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ABSTRACT 

NECADA infrastructure supports the execution of a simulation model of buildings or urban areas, taking 
care of environmental directives and international standards in the design process. The aim of this 
simulation model is to optimize the entire life cycle of the system from the point of view of sustainability 
(environmental, social and economic impacts), taking care of the comfort and climate change to achieve a 

Nearly Zero Energy Building. Due to the huge amount of factors to be considered, the number of scenarios 
to be simulated is huge, hence the use of optimization and specifically heuristics, is needed to get an answer 
in a reasonable time. This project aims to analyze the accuracy of two of the most used metaheuristics in 
this area. To do so we base our analysis in an extensive dataset obtained from a brute force execution, which 
represents a typical dataset for this kind of problem.  

1 INTRODUCTION 

The analysis of building sustainability encompasses the social, economic an environmental aspects, 
analyzing only environmental aspects, focusing on the energy demands of a building is a time-consuming 
task that needs resources to obtain an accurate answer. NECADA (Fonseca i Casas and Fonseca i Casas 
2015) can analyze the complete life cycle of a building or a group of buildings, from its design phase to the 
deconstruction phase. The tool, which can be used from the cloud, includes aspects such as energy 
consumption, materials, design, orientation and also social repercussions. In addition, it allows simulating 

scenarios to know the possible effects of global warming on constructions.  
 The main objective of this paper is to present the analysis of the behavior of Simulated Annealing (SA) 
and Hill Climbing (HC) optimization algorithms in a dataset obtained from a NECADA’s execution. The 
goal of the project where this analysis is conducted determined what are the main advantages or 
inconvenient of different optimization algorithms in the scope of buildings sustainability analysis. 
NECADA software is a Co-simulator, that can use different calculus engines to perform the calculus, in 

our case, the dataset is generated using TRNSYS (Thermal Energy System Specialists 2015), but other 
simulation engines can be used like EnergyPlus (EnergyPlus 2019), hence the accuracy of the results 
obtained depends on two things, (i) the accuracy of the calculus engine used, in that case is proved since 
we use a well-known calculus engine, and (ii) the correct definition of the experimental procedure. In this 
case, we base our analysis in a force-brute approach, performing an intensive calculus of all the possible 
scenarios, see (Fonseca i Casas et al. 2015). Hence the dataset we are going to use represents a typical case 

of environmental analysis (focused on energy consumption) for buildings in order to optimize the building's 
behavior, see (Salom et al. 2014; Fonseca i Casas et al. 2017; Ortiz et al. 2016a; Ortiz et al. 2016b) to review 
the context of the project where this dataset has been generated.  
 From this complete execution of an experimental design (brute force) obtained through NECADA, we 
define clearly the goal function and we develop a Hill Climbing and a Simulated Annealing for our context. 
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Finally, we compare the results obtained from the execution of both algorithms with the force brute 
solutions obtained. The language in which developments of the optimizations algorithms is made is the 
language R since NECADA uses R as a language for posterior data analysis; this approach is convenient 

for this purposes since we are focused on the accuracy of the solutions and not in the time needed to obtain 
these solutions. Later we can reimplement the algorithms in C to integrate them on NECADA infrastructure. 

Several works in this direction have been done, analyzing the behavior of different heuristics to achieve 
good solutions in the frame of energy simulation for buildings. On (Evins 2013) is detailed a comparative 
review between different metaheuristic algorithms presenting trends and future developments in the sector. 
On (Suh and Park 2017) are compared a Genetic Algorithm (GA) vs a heuristic approach, concluding that 

the use of heuristics is interesting because of the discussion done by the stakeholders, however, 
metaheuristics behave better to find candidate solutions. Finally, on (Wortmann et al. 2017) are analyzed 
direct search, metaheuristics, and model-based methods and the performance largely depends on the 
parameters that are going to be used and the specificities of the problem. 

2 FORMULATION OF A MULTI-OBJECTIVE PROBLEM 

A Multi-objective problem is a problem of finding a vector composed by the decision variables that satisfy 

a set of restrictions that optimizes a set of objective functions. These functions are usually in conflict with 
each other, hence "Optimizing" refers to looking for a solution that owns acceptable values for all the factors 
to be considered. The mathematical formulation of a multi-objective problem considers the existence of 
several objective functions and a set of solutions. This set of solutions is based on the use of the theoretical 
optimality of Pareto developed by Vilfredo Pareto in 1896 (Pareto 1896). 
 The solution to the multi-objective optimization problem, in the sense of Pareto, will not be unique: it 

will consist of a set of the undominated vectors, those known as undominated set or boundary of Pareto, 
see Figure 1. 

 

 

Figure 1: The Pareto frontier for a function with two objectives. 

 The green area T represents the solutions space for the target function. It can be observed that there is 
no point belonging to T that improves the solution, in the sense of Pareto, to any of the points in the border: 

choosing a T-point arbitrarily, for example P3, you can trace the vertical until you get the cutting point with 
the Pareto frontier, in this case, P1. This cutting point will have the same value as the f1 And a better value 
of f2. Also, you can see that for two points any of the Frontier Pareto, there will never be one that 
simultaneously improves the two objectives with respect to the other point of the frontier. Choosing, for 
example, the points P1 and P2, it is noted that P1 improves f2 (minimum is better), but at the expense of 
getting a worse f1 (considering minimization case). The process of solving a multi-objective problem will 

be based on first, find the set of solutions that “dominate” any other solution of the solutions space and 
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then, select the best solution for the proposed problem, that will be that solution of the set that best suits the 
restrictions of the proposed problem. 

3 INITIAL DATASET TO BE USED ON THE EXPERIMENT 

There are 6000 simulations made with NECADA, one for each of the 6000 possible interesting 
combinations of building parameters (scenarios) in a common residential building in Catalonia (Fonseca i 
Casas and Fonseca i Casas 2015). This dataset represents the first dataset of this nature that represents the 
common building typologies (covering the 90% of the residential buildings in Catalonia), and the possible 
refurbishment measures (that one can do on this common scenarios) in order to improve buildings behavior 
in Catalonia. Each of these scenarios take a quite long time to run, and the analysis used to obtain the results 

can be considered a black-box, see (Ortiz et al. 2016a; Ortiz et al. 2016b) to review the experiment done 
and (Fonseca i Casas et al. 2017; Fonseca i Casas and Fonseca i Casas 2018) for the methodology used. 
The energy efficiency metric one can use as a reference is named LDP.  
 Having obtained the results for all these scenarios, we will compare now Hill Climbing and Simulated 
Annealing behaves to see how fast they could be to find the optimal solution to this specific problem, or in 
their defect how near to the optimal solution they are. This is really interesting because, considering the 

time needed to achieve the solution, if one wants to analyze new building typologies, as an example for 
isolated homes, one can rely on the metaheuristic that better behaves, without the need to use, as is done to 
generate this dataset, the force brute approach. 
 The simulations have been made through a combination of six parameters, that can own several levels, 
and all the possible combinations are defined through an XML file that can be understood by the simulation 
engine we use, SDLSP (Specification and Description Language Parallel Simulator), see  (Fonseca I Casas 

2010), as NECADA’s core and co-simulation engine. The results that are of interest in this study are those 
on Opti3Value and Opti2Value, that are the two variables to improve. We can see the combination of the 
levels of the factors in Table 1. 

Table 1: Factors to be considered in the analysis. For all the factors, the numbers represent an identifier that 
links with a specific level, as an example, 301 climate represents the climate file that contains the 
information related to Barcelona climate, for Façade, 10, 11, and so on, represent different solutions for the 

materials that can be used. For a deeper detail of these factors and levels (Ortiz et al. 2016a; Ortiz et al. 
2016b) can be consulted. 

Climate NVentilation SProtection Façade Roof Window 

301, 302 0, 1 0, 1 10 11 12 13 14 15 10 11 12 10 11 

   16 17 18 19 20 21 13 14 15 12  

   22 23 24 25 26 27 16 17 18   

   28 29 30 31 32 33 19     

   34           

 
 We can define a combination (or scenario or node) of the solution space provided to us, such as a six-
parameter vector (CLIMATE Nventilation, Sprotection, Façade, Roof, Window). So, for example, a 
possible vector of parameters or scenario, and that is one of the 6000 nodes (scenarios) that exist in the 
simulation results space, can be: (301, 0, 0, 10, 11, 11). If we express the results based on LDP and 

Investment, we obtain the map of solutions corresponding to these 6000 simulations, see Figure 2. 
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(a) Opti3Value 

 

(b) Opti2Value 

Figure 2: Opti3Value (a) and Opti2Value (b) with the Pareto frontier drawn. 

4 CODIFICATION OF THE ALGORITHMS USING R 

There are many optimization functions on R, both linear and non-linear, see (Theussl et al. 2019). After 
analysis, we opted to do the following for the codification of both algorithms. For Hill Climbing, we do not 
use any features implemented already in R. The disadvantage of this is that is expected a worse performance 
in the execution of tests, and the advantages are that we are able to do a complete personalization of the 
algorithm to be used. Since we are not focused on the time performance of the algorithm, but in how close 

are the results from the real optimal value, this solution is good for our purposes.  
 For Simulated Annealing, we use the “Optim” function of the “stats” library. The advantages are the 
better performance in the execution and the faster deployment that offers. The disadvantages are the need 
to use extra mechanisms to be able to customize the different algorithm variants we want to implement, but 
the disadvantages are easy to get over using global variables. 

4.1 "Hill Climbing" algorithm codification 

We chose to implement This algorithm in R without using any of the functions that already implements it. 
The pseudocode is presented next: 

 
currentNode = startNode; 

 

Loop Do 

L = NEIGHBORS (currentNode);  

nextEval =-INF; 

nextNode = NULL; 

For all x in L 

If (EVAL (x) > nextEval)  

NextNode = x;  

nextEval = EVAL (x); 

If nextEval < = EVAL (currentNode) 

//Return Current Node Since Not Better Neighbors Exist Return 

currentNode; 

currentNode = nextNode; 

 

 The function that generates the neighborhood owns two different variants in our approach, (i) random 

neighborhood and (ii) consistent neighborhood. 
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4.1.1 Random neighborhood 

Given the possible node we had mentioned previously (301, 0, 0, 10, 11, 11), a possible neighbor for this 
vector considering a random neighborhood is to change one-factor level with a random value within the 

possible values (and not the same current value). For example, if we change the fourth-factor level to 18, 
generates the next vector of states (301, 0, 0, 18, 11, 11).  
 Because the algorithm evaluates all neighbors of a given vector, the possible neighboring vectors are 
all possible combinations. Evaluating all possible combinations would turn it into a thorough algorithm, 
which is not what we seek, and for that, we will constrain to generating as many neighbors as parameters 
we have. So, in every iteration we can obtain in this case 6 possible neighborhoods: (301, 0, 0, 18, 11 11), 

(301, 0, 0, 10, 13, 11), (301, 0, 110 11 11), (301, the 1, 0, 10, 11 11), (302, 0, 0, 10, 11 11), (301, 0, 0, 10, 11 
12). In the early implementations and testing of this algorithm, we note that the algorithm is left very early 
in local minimums. To avoid so, we implement a neighborhood multiplier that we can configure before the 
execution of tests to attempt to jump over these local minimum values and go for the global minimum 
values. The Default multiplier value is "6". That means, every time we evaluate neighbors, we will evaluate 
thirty-six neighbors (six by six multiplier). 

4.1.2 Consistent neighborhood  

Given the possible node we had mentioned (301, 0, 0, 10, 11, 11), the neighbors for this vector (taking into 
account the consistent neighborhood) would be to change the value of the parameters with value 
immediately previous or next to the value that it currently has. In this way, the previous vector has nine 
neighboring vectors: 

Table 2: A consistent neighborhood for the (301, 0, 0, 10, 11, 11) scenario using a Hill Climbing approach. 

Preceding Posterior 

(301, 0, 0, 10, 11, 10) (301, 0, 0, 10, 11, 12) 

(301, 0, 0, 10, 1015) (301, 0, 0, 10, 12, 15) 

(301, 0, 0, 34, 11, 15) (301, 0, 0, 11, 11, 15) 

(301, 0, 1, 10, 11, 15) (N/A because there are no more value options) 

(301, 1, 0, 10, 11 15) (N/A because there are no more value options) 

(302, 0, 0, 10, 11 15) (N/A because there are no more value options) 

 
 That is, we generate two new neighbors, changing only one parameter, to their preceding and posterior 

values, except those parameters that are not possible because they only have 2 possible values, and therefore 
only generate a single neighbor from these parameters. If you think about changing more than one parameter 
at a time, the space of possible solutions to explore would be bigger and come possible variants of the 
algorithm. We decide to try only this variant, due to the impossibility of trying all possible variants. 

4.2 “Simulated Annealing” algorithm codification 

There are different alternatives in R to include functions that implement the "Simulated Annealing" (SA) 

algorithm like Stats (R Project 2018), Subselect (Orestes et al. 2018), ConsPlan (VanDerWal and 
Januchowski 2010) and for gradient and quasi-newton methods, GenSA (Xiang et al. 2013). We use the 
package «Stats", with its function "optim” to implement the Simulated Annealing algorithm more quickly.  
With this algorithm approach, implement three variants for the neighborhood selection. 

4.2.1 Random neighborhood  

Given the possible node we had mentioned previously (301, 0, 0, 10, 11, 11), a possible neighbor for this 

vector, is obtained changing the value of one of the parameters with a random value (avoiding the same 
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value). For example, if we change the fourth parameter, (301, 0, 0, 18, 11, 11); unlike the Hill Climbing, 
only one neighboring node should be assessed by iteration in the algorithm. 

4.2.2 Consistent neighborhood  

Given a possible initial scenario (301, 0, 0, 10, 11, 11) we will obtain the same alternative scenarios 
presented in Table 2, but now only one alternative is going to be evaluated. 

4.2.3 Consistent guided neighborhood (or using gradients) 

We follow the same approach that we described previously, however, we add an observation mechanism 
when a parameter change causes an improvement in the evaluation result of the node. When we have 
obtained an improvement in this result, what we will do in the next generation is continuing to change the 

same factor in the same direction. 
For example, from the initial scenario, we obtain the next scenario (301, 0, 0, 11, 11, 11). From the 
evaluation of this scenario we obtain a better result, that the obtained with the initial scenario (301, 0, 0, 10, 
11, 11), then the next neighbor that will be generated is the following (301, 0, 0, 12, 11, 11). This generation 
will cease to be guided at the time a scenario does not give an improved result. 

5 OBJECTIVE FUNCTION AND EXPERIMENTS DEFINITION 

The objective function wants to find the best LDP result with a budget constraint. The idea is to be able to 
execute the algorithms by specifying a restriction on the budget ("Investment” variables on the data), and 
working with two experiments, with a maximum budget of €40000 (enter all the combinations that we 
have), and maximum budget of €15000 (only a 26.6% of the possible value).  Also, we are interested in 
finding the best possible savings according to a formula: Its goal is to investigate about the saving that 
offers to us a building, along its life cycle, considering also LDP. The objective function must ponder also 

other considerations like interest for the possible mortgages and others; we propose a formula to give us an 
idea of the goodness of the algorithms by finding a solution (1) 
 

(Investment - ((Ldp_max - LDP) * Savings_coefficient * Years)), 
 

(1) 

where: 

 Investment: investment for the scenario we analyze, with constraints we discuss depending on the 
experiment. 

 LDP _max: Maximum value of LDP found in the tests 
 LDP: LDP of the scenario 
 Years: 100. It is the estimated life cycle of a building. 
 Savings_coefficient: 55. It is a value estimated to achieve a certain distribution in the values. 

 
 With the investment constrain and the two datasets ("Opti3" and "Opti2") we define four experiments 
to be used to test the algorithms. In each experiment, we will compare the algorithms to discuss the behavior 
depending on the constraints. 

Table 3: Experiments to be executed to compare the different algorithms. 

 Opti2 Opti3 

€15000 HC (Random); HC (Consistent) 
SA (Random); SA (Consistent); SA (Guided) €40000 

Best savings 
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6 TESTING AND RESULTS 

With each experiment, the strategy consists of four stages that are going to be executed depending on the 
difficult to parametrize the metaheuristic: (i) Definition of the initial configuration (parametrization) for the 

algorithms and execution with this configuration of an initial 10 executions, to analyze the goodness of 
each configuration. (ii) Reconfiguration of the algorithms based on the performance of these configurations. 
Execution of 10 new executions. (iii) Execution of the best configurations doing 100 executions, to confirm 
the consistency of the proposed configurations. (iv) Execution of the best configuration, showing the graph 
that depicts the search path followed by the algorithm. These graphics shows which scenarios have been 
evaluated of all space solutions (in red color) and which nodes have been part of the way in the search (in 

blue color), see Figure 3. 
  

 
(a) Best value objective => ldp:0.271865, Investment: 0 

 
(b) Best value objective => ldp:0.271865, Investment: 0 

Figure 3: Examples of a Hill Climbing execution, with random neighborhood variant with 36 neighbors (a), 
and with a consistent neighborhood variant (b). The big dot represents one of the solutions that are 
considered to be implemented at the system. 

 The configuration for Hill Climbing is easy, and then it is not needed the four steps of the test plan 
explained. It is possible to start in the third step, executing a hundred of tests of each algorithm variant. 
With the random variant, we will be able to decide to change the multiplier for each generator and to confirm 
the new results. The configuration for Simulated Annealing algorithm is more complex than the Hill 
Climbing configuration, and therefore with this algorithm, we will execute the four phases thought of the 
test plan, because for each one of the algorithm variants it’s needed to specify the parameters for the 

execution of the algorithm, the parameters are: 
  

 TEMP: initial temperature. 
 TMAX: maximum temperature. 
 ITERATIONS: maximum iterations to be executed. 

  
 Configure optimally this algorithm is difficult, and there is not a rule that allows us to think in the better 
configuration possible. An initial idea is to test TEMP values related to the numeric differences of the 
results we are searching, and we want to minimize (or maximize). Then, in the first phase of the test plan 
execution, we will think in values that we think can be correct, but we will test other ones far away from 
these values to confirm that the strategy is correct. We will try reasonable values for TMAX to avoid rise 
so much the evaluations done. We will try not many high values for ITERATION because we don’t want 

to do an exhaustive search. Normally, we will try values between 100 and 500. We will be able to specify 
different values to these parameters with global variables. Example: 

 
 VTEMP <- c(10, 20)                     # Simulated Annealing temp parameter to test 
 VTMAX <- c(1, 5)                        # Simulated Annealing tmax parameter to test 
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 VMAXITERSA <- c(250, 450)      # num of maximum iterations for Simulated Annealing algorithm 
to test 

 

 The example above will execute the Simulated Annealing algorithm with eight different configurations: 

Table 4: Example of multiple configurations with Simulated Annealing. 

 TEMP TMAX ITERACIONS 

10 1 250 

10 1 450 

10 5 250 

10 5 450 

20 1 250 

20 1 450 

20 5 250 

20 5 450 

 
 At the final of all tests, regardless of the number of tests that we have executed, to observe the goodness 
of the configuration found by each algorithm, we will output a statistic summary with the following data, 

see Table 5. 

Table 5: Metrics to be used. 

Metrics for the hypothesis of finding the best LDP with a budget constraint 

Success Expressed with four numbers: the times that the global optimum has found 
(Success), those that are not (Not Success), and the percentages of success (% 
Success) and failure (% No Success). 

LDP Average (Mean Diff LDP), Median (MEDIAN Diff LDP), Maximum (Max Diff 
LDP ) and Minimum (Min Diff LDP) of the difference between the LDP value of 
the global optimum and the LDP values of the combinations found in the tests.  

Inv Mean (Mean Diff Inv), Median (MEDIAN Diff Inv), Maximum (Max Diff Inv) and 
Minimum (Min Diff Inv) of the differences between the investment value of the 

global optimum and the investment values of the combinations found in the tests. 

Aval Average (MEAN Aval), Median (MEDIAN Guarantee), Maximum (MAX 
Guarantee) and Minimum (MIN Guarantee) evaluation of the objective function on 
the execution of each test. 

Metrics for the hypothesis of finding the best savings 

Diff LDP Average (Mean Diff LDP), Median (MEDIAN Diff LDP), Maximum (Max Diff 
LDP ) and Minimum (Min Diff LDP) of the differences between the LDP value of 
the global optimum and the LDP values found in the tests. 

Test differential Metrics with maximum savings. 

Diff Sav Average (Mean Diff Sav), Median (MEDIAN Diff Sav), Maximum (Max Diff Sav) 
and Minimum (Min Diff Sav) of the differences between the global optimum 
savings and the savings found in the tests. 

6.1 Analysis of the results 

This discussion of the results compares both algorithms and the different strategies used to define the 
neighborhood based on the two separate datasets we own. We present the results in two tables, Table 6 and 
Table 7. 
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Table 6: Results for Hill Climbing in the three scenarios analyzed with the two neighborhood selection 
algorithms for Opti2 and Opti3 dataset. 

Hill Climbing (HC) €15,000 €40,000 Best savings 

Opti3 HC 

Consistent 

- Reaching local optimum 
with about 47 iterations on 
average. 
- finding 0% of optimum 

values. 

- Reaching local 
optimum with about 
57 iterations on 
average. 

- 24% of optimum 
values. 

- Reaching local 
optimum with about 
75 iterations on 
average. 

- 21% of optimum 
values. 

Opti3 HC Random - Reaching local optimum 
with about 135 iterations on 
average. 

- 5% of the overall optimum. 
- Better than Consistent: 
results that are near the 
global optimum (at the price 
to perform more iterations). 

- 100% of optimum 
values with 156 
iterations on average. 

 

- 100% of optimum 
values with 160 
iterations on average. 

 

Opti2 HC 

Consistent 

- Reaching local optimum 
with about 38 iterations on 
average. 
- 16% of optimum values. 

- Reaching local 
optimum with about 
58 iterations on 
average. 
- 24% of optimum 
values. 

 

- Reaching local 
optimum with about 
60 iterations on 
average. 
- 17% of optimum 
values. 

Opti2 HC Random - Reaching local optimum 
with about 135 iterations on 
average. 
- 59% of optimum values. 

- Better than Consistent: 
results that are near the 
global optimum (at the price 
to perform more iterations). 
 

- 100% of optimum 
values with 156 
iterations on average. 
 

- 100% of optimum 
values with 147 
iterations on average. 

 

 

 
 Results, are in general, similar for "OPTI2" and “OPTI3” datasets. 

Table 7: Results for Simulated Annealing in the scenarios analyzed with the three neighborhood selection 
algorithms for Opti2 and Opti3 dataset. 

 Simulated 

Annealing (SA) 

€15,000 €40,000 Best Savings 

Opti3  

SA Random 

 

- 2% of optimum 
values with 253 
iterations.  
- The algorithm 

appears 
unresponsive to the 
value of the TMAX 
parameter.  

- 77% of optimal values 
with 201 iterations on 
average.  
- The algorithm seems 

unresponsive to the value 
of the TMAX parameter.  
- We can improve the 
results with more 
iterations, but you must 

- 77% of optimal values with 
201 iterations on average.  
- The algorithm seems 
unresponsive to the value of 

the TMAX parameter.  
- We can improve the results 
with more iterations, but you 
must greatly increase the 
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- We can improve 
the results with 

more iterations. 
 

greatly increase the 
iterations to significantly 

improve. 
 

iterations to significantly 
improve. 

 

Opti2  

SA Random 

- 46% of optimum 
values with 450 
iterations.  

- The algorithm 
appears 
unresponsive to the 
value of the TMAX 
parameter.  
- We can improve 

the results with 
more iterations. 

- 77% of optimal values 
with 207 iterations on 
average.  

- The algorithm seems 
unresponsive to the value 
of the TMAX parameter.  
- We can improve the 
results with more 
iterations, but you must 

greatly increase the 
iterations to significantly 
improve. 
 

- 81% of optimal values with 
251 iterations on average.  
- The algorithm seems 

unresponsive to the value of 
the TMAX parameter.  
- We can improve the results 
with more iterations, but you 
must greatly increase the 
iterations to significantly 

improve. 
 

Opti3 SA 

Consistent 

In all these cases: less effectiveness in finding the global optimum than with 

random vicinity, and higher Mean and median differences in LDP. Interestingly, 
with the same TEMP and TMAX configuration, we don't always remove better 
results with more iterations. This gives an idea of the difficulty it means to 
parameterize well this re-cooking algorithm Simulated Annealing. 

Opti2 SA 

Consistent 

Opti3  

SA Guided 

Opti2  

SA Guided 

 

 Results, in general, are similar for "OPTI2" and “OPTI3” datasets. In Short, Hill Climbing seems to 
behave better, in this specific problem (for both datasets) when the provided vicinity is random. In addition, 
to achieve good results with Simulated Annealing, seems a very complicated algorithm to parametrize. 

7 CONCLUSIONS 

The analytic function that corresponds the results extracted by software like NECADA cannot be known 
are based on a simulation model that combines different simulation engines in a co-simulation approach, 

hence the results for each configuration are obtained through a black box. The only thing we have are the 
results extracted for a series of combinations of parameters, where the important data are the "LDP", which 
is a metric of building efficiency. Brute-force tests are costly in the execution and also in the analysis. 
Experimental design can be a highly ambitious project, because of the number of different parametrizations, 
together with the number of variants of each algorithm. 
 In this project, we compare Hill Climbing and Simulated Annealing algorithms using an extensive 

dataset extracted from simulations made by NECADA software that will represent a common dataset for 
the analysis of the sustainability on the construction sector.  
 The algorithms Hill Climbing, and the Simulated Annealing are not implemented according to a 
particular configuration. The possible variants to these algorithms are multiple. In this work we have 
worked with different variants, random, consistent and guided neighbor generation, other variants, and even 
the combination of both algorithms can be also considered. 

 Main findings are that selecting the neighborhood randomly seems to work better to achieve a result 
near to the optimum value. Also, the parametrization of Simulated Annealing is a key aspect (not trivial) to 
achieve good results respect to Hill Climbing, that is much easier to implement and configure, however, 
depending on the neighborhood type Hill Climbing can be stopped in a local optimum. This local optimum, 
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however, according to the expected results or the analysis needs, can be a good option in terms of the speed 
of the execution. As an example, when using the simulation engine in combination with a monitoring 
system where the results must be near the optimum and achieved in almost real time, hence Hill Climbing 

seems a good approach for this kind of problems. 
This work represents an initial step and provides a methodology and a dataset useful to analyze other 

several metaheuristics, in order to find good candidates and parametrizations for this specific subject. This 
is a key aspect to obtain solutions to simulation models experimentations in almost real time, for the 
assessment in buildings or urban areas. 
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