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ABSTRACT

Co-simulation consists of the theory and techniques to enable global simulation of a coupled system via
the composition of simulators for each of the components of the model. Despite the large number of
applications and growing interest in the challenges, practitioners still experience difficulties in configuring
their co-simulations. This tutorial introduces co-simulation of continuous systems, targeted at researchers
that want to develop their own co-simulation units and master algorithms, using the Functional Mock-up
Interface (FMI) Standard. This document is complemented by online materials (Gomes, Cláudio 2019) that
allow the reader to experiment with different co-simulation algorithms, applied to the examples introduced
here.

1 INTRODUCTION

Truly complex engineered systems that integrate physical, software and network aspects are emerging
(Nielsen et al. 2015), posing challenges in their design, operation, and maintenance. The design of such
systems, due to market pressure, has to be concurrent and distributed. That is, divided between different
teams and/or external suppliers, each in its own domain and each with its own tools (Vangheluwe et al.
2002). Each participant develops a partial solution, that needs to be integrated with all the other partial
solutions. The later in the development process such integration is done, the higher its cost (Plateaux et al.
2009). Ideally, the solutions developed independently should be integrated sooner and more frequently, in
so-called full system analysis (Van der Auweraer et al. 2013).

Modeling and simulation has improved the development of the partial solutions, but falls short in
fostering this holistic development process (Blochwitz et al. 2011). To understand why, one has to observe
that: (i) models of each partial solution cannot be exchanged or integrated easily, because these are likely
developed by a specialized tool; (ii) externally supplied models may have Intellectual Property (IP) that
cannot be cheaply disclosed to system integrators; (iii) as solutions are refined, the system should be
evaluated by integrating physical prototypes, software components, and even human operators, in what
are denoted as Model/Software/Hardware/Human-in-the-loop simulations (Alvarez Cabrera et al. 2011);
and (iv) the models of each partial solution have different characteristics that can be exploited to more
efficiently simulate them, making it difficult to find a technique that fits all kinds of models.

Co-simulation is a generalized form of simulation, where a coupled system is simulated through the
composition of simulation units (Hafner and Popper 2017; Palensky et al. 2017; Gomes et al. 2018). Each
unit is broadly defined as a black box capable of exhibiting behaviour, consuming inputs and producing
outputs, over simulated time.

Since co-simulation is but a special kind of simulation, it shares the same major challenge: can we
trust the co-simulation results? However, this challenge is aggravated due to the black-box nature of
co-simulations, and the large number of configuration parameters. In fact, a recent empirical survey has
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shown that practitioners still experience difficulties in the configuration of co-simulations (Schweiger et al.
2018; Schweiger et al. 2019).

In this tutorial, we aim to provide the readers with a basic understanding of how to develop their own
master algorithms and simulation units. Moreover, we highlight the strengths and weaknesses of the most
common master algorithms. The concepts are presented in a technologically agnostic manner. However,
the online materials (Gomes, Cláudio 2019) are implemented for the Functional Mock-up Interface (FMI)
standard, a widely used standard for co-simulation.

Upon completion, the reader should know the most common co-simulation approaches, the main
concepts involved, the main configuration parameters, and what their trade-offs are. Furthermore, the
reader will be equipped to understand the more advanced concepts in the co-simulation literature, provided
in the extended version of this tutorial (Gomes et al. 2018).

The next section gives a top-down overview of all the concepts that will be discussed here. In the
subsequent sections, each concept will be discussed, in a bottom up manner, so as to increase the complexity
gradually.

2 MAIN CONCEPTS

In this section, we provide an informal top-down overview on the concepts related to co-simulation. To that
end, we use a feature model (Kang et al. 1990): an intuitive diagram that breaks down the main concepts in
a domain. Some of these concepts will only become clear in later sections, as we delve into the details, so
we recommend the reader to come back to this section to place these in context. More rigorous definitions
are given in (Gomes et al. 2018).

First, we summarize the objective of running a co-simulation: to reproduce, as accurately as possible,
the behavior of a system under study.

Figure 1 breaks down the main concepts in the co-simulation domain. To run a co-simulation, one
needs a co-simulation scenario and an orchestrator algorithm.

Co-simulation
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Simulation Unit
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Input
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Figure 1: Co-simulation concept breakdown.

The co-simulation scenario points to one or more simulation units, describes how the inputs and outputs
of their models are related, and includes the configuration of relevant parameters. Each simulation unit
represents a black box capable of producing behavior. To produce behavior, the simulation unit needs to
have a notion of:

• a model, created by the modeller based on his knowledge of the system under study;
• a solver, which is part of the modeling tool used by the modeller, that approximates the behavior

of the model; and
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• an input approximation, which approximates the inputs of the model over time, to be used by the
solver;

The orchestrator is responsible for running the co-simulation. It initializes all the simulation units with
the appropriate values, sets/gets their inputs/outputs, and coordinates their progression over the simulated
time. To progress the co-simulation, the orchestrator, after setting the appropriate inputs to the simulation
units (computed from their outputs according to the co-simulation scenario), asks them to simulate for a
given interval of simulated time, by providing them with a communication step. The simulation units in
turn will approximate the behavior of their model within the interval between the current simulated time and
the next communication time, relying only on the inputs they have received at the previous communication
times.

Figure 2 gives an illustration of these concepts. The figure in the left-hand side illustrates how the
orchestrator coordinates the co-simulation by getting outputs, setting inputs, and requesting the simulation
units S1 and S2 to progress in time. The figure in the top-right-hand side presents the co-simulation
scenario, where S1 receives input Fc and outputs [x1,v1], and S2 receives inputs [x1,v1] and outputs Fc.
The two plots in the bottom-right-hand side presents the internal behaviour of the simulation units. The
large unfilled dots represent input values, and the smaller unfilled dots represent their extrapolations, as
computed by the simulation units. One can see that there is a difference between the values calculated by
the extrapolation functions and the actual input, due to the gap between the larger and smaller unfilled dots
at t +H. The black dots represent outputs. As illustrated, S1 and S2 perform small steps of respectively
h1 and h2 internally, until the time t +H is reached.Internal Behavior

Orchestrator

t := t + H
…

getOutput(…)

setInput(…)

simulateUntil(t+H,…)

getOutput(…)

setInput(…)

Orchestrator

simulateUntil(t+H,…)

t t+Ht+h2

t t+Ht+h1

6

Figure 2: Example co-simulation coordination (left), co-simulation scenario (top right), and internal behavior
of simulation units (bottom right).

Looking back at Figure 1, the communication step size can either be fixed (defined before the co-
simulation starts and constant throughout its execution), or adaptive (the orchestrator determines the best
value to be used whenever it asks the simulation units to compute). The communication approach encodes
the order in which the simulation units are given inputs and instructed to compute the next interval.
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Figure 3 summarizes the multiple types of orchestration algorithms using time diagrams. In the Gauss-
Seidel approach, the orchestrator asks each simulation unit to compute the next interval, before asking it
to produce outputs. These outputs are then fed into the next unit before asking it to compute the next
interval. In the Jacobi approach, the orchestrator asks all units to compute the interval in parallel, setting
their inputs at the end of the co-simulation step.

Finally, the orchestrator may retry the co-simulation step, using improved input estimates, computed
from the most recent outputs. This process can be repeated until there is no improvement on the inputs
(fully implicit iteration), or a fixed number of iterations has been done (semi-implicit iteration).
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Figure 3: Overview of orchestration algorithms of two simulators using time diagrams. The number next
to each edge denotes the order of execution of that operation.

2.1 Related Concepts and Standards

Using the nomenclature adopted in this tutorial, the High Level Architectures (HLAs) (IEEE. 2014), and
FMI(FMI. 2014), are co-simulation standards. Table 1 summarizes the concepts described in this tutorial,
and their relationships with the aforementioned standards. It’s important to note that, compared to HLAs,
the FMI standard does not specify the orchestration algorithm, but places a higher focus on the integration
of continuous system models. For those reasons, this tutorial and accompanying materials are aligned with
the FMI standard.

In the following sections, we follow a bottom up approach, starting with the simplest concepts in
Figure 1 (Model, Solver, and Input Approximation), and building our way up to co-simulation.
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Table 1: Main concepts and their relationship with existing co-simulation standards.

FMI HLA

Scenario Federation Co-simulation

Simulation Unit Federate Functional Mock-up Unit (FMU)

Orchestrator Run Time Infrastructure (RTI) Master Algorithm

3 BASICS OF CO-SIMULATION

Since co-simulation is a form of generalized simulation, it is paramount that simulation is well understood.
In the following, we introduce based algorithms to approximate the solution, x(t), of first order Ordinary
Differential Equations (ODEs), ẋ = f (x,u), having an initial condition, x(0) = x0. We start with scalar
differential equations and then move to vector equations. The relationship between the concepts learned
in Sections 3.1.1 and 3.1.2, and the concept of simulation unit (recall Figure 1), is discussed in then
Section 3.1.3.

3.1 Models, Solvers, and Input Approximations

3.1.1 Scalar Initial Value Problems

A scalar Initial Value Problem (IVP) is defined as a scalar ODE, with an initial condition. Formally, it has
the form:

ẋ = f (x,u), with x(0) = x0, (1)

where x : R→ R denotes the (scalar) state function, ẋ denotes the time derivative of x, f : R2→ R is a
scalar function, u : R→ R is the input function, and x0 ∈ R is a given initial value of x(t).
Example 1. Consider a car whose acceleration is set by a cruise controller, and moves in a straight line.
Let v(t) denote the speed of the car over time, m its mass, and vd the desired speed (constant input); and
assume that the car is initially moving at speed v0. Then the scalar IVP is given by

v̇ =
1
m
[k(vd− v)− c f v] , with v(0) = v0, (2)

where k(vd−v) is the acceleration set by the cruise controller, k > 0 is the acceleration multiplier constant,
and c f > 0 is the friction coefficient. The code for this example is available online (Gomes, Cláudio 2019).

The solution of the scalar IVP (1) is a function x(t) : R→ R whose derivative satisfies Equation (1).
For example, the solution of the IVP posed in the car example (Example 1), and plotted in Figure 4, is:

v(t) =
kvd

c f + k
−
(

kvd

m
− v0

)
e−

t
m (c f +k).

In general, it is not possible, nor feasible, to find an explicit solution to the IVP. Instead, an approximate
solution can be computed using a numerical method.

To derive an approximation x̃(t) of the solution to the scalar IVP in Equation (1), we start by noting
that the initial point is given by the initial value, that is, x̃(0) = x0, so at least one point is known. For
a small h > 0, the limit definition of the derivative in the left hand side of Equation (1) can be replaced
by its approximation ẋ≈ (x(t +h)−x(t))/h. By Equation (1), we have (x(t +h)−x(t))/h≈ f (x(t),u(t)),
which can be solved for x(t +h) to give the Explicit Euler Method:

x(t +h)≈ x(t)+ f (x(t),u(t))h, with x(0) = x0. (3)

Applying Equation (3) to the initial value, gives the point x̃(h), which approximates x(h). The procedure
can then be repeated using x̃(h) to compute x̃(2h), and so on. The result of applying this procedure to
Example 1 is shown in Figure 4.
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Figure 4: Analytical solution and approximation to the IVP in Example 1. Parameters are: h = 0.2,m =
1576(kg),vd = 40(m/s),v0 = 0(m/s),k = 103,c f = 0.5.

3.1.2 Vector Initial Value Problems

In this sub-section, we generalize the numerical techniques introduced in Section 3.1.1 to vector IVPs. We
will denote vectors with bold face, and we will use capital letters for matrices and vector valued functions.
Given a vector xxx, we denote its transpose as xxxT . Similarly, Fi(xxx) denotes the i-th element of the vector
returned by F(xxx).

An IVP is the generalization of Equation (1), to vectors:

ẋxx = F(xxx,uuu(t)), with xxx(0) = xxx000, (4)

where xxx and uuu are vector functions, and F is a vector valued function.
Example 2. The mass-spring-damper system, illustrated in Figure 5, is modelled by the following second
order ordinary differential equation:

ẍ1 =
1

m1
(−c1x1−d1ẋ1 +Fc(t)),

where x1 denotes the position of the mass, ẍ1 denotes the second time derivative of x1, c1 > 0 is the stiffness
coefficient of the spring, d1 > 0 is the damping constant of the damper, and Fc(t) denotes an external force
exerted on the mass.

The above equation can be put into the form of Equation (4) by introducing a new variable for velocity,
v1 = ẋ1, and letting the vector xxx1 =

[
x1 v1

]T . Given an initial position x1(0) and velocity v1(0), we obtain
the following IVP:

ẋxx1 =

[
ẋ1
v̇1

]
= F(

[
x1
v1

]
,Fc(t)) =

[
v1

(1/m1)(−c1x1−d1v1 +Fc(t))

]
, with xxx(0) =

[
x1(0)
v1(0)

]
given.

The time derivative of a vector is the time derivative of each of its components, so the solution to
Equation (4) is a vector valued function xxx(t) where each component xxxi(t) obeys the equation ẋxxi(t) =
Fi(xxx(t),uuu(t)), with xxxi(0) given. As an example, Figure 6 plots the solution of the position component of
the mass-spring-damper IVP introduced in Example 2. The solution to the velocity component is omitted.

The Explicit Euler method, introduced in Section 3.1.1 can be generalized to vector IVPs:

xxx(t +h)≈ xxx(t)+F(xxx(t),uuu(t))h, with xxx(0) = xxx000. (5)

An example application is shown in Figure 6.
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Figure 5: Mass-spring-damper system.
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Figure 6: Position, and its approximation, over time, of the mass-spring-damper system. Parameters are:
h = 0.1,m1 = c1 = d1 = 1,Fc(t) = 0,xxx111(0) =

[
1 0

]T .

3.1.3 Constructing Functional Mockup Units

This subsection describes how the concepts introduced in the previous subsection can be used to construct
simulation units.

Models are vector IVPs with output:

ẋxx = F(xxx,uuu), with xxx(0) = xxx000, and

yyy = G(xxx,uuu),
(6)

where yyy denotes the output vector, and G the output function. Solvers are numerical methods, such as the
Euler method introduced in Equation (5).

To understand the role of input extrapolation functions, we need to recall the interactions between the
orchestrator and each simulation unit (recall Figure 2). In order to facilitate the explanation, let us make
the following assumptions: H > 0 denotes the communication step size, kept the same throughout the
co-simulation; ti = iH denotes the simulated time at the i-th co-simulation step; and the orchestrator follows
a Jacobi approach (see Figure 3). The other cases (i.e., H varies over simulated time, or the Gauss-Seidel
orchestrator is used) should be easy to understand once this one is clear.
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Under the above assumptions, the orchestrator, at time ti, constructs the input to the unit, denoted as
u(ti), and then asks the unit to compute until the time ti+1 = ti +H. Between times ti and ti+1, the unit will
iteratively approximate the state of the model, only taking into account the inputs u(ti),u(ti−1),u(ti−2), . . .
that it has received in the past. As such, the numerical solver employed in the simulation unit is actually
solving a modified version of Equation (6):

ẋxx = F(xxx, ũuu(t)), with xxx(ti) = xxxiii, and t ∈ [ti, ti+1] , (7)

where ũuu(t) is an approximation of uuu(t) in the interval t ∈ [ti, ti+1], built from input samples computed by
the orchestrator in the previous co-simulation steps: uuu(ti), uuu(ti−1), uuu(ti−2), . . . . In this interval, the goal of
the simulation unit is to estimate xxx(ti+1), so that the output yyy(ti+1) of the model (recall Equation (6)) can
be computed and given to the orchestrator.

The accompanying online material (Gomes, Cláudio 2019) contains examples of simulation units
implemented as FMUs.

3.2 Constructing Co-simulations

In this subsection, we describe how the mass-spring-damper system, introduced in Example 2, is coupled
to second mass-spring-damper system (Example 3 below) in a co-simulation. Then we introduce multiple
orchestration algorithms.
Example 3. Consider the system in the right-hand-side of Figure 7. It is given by the following equations:

ẋ2 = v2

m2 · v̇2 =−c2 · x2−Fe

Fe = cc · (x2− xc)+dc · (v2− ẋc) ,

(8)

where cc and dc denote the stiffness and damping coefficients of the spring and damper, respectively; xc
denotes the displacement of the left end of the spring-damper, and Fc denotes the force due to the relative
displacement of the left end of the spring-damper and the mass. The variables x2 and v2 denote the position
and velocity of the mass.

The physical coupling of the system in Example 3 and the system in Example 2 is illustrated in Figure 7.
The combined equations can be obtained by replacing Fc(t) in Example 2 by Fe(t) as defined in Example 3,
and replacing xc,vc in Example 3 by x1,v1 in Example 2. The resulting equation has an analytical solution,
which can be used to obtain the time evolution of the the position of the left hand side mass in Figure 7,
as is shown in Figure 8.

Figure 7: A multi-body system comprised of two mass-spring-damper subsystems.

1476



Gomes and Vangheluwe

0 1 2 3 4 5 6 7
time

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

po
sit

io
n 

(m
)

x1_jacobi
x1_it
x1_solution

Figure 8: Coupled system behavior and corresponding co-simulation. Parameters are: m1 = m2 = d1 =
cc = dc = 1,H = 0.2,c1 = 5.0,c2 = 0.1.

3.2.1 Orchestration

In the following, we introduce the Gauss-Seidel and Jacobi orchestration algorithms, named after the
analogous techniques to solve linear systems. To explain these methods, we need to first detail the elements
that comprise a co-simulation scenario.

Let H > 0 denote the given communication time step. We denote the i-th communication time as
ti = iH. We say that the i-th step of the co-simulation is finished when all the numerical methods have
computed their solutions up to, and including, time ti.

Each model is associated with a reference w ∈ D, where D is a set of all model names. The model w
is an IVP with output:

ẋxx[w] = F[w](xxx[w],uuu[w]), with xxx[w](0) = xxx0[w] , and

yyy[w] = G[w](xxx[w],uuu[w]),
(9)

where yyy[w] denotes the output vector, and G[w] the output function.
As described in Section 3.1.3, the input function uuu[w](t) is an approximation constructed from samples

of the outputs of other models. We will denote the set of models whose output is used to construct the
input uuu[w](t), as S[w] ⊆D, standing for Source models. With this notation, for t ∈ [ti, ti+1], the input uuu[w](t) is
constructed from the samples of the outputs of every model v∈ S[w] at the current and previous co-simulation
steps. The number of samples needed depend on the concrete approximation technique.

We will use w to refer both to the model and the simulation unit, when there is no ambiguity. Roughly,
the task of the orchestrator at time ti is to provide the output samples that each unit w needs, and ask the
unit to approximate the value of yyy[w](ti+1).
Example 4. The co-simulation scenario corresponding to the coupled mass-spring-damper systems intro-
duced in Examples 2 and 3 is illustrated in Figure 2. The input to the simulation unit constructed from
Example 2 is Fc, as computed by the unit constructed from Example 3. The input to the unit of Example 3

is
[

x1
v2

]T

of Example 2.
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3.2.2 Gauss-Seidel Orchestrator

Algorithm 1: Gauss-Seidel orchestrator. See Figure 3.
Data: The stop time T , a communication step size H, a co-simulation scenario with unit references D, and their

order σ .
t := 0 ; // Simulation time
// Initialize variables
for w ∈ D do

uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

uuuppp[w] := 000 ; // Previous input variables.

end
// Compute initial outputs
for j = 1, . . . , |D| do

w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
; // Compute input from set of sources.

yyy[w] := getOutput(w,uuuccc[w]); // Compute output.

uuuppp[w] := uuuccc[w];
end
while t < T do

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

doStep(w,H,uuuccc[w],uuuppp[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

yyy[w] := getOutput(w,uuuccc[w]);
end
for w ∈ D do

uuuppp[w] := uuuccc[w]; // Update previous input.

end
t := t +H; // Advance time

end

The Gauss-Seidel orchestrator requires an order between the units to be established. We denote the
order with a map σ : N→D, that returns the unit reference σ( j) that is the j-th in the order. For example,
the unit σ(1) is the first. A more detailed discussion regarding how to sort the simulation units is given
in the extended version of this tutorial (Gomes et al. 2018).

With this notation, the Gauss-Seidel orchestrator is summarized in Algorithm 1. Function

Cw

({
yyy[v]|v ∈ S[w]

})
computes the input sample of unit w from the output samples of its sources. The functiongetOutput(w,uuuccc[w])
asks unit w to compute the output, optionally using the value in the variable uuuccc[w] Likewise, function
doStep(w,H,uuuccc[w],uuuppp[w]) asks unit w, assumed to be in state xxx[w](t), to compute the value xxx[w](t +H),
using either one of the variables provided. Any other previous inputs the unit may require are assumed to
be stored in its internal state (collected from previous calls to the doStep function.

The accompanying material (Gomes, Cláudio 2019) contains interactive example applications of Al-
gorithm 1.

3.2.3 Jacobi Orchestrator

The main difference between the Jacobi and Gauss-Seidel orchestrator lies in the fact that the Jacobi
orchestrator does not impose an order on the simulation units. This has a couple of consequences:
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Algorithm 2: Jacobi orchestrator. See Figure 3.
Data: The stop time T , a communication step size H, a co-simulation scenario with unit references D, and the

order σ of their inputs.
t := 0 ; // Simulation time
// Initialize variables
for w ∈ D do

uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

end
while t < T do

// Compute outputs in order
for j = 1, . . . , |D| do

w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

yyy[w] := getOutput(w,uuuccc[w]);
end
for w ∈ D do

doStep(w,H,uuuccc[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

end
t := t +H; // Advance time

end

• The units can still be ordered for the invocations of the getOutput functions.
• There is no need to keep track of the previous inputs to each unit.

The Jacobi orchestrator is summarized in Algorithm 2. Compared to the Gauss-seidel orchestrator, the
Jacobi is in general less accurate (due to the fact that units cannot use interpolation techniques), but can
take advantage of parallelism.

Figure 8 shows the results of applying the Jacobi orchestration algorithm to Example 4.

3.2.4 Implicit and Semi-Implicit Orchestrators

The Jacobi and Gauss-Seidel orchestration algorithms have iterative counterparts (recall Figure 1). An
iterative orchestration algorithm will retry each co-simulation step multiple times. If the number of repetitions
is fixed, then we say that the orchestration is semi-implicit. If, on the other hand, the co-simulation step is
repeated until some criteria is met, then the orchestration is implicit.

In general, iterative techniques are useful when the non-iterative techniques fail to preserve the stability
of the original IVP, or when there are algebraic loops in the co-simulation scenario. When there are
algebraic loops, then the units cannot be sorted, as assumed in Section 3.2.2. A more detailed discussion
regarding algebraic loops is given in the extended version of this tutorial (Gomes et al. 2018).

Algorithm 3 illustrates the iterative version of the Gauss-Seidel orchestrator. Function hasConverged
encodes the test for convergence, which can either count a fixed number of iterations (semi-implicit method),
or check whether the output values have converged (implicit method). The rollback function reverts
the state of the simulation unit to the one before the most recent call to the doStep function.

The iterative version of the Jacobi algorithm is similar, so we omit it. Figure 8 shows the results of
applying the iterative Jacobi orchestration algorithm to Example 4. The iterative Gauss-Seidel algorithm
produces similar results.

Comparing the results in Figure 8, one can see that the iterative version of the algorithm performs
slightly better. However, it takes longer to execute.
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Algorithm 3: Iterative Gauss-seidel orchestrator. See Figure 3.
Data: The stop time T , a communication step H, a scenario with unit references D, and their order σ .
t := 0 ; // Simulation time
// Initialize variables
for w ∈ D do

uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

uuuppp[w] := aaauuuxxx[w] := 000 ; // Previous and auxiliary I/O variables.

end
// Compute initial outputs
converged := FALSE;
while t < T do

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
; // Compute input from set of sources.

yyy[w] := getOutput(w,uuuccc[w]); // Compute output.

uuuppp[w] := uuuccc[w];
end
if hasConverged

({
(uuuccc[w],aaauuuxxx[w])|w ∈ D

})
then

converged := TRUE;
else

aaauuuxxx[w] := uuuccc[w] for each w ∈ D;
end

end
while t < T do

converged := FALSE;
for j = 1, . . . , |D| do

w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

doStep(w,H,uuuccc[w],uuuppp[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

yyy[w] := getOutput(w,uuuccc[w]);
end
if hasConverged

({
(uuuccc[w],aaauuuxxx[w])|w ∈ D

})
then

converged := TRUE;
uuuppp[w] := uuuccc[w] for each w ∈ D; // Update previous input.

else
aaauuuxxx[w] := uuuccc[w] for each w ∈ D;
rollback(w) for each w ∈ D; // Cancel the effects of doStep.

end
t := t +H; // Advance time

end

4 SUMMARY

Co-simulation allows us to apply the best numerical method to each part of a given IVP. This is not the
only benefit though. For example, each numerical method can use a different step size. This is an advantage
because different models may evolve with derivatives that are orders of magnitude apart. Another benefit
is that simulation units do not have to disclose the equations being solved internally. Instead, it is common
to only disclose the outputs and inputs, capabilities such as the ability to rollback, and the derivatives of
outputs with respect to time and inputs. The black box nature of the units makes it easier to standardize
their interface, which in turn enables the coupling of mature modeling and simulation tools. Indeed, wide
industrial adoption is one of the main drivers behind research into co-simulation (Schweiger et al. 2018).

This tutorial aimed at introducing the fundamental concepts in co-simulation, and providing researchers
and practitioners with the basic knowledge to start developing their own simulation units and master
algorithms. The accompanying online material (Gomes, Cláudio 2019) provides a starting point for users
to run their own co-simulations and the extended version of this tutorial (Gomes et al. 2018) provides
more theoretical background.
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