate input representations of real-world systems.
Hypothesis H1. Deep learning cannot generate accurate input representations of real-world systems.

With a level of significance set at α = 0.05, we compute the sample mean X and the standard deviation
S of LSTM over 20 samples, against the mean of the actual data as target ρ to compute the t0 scores.
For two-sided test, we reject H0 if |t0| > ta/2,n−1. Based on the t distribution table, t0.05/2,20−1 = 2.093.
Table 3 shows the |t0| scores for 2 congested routes and 2 non-congested routes over 3 different days, as
visualization samples.

Table 3: |t0| scores for LSTM model.

Bus Services
Mon Thu Sat

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2
64 0.27 0.04 0.53 1.90 0.45 1.39
21 0.65 0.62 0.07 1.23 1.05 0.01
72 0.28 0.18 1.82 0.05 0.76 0.43
51 0.61 0.24 0.92 0.01 0.26 0.30

2803

Othman and Tan

Since for all cases, |t0|< 2.093, we cannot reject H0. We can then safely conclude that the statement
in H0 holds, and the rest of the results from our experiments supports it as well. The improvements seen
through the epochs also show that with continuous training, the LSTM model can make better predictions
and close up the gap with actual data over time. Therefore, with this model, we can successfully introduce a
better sense of realism when simulating into the future, producing more insightful results for better analysis.

6 SIMULATION AND DEEP LEARNING: A CASE STUDY

A case study of the public transportation system was done to demonstrate the viability of integrating our
proposed methods into real-world simulations. Algorithm 1 shows the pseudo code for the simulator,
developed in Python, to evaluate the utilization of public buses.

Algorithm 1: Bus utilization simulator.
1 Require: Predicted travel times for each bus stop through the day
2 Require: start time, end time, passenger arrival rate
3 simulation time,next deployment time = start time;
4 while simulation time < end time do
5 if simulation time == next deployment time then
6 Deploy bus from origin:
7 stop number = 1;
8 arrival time = simulation time+ travel time;
9 next deployment time+bus f requency;

10 end
11 for each deployed bus do
12 if simulation time == arrival time then
13 Alight passengers and board passengers at bus stop;
14 stop number+1;
15 arrival time = simulation time+ travel time;
16 end
17 end
18 Generate commuters at each stop;
19 simulation time+1;
20 end

The simulation model will deploy buses at scheduled times according to the schedules set out by
the transport operators. Commuters are then generated at each stop from origin to the stop before the
destination, where they will board the bus when the bus arrives at the bus stop. Between each stop, the
bus will travel for a period of time and at each stop, passengers in the bus may alight and commuters at
the bus stop may board. The capacity of the bus will be updated and if it reaches maximum capacity, the
commuters at the bus stop will have to wait for the next bus. This flow will continue throughout the day
until the last bus is deployed. For every stop that has passengers alighting, we record the total waiting time
for reporting and analysis. Measures of bus utilization and the passengers’ waiting time will be recorded
upon successfully boarding the bus.

We verified the correctness of the simulation model based on the planned schedules we retrieved from
the LTA Data Mall as well as the prediction accuracy we have shown in Section 5.2. The following
justifications based on real-life scenarios, are made to ensure that the model has high face validity; each
bus service travels non-stop from origin to destination, the travel times (> 0 mins) include the time taken
to board and alight passengers, no passengers should be alighting at origin but all passengers need to alight
at destination, and there may be 0 or more passengers boarding the bus at every boarding station.

2804

Othman and Tan

In a terminating solution, the method of independent replications is most commonly used to analyze
the outputs. Based on 4 independent replications, we test whether the utilization meets a certain standard
using the Student’s t-test. We define the following hypothesis for utilization (ρ):

Hypothesis H0. ρ ≥ 0.90
Hypothesis H1. ρ < 0.90

For sample purposes, the test statistics for 2 bus services, 130 (congested route) and 17 (non-congested
route) are computed with t0 scores of 1.65 and 1.12 respectively. Based on the t distribution table,
t0.05/2,4−1 = 3.182. Since both the |t0| scores for Bus 130 and 17 is < 3.182, we cannot reject H0. Hence,
the utilization condition where the bus is utilized more than 90% holds. The simulation and analysis were
repeated with the actual travel times for Weeks 11 and 12 against the empirical distribution RNG. We ran
each of them over the same number of replications and computed the |t0| scores. We found that the average
squared difference between the |t0| scores using the predicted travel times is only about 9.44 while the
empirical RNG scored about 27.46, which is more than two times higher. This concludes that the predicted
inputs can indeed produce simulation results that are more realistic than the current state-of-art methods.

7 CONCLUSIONS AND FURTHER WORK

We showed that our method can achieve more accurate results for both congested and non-congested routes,
where non-congested routes (less travelled on) should perform well even for traditional methods since the
travel times should be somewhat regular throughout the day. Our methods can accommodate for both cases
without manual intervention. The proposed methods still require multiple what-if scenarios for simulation,
but the input to the simulation, such as travel times, volumes, etc. would be a more accurate representation
of the real-world. This in turn provides output measurements that are much more realistic. By introducing
deep learning methods to study variables that changes their distribution over time, we could effectively
predict values for a more realistic simulation into the future. Additionally, we also showed how our methods
can easily be applied to a simulation model. The deep learning models can also support variables that are
not time-dependent, yet varies in distribution over time. Thus, the proposed method is ideal for auto-tuning
a simulation model and inject a higher sense of realism, showing more than 70% accuracy as compared to
less than 20% using an empirical RNG. This would be highly beneficial for systems that are highly critical
to such accuracy, such as traffic management or crisis management.

Several avenues for further research can be extended from this work such as exploring other variables
or data types that may impact the simulation results and improve their level of realism through the proposed
methods. Other deep learning models that may be able to provide an even better accuracy when making
sequence predictions on variables that are volatile may also be explored. Additionally, since these models
can operate independently for each variable, parallelism is also very much possible. With the ability of
the LSTM model to change its output prediction as the training data changes, we can see huge potential
for implementing this automated modeling into a real-time system, where time is of the essence. Several
systems and processes can certainly benefit from such effective and highly realistic simulation framework.

REFERENCES
Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng. 2016. “TensorFlow: A System for Large-scale Machine Learning”. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, 265–283. Berkeley, California: USENIX Association.

Biller, B., and C. Gunes. 2010. “Introduction to Simulation Input Modeling”. In Proceedings of the 42nd Winter Simulation
Conference, edited by B. Johansson, S. Jain, and J. Montoya-Torres, 49–58. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Carson, II, J. S. 2005. “Introduction to Modeling and Simulation”. In Proceedings of the 37th Winter Simulation Conference,
edited by N. Steiger and M. E. Kuhl, 16–23. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

2805

Othman and Tan

Elbattah, M., and O. Molloy. 2018. “ML-Aided Simulation: A Conceptual Framework for Integrating Simulation Models with
Machine Learning”. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
edited by F. Quaglia, A. Pellegrini, and G. K. Theodoropoulos, 33–36. New York, NY: Association for Computing
Machinery.

Fishwick, P. A. 1989. “Neural Network Models in Simulation: A Comparison with Traditional Modeling Approaches”. In
Proceedings of the 21st Winter Simulation Conference, edited by E. A. MacNair, K. J. Musselman, and P. Heidelberger,
702–709. New York, NY: Association for Computing Machinery.

Frost, V. S., and B. Melamed. 1994. “Traffic Modeling for Telecommunications Networks”. IEEE Communications Maga-
zine 32(3):70–81.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory”. Neural Computation 9(8):1735–1780.
Kimko, H., and K. Lee. 2017. “Improving Realism in Clinical Trial Simulations via Real-World Data”. CPT: Pharmacometrics

& Systems Pharmacology 6(11):727–729.
Kingma, D. P., and J. Ba. 2015. “Adam: A Method for Stochastic Optimization”. In 3rd International Conference on Learning

Representations, edited by Y. Bengio and Y. LeCun. Amherst, Massachusetts: OpenReview.
Liu, P., X. Qiu, and X. Huang. 2016. “Recurrent Neural Network for Text Classification with Multi-task Learning”. In

Proceedings of the 25th International Joint Conference on Artificial Intelligence, edited by G. Brewka, 2873–2879. Palo
Alto, California: Association for the Advancement of Artificial Intelligence Press.

Othman, M. S. B., S. L. Keoh, and G. Tan. 2017. “Efficient Journey Planning and Congestion Prediction through Deep
Learning”. In Proceedings of the 3rd International Smart Cities Conference, edited by IEEE Power & Energy Society,
1–6. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Othman, M. S. B., and G. Tan. 2018a. “Machine Learning Aided Simulation of Public Transport Utilization”. In Proceedings
of the 22nd International Symposium on Distributed Simulation and Real Time Applications, edited by E. Besada-Portas,
Ó. R. Polo, R. E. D. Grande, and J. L. Risco-Martı́n, 253–254. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Othman, M. S. B., and G. Tan. 2018b. “Predictive Simulation of Public Transportation Using Deep Learning”. In Methods and
Applications for Modeling and Simulation of Complex Systems, edited by L. Li, K. Hasegawa, and S. Tanaka, 96–106.
Singapore: Springer Singapore.

Shanker, A., and W. D. Kelton. 1991. “Empirical Input Distributions: An Alternative to Standard Input Distribution in Simulation
Modeling”. In Proceedings of the 23rd Winter Simulation Conference, edited by B. L. Nelson, 978–985. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi. 2017. “Inception-v4, inception-ResNet and the Impact of Residual
Connections on Learning”. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, edited by S. P. Singh
and S. Markovitch, 4278–4284. Palo Alto, California: Association for the Advancement of Artificial Intelligence Press.

Tolk, A. 2015. “The Next Generation of Modeling & Simulation: Integrating Big Data and Deep Learning”. In Proceedings
of the Conference on Summer Computer Simulation, edited by S. Mittal, I.-C. Moon, and E. Syriani, 1–8. San Diego,
California: Society for Computer Simulation International.

Ungureanu, D., F. Sisak, D. M. Kristaly, and S. Moraru. 2005. “Simulation Modeling. Input Data Collection and Analysis”.
The 14th International Scientific and Applied Science Conference ELECTRONICS ET:43–50.

Werbos, P. J. 1990. “Back-propagation Through Time: What It Does and How To Do It”. Proceedings of the IEEE 78(10):1550–
1560.

Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal. 2016. Data Mining: Practical Machine Learning Tools and Techniques. 4th
ed. San Francisco, California: Morgan Kaufmann Publishers Inc.

Zouaoui, F., and J. R. Wilson. 2001. “Accounting for Input Model and Parameter Uncertainty in Simulation”. In Proceedings of
the 33rd Winter Simulation Conference, edited by B. A. Peters and J. Smith, 290–299. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES
MUHAMMAD SHALIHIN BIN OTHMAN is a third year PhD student at the National University of Singapore, School
of Computing, Department of Computer Science. He received his B.Sc in Computing Science (1st class Honours) from the
University of Glasgow. His research interests include traffic and crisis simulation, artificial intelligence as well as parallel and
distributed computing. His email address is mshalihin@u.nus.edu.

GARY TAN Gary Tan received his M.Sc and Ph.D from the University of Manchester, UK. He is currently an Associate
Professor and Vice Dean at the School of Computing at the National University of Singapore. His research interests include
parallel and distributed systems and simulation, high level architecture, symbiotic simulation, traffic simulation and crisis
management simulation. His email address is gtan@comp.nus.edu.sg. His website is https://www.comp.nus.edu.sg/∼gtan.

2806

mailto://mshalihin@u.nus.edu
mailto://gtan@comp.nus.edu.sg
https://www.comp.nus.edu.sg/~gtan/

	INTRODUCTION
	RELATED WORK
	ISSUES IN CURRENT PRACTICE
	Theoretical Distributions
	Empirical Distribution

	PROPOSED METHODS
	EXPERIMENTS AND RESULTS
	Experimental Setup
	Sequence Accuracy of LSTM vs RNG
	Hypothesis Testing: LSTM Sequence Prediction

	SIMULATION AND DEEP LEARNING: A CASE STUDY
	CONCLUSIONS AND FURTHER WORK

