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ABSTRACT

The paper describes a systematic approach for validating real-world biological, information, social and
technical (BIST) networks. BIST systems are usually represented using agent-based models and computer
simulations are used to study their dynamical (state-space) properties. Here, we use a formal representation
called a graph dynamical system (GDS). We present two types of results. First we describe two real-world
validation studies spanning a variety of BIST networks. Various types of validation are considered and
unique challenges presented by each domain are discussed. Each system is represented using the GDS
formalism. This illustrates the power of the formalism and enables a unified approach for validation. We
complement the case studies by presenting new theoretical results on validating BIST systems represented
as GDSs. These theoretical results delineate computationally intractable and efficiently solvable versions
of validation problems.

1 INTRODUCTION

Validation and verification (V&V) are long sought after goals of every useful model (Forrester and Senge
1980; Robinson 1997; Kleijnen 1995; National Research Council 2008; Oreskes 2000; Oberkampf and
Trucano 2002; Yilmaz 2006; Bharathy and Silverman 2013; Carley 1996). These two concepts can be
easily defined. Model verification involves the assessment of the fact that the model implemented is actually
what one intended to implement. Model validation is the assessment that the model, up to some measure
of comparison, mimics the system it was intended to capture. It should be noted that a model is typically
validated to some degree of fidelity or intended use (aka purpose).

BIST networks and agent-based models. In this paper, we focus on V&V issues as they pertain to networked
biological, social, information and technical networks, also referred to as BIST networks. These systems
lack inherent symmetries and are highly heterogeneous. Individual agents (represented as nodes in the
network) are often selfish or adversarial and their behavior co-evolves in response to their perception of
system dynamics. As a result, traditional methods rooted in physics and based on predictive validity
are often not applicable. For one, in large simulations involving socio-technical networks, data matching
exercises are usually postdictions of historical information such as matching epidemiological model output
to an infection time series of a flu season. Although this is useful, it can also be misleading and is
often inadequate. The configuration space (which captures the causal structure for an evolving system) is
important for understanding the system being represented as well as the modeled representation of that
system. However, any measured real world data is incapable of capturing this structural range—only those
modes that took place in the real world appear in the measured data. Furthermore, this space is extremely
large and is not enumerable in practice. Thus, the process of postdiction (retrospective validation) alone is
inadequate. Additionally, while postdicting, the available information about the context is often insufficient
to properly specify the initial and structural conditions that would allow the model to predict. As a result,
high dimensional models are often fitted to relatively sparse data. In this sense, the occurrence of a fit can
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be misleading because the inverse problem (i.e., the model matching the real data) does not have a unique
solution. Predictive validity is also useful but again of limited value. Predictions based on past behavior
that do not account for adaptive behavioral changes of individual agents often do not do well. Moreover,
prediction alone does not provide insights into the underlying causal processes. For e.g., a simple time
series model might provide accurate predictions of influenza dynamics but might have very little to say why
a given season might have fewer cases than past few seasons. In both cases, explanatory power is really
at issue. In decision-making, a causal basis for the choice of the best option is more relevant than any
particular kind of detailed prediction of state. But, simply matching the model output with data collected
in the field is of limited value, especially because such data is necessarily sparse, noisy, incomplete and
not aligned in time.

Here we focus on V&V of agent-based models—such models have become popular for representing
complex real-world BIST networks. Informally, such models are comprised of a collection of agents that
represent the underlying BIST system at a certain level of granularity. Agents interact with other agents and
modify their behavior as a result of the interactions. Usually the interaction is constrained by an underlying
network that captures the agent neighborhood. Agent-based models are very expressive but come with two
costs. First, computing all dynamical outcomes (the state-space) as specified by the agent-based models
is usually expensive and as such one resorts to simulations. Second, the richness of agents and interaction
structure is a strength but also leads to a more critical questioning and interrogation of such models as
they pertain to believability and understandability. As a result, validation of agent-based models for BIST
networks is even more important, and not surprisingly a subject of several papers (e.g., (Yilmaz 2006;
Bharathy and Silverman 2013; Carley 1996)) in the last decade.
External and internal validation. Following (Carley 1996), we will use the term real data to mean
information (including nominal and procedural information) gathered about the real system that is being
modeled via experimental, field, survey or archival analysis. In this paper, we will focus on two distinct
types of validation—internal and external. See (Yilmaz 2006; Bharathy and Silverman 2013; Carley 1996)
for in depth discussions on various forms of validation. External validation aims to compare model output
data with real life, in-situ and in-vivo measurements where the state-space data produced by the model are
matched with measured data. Two key forms are: retrospective validity (matching with already measured
data as used in machine learning for example) and predictive validity (matching with the outcomes that occur
in the future). Furthermore, Carley (1996) classifies various levels of external validity, including: face,
parameter, process, pattern, point and distributional validity. External validity connects model outcomes
with observations pertaining to the real world problem that is being modeled. Internal (aka structural)
validation aims to ensure that the model has been put together correctly. For agent-based models, this implies
that interaction patterns (or networks), individual processes or rules for agents and model parameters are
correct and adequate; furthermore, one ensures that the model is consistent with the specific and prevalent
physical and social theories. In this sense, verification can be thought of as internal validation.
A mathematical framework. Here we use graph dynamical systems (GDSs) as a mathematical abstraction
for agent-based models of BIST networks. Graph dynamical systems provide a powerful abstraction for
a large class of BIST networks—these include transportation systems (Barrett et al. 2001), spread of
epidemics (Eubank et al. 2004), systems biology (Shmulevich and Kauffman 2004), and immune systems
(Alam et al. 2015). Such systems consist of a large number of interacting entities/agents, and the complex
global dynamics of the system are the result of local interactions of each agent with its neighbors in an
interaction structure, represented as a network. In this paper, we study a special form of GDSs, namely
synchronous GDSs, where all agents compute and update their states in parallel. Such GDSs have been
successfully used in a number of applications (Barrett et al. 2006). GDSs are universal, in that they can
represent all other computing models, such as cellular automata (Wolfram 1987), Boolean networks (Ribeiro
et al. 2007), neural networks, Hopfield networks, and graph automata; see (Barrett et al. 2007) for details.
We will present the formal definitions associated with GDSs in Section 2.
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i is the state of node vi at time t, 1≤ i≤ 6. The configuration at time 2 is a fixed point.

Figure 1: An example of a GDS.

2 Graph Dynamical Systems: Formal Definitions

We now define a formal model that enables us to develop rigorous formulations of issues related to validation
of BIST systems. We follow (Barrett et al. 2006) in presenting these definitions. Let B denote the Boolean
domain {0,1}. A synchronous Graph Dynamical System (GDS) S over B is specified as a pair S= (G,F),
where (a) G(V,E), an undirected graph with n = |V |, represents the underlying graph of the GDS, with
node set V and edge set E, and (b) F = { f1, f2, . . . , fn} is a collection of functions in the system, with
fi denoting the local function associated with node vi, 1≤ i≤ n.

Each node (or agent) of G has a state value from B. Each function fi specifies the local interaction
between node vi and its neighbors in G. The inputs to function fi are the state of vi and those of the
neighbors of vi in G; function fi maps each combination of inputs to a value in B. This value becomes the
next state of node vi.

At any time t, the configuration C of a GDS is the n-vector (st
1,s

t
2, . . . ,s

t
n), where st

i ∈ B is the state
of node vi at time t (1≤ i≤ n). In a GDS, all nodes compute and update their next state synchronously.
Example: Consider the graph of a GDS shown in Figure 1. Suppose the local transition functions at
each of the nodes v1, v5 and v6 is the OR function. The function at each of the nodes v2, v3 and v4 is
the 2-threshold function whose value is 1 iff at least two of the inputs are 1. Assume that initially, v3 is
in state 1 and all other nodes are in state 0. During the first time step, the states of nodes v1, v5 and v6
change to 1 since each fi (i ∈ {1,5,6}) is the OR function and each of these nodes has a neighbor (namely,
v3) in state 1. Also, the state of v3 changes to 0 since it requires at least two inputs with value 1. The
states of v2 and v4 do not change; they continue to be 0. During time step 2, v2 and v3 change to 1 but v4
remains at 0. Once the system reaches the configuration C= (1,1,1,0,1,1) at time step 2, it remains in
that configuration forever; that is, C is a fixed point for this system. 2

Additional dynamical systems terminology and notation. If a given GDS can transition in one step from
a configuration C′ to a configuration C, then C is a successor of C′ and C′ is a predecessor of C. Since
our local functions are deterministic, each configuration has a unique successor; however, a configuration
may have zero or more predecessors. As mentioned above, a fixed point is a configuration C for which the
successor is C itself. A configuration with no predecessors is called a Garden of Eden (GE) configuration.

The phase space PS of a GDS S is a directed graph defined as follows. There is a node in PS for each
configuration of S. There is a directed edge from a node representing configuration C to that representing
configuration C′ if there is a one step transition of S from C to C′. For a GDS with n nodes and a Boolean
node state set (here, {0,1}), the number of nodes in the phase space is 2n; thus, the size of phase space
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is exponential in the size of a GDS. Each node in the phase space has an outdegree of 1 (since our GDS
model is deterministic). Also, in the phase space, each fixed point of a GDS is a self-loop and each GE
configuration is a node of indegree zero. We use the symbol 0 (1) to denote a configuration in which every
node is in state 0 (state 1).
Some terminology regarding Boolean functions. Throughout this paper, we will consider several classes
of Boolean functions. We now define these classes. Given an integer k, a Boolean function f is a k-threshold
function iff f is true when at least k of its inputs are 1. A symmetric Boolean function (Crama and Hammer
2011) is one whose value does not depend on the order in which the input bits are specified; that is, the
function value depends only on how many of its inputs are 1. Thus, any k-threshold function is symmetric.
A symmetric function with q inputs can be specified using a table with q+ 1 rows, where row i of the
table specifies the value of the function when the number of 1-valued inputs is equal to i, 0 ≤ i ≤ q. A
Boolean function f is r-symmetric (Barrett et al. 2007) if the inputs to f can be partitioned into at most
r classes such that the value of f depends only on how many of the inputs in each of the r classes are 1.
It can be seen that an r-symmetric function with q ≥ r inputs can be represented by a table with O(qr)
entries. Note that any Boolean function with d inputs is d-symmetric. We will be mainly concerned with
r-symmetric functions where r is a fixed integer. We say that a GDS is r-symmetric if each of its local
functions is r′-symmetric for some r′ ≤ r.

We will explain in Section 5.1 how the GDS model can be used to formalize some research issues
regarding validation of BIST networks.

3 SUMMARY OF CONTRIBUTIONS & RELATED WORK

Summary of contributions. In this paper, we describe an approach taken by our group to address issues
as they pertain to validation of agent-based models of BIST networks. We present computational studies
as well as theoretical results.

(1) Example case studies. In Section 4, two case studies spanning a range of BIST networks are presented.
Each study illustrates complementary types of validations as necessitated by the application. All of them
use the GDS framework to represent the underlying agent-based models.
(2) Theoretical results. We complement the discussion with new theoretical results in Section 5. Here,
validation problems are formulated as model checking problems over GDSs and rigorous computational
bounds are established. Each result compares properties of two BIST networks, represented as GDSs. One
system can be considered as ground truth and the other as an inferred system built from data, and the goal
is to evaluate the quality of the inferred system. An important practical consequence of these problem
formulations and results is that if the similarity conditions do not hold between the two GDSs, then the
inferred model does not fully capture the ground truth. Due to space considerations, only deterministic
systems are considered for establishing rigorous results. These results are relevant for the following reasons.
First, the results are applicable to real systems. The networked experiments of Centola (2010), Centola
(2011), for example, seek to infer thresholds for humans in a health care setting. There are rigorous GDS
representations for both the threshold model of Granovetter (1978) and the results of these aforementioned
experiments that can be compared within our theoretical framework. Second, the results help us to delineate
validation questions that are computationally intractable from those that can be solved efficiently. Finally,
some of the results identify validation questions that can be answered in practice using open-source software
SAT solvers (see, e.g., Gomes et al. (2008)).

Related work. Validation of complex systems has been a subject of extensive research in the modeling and
simulation community; see (Balci and Nance 1985; Forrester 1971; Forrester and Senge 1980; National
Research Council 1998; National Research Council 2008; Oberkampf and Trucano 2002; Robinson 1997;
Sterman 2006). Philosophical discussions on these topics can be found in (Oreskes 2000; Carnap 1936;
Popper 1963). The debate on validation can be summarized eloquently by a quote due to G. E. P. Box:
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“Essentially, all models are wrong, but some are useful.” (Box and Draper 1987). As discussed above and
in the recent reports of National Academies (National Research Council 1998; National Research Council
2008), validation is only meaningful when one states the purpose for which the model is used. Validation
of agent-based models of BIST systems has also been actively studied. This includes our theoretical as
well as practical work (Barrett et al. 2001; Eubank et al. 2004; Barrett et al. 2006; Barrett et al. 2007) as
well as work done by others (Hahn 2013; Hahn 2017; Yilmaz 2006; Klügl 2008; Bruch and Atwell 2015;
Bharathy and Silverman 2013; Bianchi et al. 2007; Lux and Zwinkels 2018; Macal 2016; Carley 1996).
Additional references can be found in the above papers.

4 CASE STUDIES FOR MODEL VALIDATION

In this section, we describe two case studies to illustrate approaches for validating models of BIST networks.
The first study develops models to capture human behaviors in a networked game. The second study models
commodity flows among produce markets. The meanings of interactions vary from purposeful two-way
communication, to crop flows, to unaided (i.e., human-oblivious) transmission, to passive observations of
others’ actions. In all cases, the goal is to develop validated models to quantitatively predict system behavior
for a wider range of conditions than were studied in experiments or obtained through observations.

4.1 Case Study 1: Validation of a Word Construction Model

An online game platform was designed and constructed for playing a word construction game. (Word
construction games are often called anagram games. The board game Scrabble is one such example.) In
our particular version of the game, (remote) players are recruited through Amazon Mechanical Turk (AMT)
and play the game through their web browsers. Our game is motivated by the work of Charness et al.
(2014). Each player vi ∈ V (n = |V |) is situated in a network G(V,E) of interacting players, where V
is the set of players and E is the set of edges or communication channels {vi,v j} ∈ E between players
vi,v j ∈ V . Each player is assigned an initial set of alphabetic letters (called her own letters). Players work
cooperatively to form words from their own letters and from those letters that they request, and then receive,
from their distance-1 neighbors. In this way, players assist each other in forming more words, as a team,
than individuals could produce on their own. A word corpus determines the validity of each word formed
and submitted by players. The goal of the game is for the team to form as many words as possible over a
5-minute time window.

Observed data gathered from the games performed on this platform are the following actions and the
time of each action by each player: (i) submit word; (ii) send letter request; (iii) receive letter request;
(iv) send letter reply; and (v) receive letter reply. From these data, we built a set of action type-time
sequence (ATTS) models that predict the time-ordered sequence of pairs (action type, time). Here, action
types are three of the five actions identified immediately above: submit word, send letter request, and send
letter reply. The ATTS model is the local function fi for each vi ∈ V (Section 2), and uses multinomial
logistic regression that predicts each of the three action types, in time, for a player; see (Ren et al. 2018).

To evaluate our models, we use Kullback-Leibler (KL) divergence in the following way. We use initial
conditions for each experiment of a particular class (e.g., the class of experiments where each player has
degree d = 2 in the network, i.e., each player has two neighbors). We run the (agent-based) ATTS model,
for each node, in time to simulate each game in the fashion shown in Figure 1. Thereafter, for each player,
we sum up the counts of each of the five action types across all players in the computational games of a
particular class. We form frequency distributions from these data—one for each action type—and compare
these predicted distributions (which we convert to density distributions) against corresponding distributions
from experimental data, using KL-divergence.
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Figure 2 summarizes these ideas and some results for two models, M0 and M1, where M0 is based on a
simple state transition matrix determined directly from the experimental data and M1 is based on a multino-
mial logistic regression model (Ren et al. 2018). The first two plots show results from experiments and from
model predictions for d = 2 experiments, for the distributions of numbers of (letter) replies received and
numbers of words formed. One can see by inspection that model M1 provides predictions (in distribution)
that are in closer agreement with the data than are those from baseline model M0. This observation is made
more formal with the KL-divergence values in Figure 2c. The lesser values of KL divergence for model M1
indeed confirm that this model is better than model M0, for not only replies received and form words, but
also for the other three action types.
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Figure 2: (a) Distributions of numbers of replies received by players from three sources: experimental data
(gray), baseline model M0 (green), and regression model M1 (red). (b) Distributions of numbers of words
formed by players from three sources: experimental data (gray), baseline model M0 (green), and regression
model M1 (red). In these first two plots, the data come from summing the counts of the number of players
that take the given number of actions of the specified type over the game duration. (c) KL-divergence values
that are computed from the distributions in the first two plots and other similar plots for the remaining action
types. The along the x-axis, are respectively, replies received, replies sent, requests received, requests sent,
and words formed. These results come from Ren et al. (2018).

These results provide a combination of data and structural validation. Data validation is achieved
through the favorable comparisons between model predictions and experimental results. At the same time,
structural validation is achieved because our hierarchical logistic regression model (local function) gener-
ates the predictions. Note that structural validation does not preclude the possibility of other satisfactory
formulations for local functions. Finally, these comparisons are self-consistency checks in that all data are
used to build the models, and the predictions in Figure 2 are also over all data. Ten-fold cross validation is
work in progress.

4.2 Case Study 2: Validation of a Model for the Spread of an Invasive Species

While trade and transport of goods is widely accepted as a primary pathway for the dispersal of invasive
species that affect agricultural crops, these human mediated pathways are not well understood. Few, and
often inaccurate, incidence reports and lack of knowledge of trade flows are some of the major hurdles in
understanding their role. We modeled realistic spatio-temporal networks of seasonal agro-products between
major markets (Venkatramanan et al. 2017) from diverse, multi-type, and noisy datasets. The methodology
was applied to develop a spatio-temporal domestic tomato trade network in Nepal and investigate its role
in the spread of the South American tomato leafminer or Tuta absoluta, a devastating pest of the tomato
crop (Campos et al. 2017). Through dynamical analysis of the networks and a novel rank-based Bayesian
inference approach, we showed that tomato trade has facilitated the rapid spread of the pest in the region.
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We modeled the flow of agricultural produce among markets based on the following premise: major
wholesale markets serve as key locations facilitating agricultural commodity flow, and the total outflow from
a market depends on the amount of produce in its surrounding regions, and the total inflow is a function of
the consumption linked to the market. These assumptions are driven by studies of the pest dynamics in
other countries and the fact that tomato is a commercial crop in Nepal. The commodity flow is modeled
as a temporal network with markets as nodes and directed weighted edges representing volumes of host
crop being traded between the end points. The flows are estimated using a doubly constrained gravity
model (Kaluza et al. 2010). The flow Fi j from location i to j is given by Fi j = aib jOiI j f (di j) where, Oi

is the total outflow of the commodity from i, I j is the total inflow to j, di j is the time duration required to
travel from i to j, f (·) is the distance deterrence function, and coefficients ai and b j are computed through
an iterative process to ensure flow balance.

For structural validation, we used yearly data from the largest wholesale market of Nepal. In Fig-
ures 3a–3c, we compare this data with the network flows. Given a set of network parameters (β ,κ,γ), we
obtained the inflow from a particular district to Kathmandu as follows: We combined the weights of all
edges of the corresponding network with destination node “Kathmandu” and source nodes belonging to that
district. As seen in Figure 3a, for γ values between 0.5 and 1, the flows from the networks are comparable
to the Kalimati data except for two districts: Dhading (the top contributor) and Sarlahi (third highest). Upon
further investigation we find that Dhading, which is a major producer west of Kathmandu, serves the Mid
Hills and Terai regions of the Central Development Region in the flow networks (Figure 3b). While the
gravity model predicts that these flows will be directly delivered to these regions, in reality, it is possible
that Dhading’s produce is routed through the Kalimati market as there are several traders from Dhading
registered in the Kalimati market. A similar argument holds for Sarlahi (Figure 3c).
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Figure 3: Flow validation (from (Venkatramanan et al. 2017)).

5 FORMALIZING VALIDATION USING THE GDS FRAMEWORK

In this section, we define some similarity relationships between a pair of GDSs to formalize some questions
regarding validation. We then present complexity and algorithmic results for testing these relationships.

5.1 Examples of Equivalence and Similarity Relations Between a Pair of GDSs

As mentioned earlier, we will use equivalence and similarity relationships between pairs of GDSs to formu-
late validation questions for models of BIST networks. Our definitions rely on the following assumptions:
(i) The underlying graphs of the two GDSs have the same set of nodes. (The set of edges for the two GDSs
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may be different.) (ii) The nodes of each GDS are labeled using integers from 1 to n so that the correspond-
ing nodes in the two GDSs have the same number. (iii) The domain of state values for both the GDSs is
{0,1}. (iv) Each configuration in the phase space of one GDS corresponds to the same configuration in the
phase space of the other GDS. Given two GDSs S1 and S2 satisfying the above assumptions, it is possible to
formally represent some validation questions for the corresponding multi-agent systems using suitable sim-
ilarity relationships between the two GDSs, expressed as logical predicates. We now present two examples
of such predicates. (Several other examples are presented in (Adiga et al. 2019).) In Section 5.2, we discuss
how such predicates are useful in studying validation issues for BIST networks.

(a) Let the predicate PSE(S1,S2) be true iff the phase spaces of S1 and S2 are identical (i.e., for every
configuration C, the successor of C is the same configuration in both S1 and S2). We will refer to predicate
PSE as the phase space equivalence relationship.

(b) Let the predicate CS-FP(S1,S2) be true iff the two GDSs have the same number of fixed points. A
similar predicate CS-GE(S1,S2) can be formulated for GE configurations. We will refer to CS-FP and
CS-GE respectively as count similarity (CS) relationship with respect to fixed point and GE configurations.

5.2 Using Similarity Predicates for Validation

The literature on system verification (see, e.g., (Alur et al. 2015)), provides many examples where one
wants to compare a model (e.g., a finite state machine) obtained from the specification of a system with
one obtained from an implementation. The purpose of the comparison is to verify whether the implemented
model correctly represents the specification model. This comparison is carried out by defining various forms
of relationships between two models and determining whether those relationships hold. In this paper, we use
a similar approach for validation. We use GDSs as models of both the ground truth and the implementation.
As mentioned in Section 3, several studies reported in the literature (e.g., Centola (2010), Centola (2011))
use formalisms similar to GDSs. The relationships identified in Section 5.1 provide some ways by which
the constructed model can be compared with the model obtained from ground truth. The most stringent
of these relationships is phase space equivalence; when this relationship holds, the two systems become
indistinguishable with respect to the desired behavior. Some of the relationships are likely to be easier
to test in practice, especially due to the availability of tools such as public domain SAT solvers. When a
relationship does not hold, it stands to reason that the inferred model does not fully capture the properties of
the model derived from ground truth. When this happens, one can try to infer a better model using additional
data and then proceed to validate the new model. In this manner, the similarity relationships identified in
this paper serve as useful ways of carrying out validation.

5.3 Results for Phase Space Equivalence

Here and in the subsequent subsections, we consider the problems of determining the truth value of the
predicates defined in Section 5.1. See (Adiga et al. 2019) for detailed proofs.

Recall that the predicate PSE(S1,S2) is true iff the phase spaces of S1 and S2 are identical. We start
with a general result on the complexity of the problem.

Theorem 1 Given two GDSs S1 and S2 whose local functions are specified as Boolean expressions, the
problem of finding the truth value of the predicate PSE(S1,S2) is NP-hard. This result holds even if the
underlying graphs of the two GDSs are identical.

Proof (sketch): We use a reduction from the Boolean Satisfiability problem (SAT) which is known to
be NP-hard (Garey and Johnson 1979). Let an instance I of SAT be specified using p variables X =
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{x1,x2, . . . ,xp} and m clauses Y = {Y1,Y2, . . . ,Ym}. We construct two GDSs S1 and S2 as follows. For
both the GDSs, the underlying graph G(V,E) is a star graph on p+ 1 nodes, with V = {v0,v1, . . . ,vp} and
E = {{v0,vi} : 1 ≤ i ≤ p}. (Thus, the underlying graphs of the two GDSs are identical.) Let s1

i and f 1
i

denote respectively the state value of node vi and the local function at node vi, 0≤ i≤ p, for GDS S1. Like-
wise, let s2

i and f 2
i denote respectively the state value of node vi and the local function at node vi, 0≤ i≤ p,

for GDS S2. For 1 ≤ i ≤ p and ` = 1,2, the local function f `i at node vi is given by f `i (s
`
0,s

`
i ) = 0. For

S1, the local function f 1
0 (s

1
0,s

1
1, . . . ,s

1
p) = 0 and for S2, the local function f 2

0 (s
2
0,s

2
1, . . . ,s

2
p) =

∧m
j=1Yj, with

each variable xi in Yj replaced by the state variable s2
i , 0 ≤ i ≤ p and 1 ≤ j ≤ m. It is easy to see that this

construction can be done in polynomial time. It can be verified that the predicate PSE(S1,S2) is true iff the
instance I is not satisfiable.

We now mention a result that identifies that some special cases for which the PSE(S1,S2) predicate can
be evaluated in polynomial time. A proof the result appears in (Adiga et al. 2019).

Theorem 2 The predicate PSE(S1,S2) can be evaluated in polynomial time for the following special cases:
(i) the local functions for both the GDSs are r-symmetric for a fixed r and (ii) each local function in both
the GDSs is linear (i.e., it is from the set {XOR, XNOR}).

When the degree of each node is bounded by a constant d, we note that every local function is d-
symmetric. Thus, we obtain the following corollary from Theorem 2.

Corollary 3 The predicate PSE(S1,S2) can be evaluated in polynomial time if each of the underlying graphs
has a degree of at most d, for a fixed d.

5.4 Results for Count Similarity

Here, we consider the count similarity relationships introduced earlier. Recall that the predicate CS-FP(S1,S2)
is true iff the the two GDSs S1 and S2 have the same number of fixed points. In proving the next theorem,
we will use the following observation.

Observation 1 Any GDS where each local function is NOR does not have any fixed point.

Theorem 4 Let S1 and S2 be two given GDSs. The problem of evaluating the predicate CS-FP(S1,S2) is
NP-hard.

Proof: We will prove the result using a reduction from the fixed point existence (FPE) problem: does a
given GDS S have a fixed point? This problem was shown to be NP-complete in (Barrett et al. 2001). Let
an instance of FPE be given by the GDS S1. Let S2 be the following GDS: the underlying graph of S2 is the
same as that of S1 and the local function at each node of S2 is the NOR function. By Observation 1, S2 does
not have any fixed point. Therefore, the predicate CS-FP(S1,S2) is false iff S1 has a fixed point. Thus, the
problem of evaluating CS-FP(S1,S2) is NP-hard.

We now present a result to show that the count similarity predicate can be evaluated efficiently for
special cases.

Proposition 1 Let S1 and S2 be two GDSs such that their underlying graphs are treewidth bounded1 and
the local functions are r-symmetric for some fixed r. Then the predicate CS-FP(S1,S2) can be evaluated in
polynomial time.

Proof: It is shown in (Rosenkrantz et al. 2015) that if a GDS S has bounded treewidth and each local
function of S is r-symmetric for a fixed r, the problem of counting the number of fixed points of S can be

1For the definition of treewidth, we refer the reader to (Bodlaender 1993).
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solved in polynomial time. Using that algorithm, one can compute the number of fixed points of S1 and S2
and thus evaluate the predicate CS-FP(S1,S2) in polynomial time.

6 SUMMARY, CONCLUSIONS AND FUTURE WORK

We observed that many V&V questions for MASs can be expressed using certain predicates on the GDSs
corresponding to the MASs. We showed that many of these problems are computationally intractable in
general. However, we observed that restricted versions of the problems can be solved efficiently. Also,
some of the problems can be solved in practice using commercial or public domain SAT solvers. When
the phase spaces of the GDSs modeling the given MASs are identical, the two MASs have identical global
behavior. The other types of relationships defined in Section 5.1 provide useful ways of identifying certain
differences between the MASs under consideration. One can identify and study many other relationship
predicates. Further, it is also of interest to study such questions for stochastic GDSs (Barrett et al. 2011).

ACKNOWLEDGMENTS. This work is supported by DTRA CNIMS (Contract HDTRA1-11-D-0016-
0001), DTRA V&V Grant Award No. HDTRA1-11-1-0016 (entitled “Rigorous Approaches for Validation
and Verification of Networked Systems”), NSF DIBBS Grant ACI-1443054, NSF EAGER Grant CMMI-
1745207, NSF BIG DATA Grant IIS-1633028 and USAID Cooperative Agreement No. AID-OAA-L-15-
00001 (entitled “Feed the Future Innovation Lab for Integrated Pest Management”). We thank Dr. Paul
Tandy (DTRA) for his encouragement and support of this work. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

REFERENCES
Adiga, A., C. Barrett, S. E. Eubank, C. J. Kuhlman, M. V. Marathe, H. Mortveit, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns,

S. Swarup, and A. Vullikanti. 2019. “Validating Agent-Based Models of Large Networked Systems”. Technical report, Uni-
versity of Virginia, Charlottesville, VA, USA.

Alam, M., X. Deng, C. Philipson, J. Bassaganya-Riera, K. Bisset, A. Carbo, S. Eubank, R. Hontecillas, S. Hoops, Y. Mei, V. Abedi,
and M. Marathe. 2015, 09. “Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Re-
sponses to Helicobacter pylori Infection”. PLoS ONE 10(9):e0136139.

Alur, R., T. A. Henzinger, and M. Y. Vardi. 2015. “Survey: Theory in Practice for Design and Verification”. SIGLOG News 2(1):99–
104.

Balci, O., and R. E. Nance. 1985. “Formulated Problem Verification as an Explicit Requirement of Model Credibility”. Simula-
tion 45(2):76–86.

Barrett, C., H. B. Hunt III, M. V. Marathe, S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and M. Thakur. 2007. “Predecessor Existence
Problems for Finite Discrete Dynamical Systems”. Theoretical Computer Science 386(1):3–37.

Barrett, C. L., R. J. Beckman et al. 2001. “TRANSIMS: Transportation Analysis Simulation System”. Technical Report LA-UR-
00-1725, Los Alamos National Laboratory Unclassfied Report.

Barrett, C. L., K. Bisset, J. Chen, S. Eubank, B. Lewis, V. A. Kumar, M. V. Marathe, and H. S. Mortveit. 2007. “Effect of Public
Policies and Individual Behavior on the Co-evolution of Social Networks and Infectious Disease Dynamics”. In In Proceedings
of the DIMACS/DyDAn Workshop on Computational Methods for Dynamic Interaction Networks. State College, PA: Citeseer.

Barrett, C. L., H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. 2006. “Complexity of Reachability
Problems for Finite Discrete Dynamical Systems”. Journal of Computer and System Sciences 72(8):1317–1345.

Barrett, C. L., H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. 2011. “Modeling and Analyzing Social
Network Dynamics Using Stochastic Discrete Graphical Dynamical Systems”. Theoretical Computer Science 412(30):3932–
3946.

Barrett, C. L., H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and P. Tosic. 2001. “Gardens of
Eden and Fixed Points in Sequential Dynamical Systems”. In Proc. Discrete Mathematics and Theoretical Computer Science
Conference, 95–110. Paris, France: HAL Archives.

Bharathy, G. K., and B. Silverman. 2013. “Holistically Evaluating Agent-Based Social Systems Models: A Case Study”. Simula-
tion 89(1):102–135.

Bianchi, C., P. Cirillo, M. Gallegati, and P. A. Vagliasindi. 2007. “Validating and Calibrating Agent-Based Models: A Case Study”.
Computational Economics 30(3):245–264.

2816



Adiga, Barrett, Kuhlman, Marathe, Mortveit, Ravi, Rosenkrantz, Stearns, Swarup, and Vullikanti

Bodlaender, H. L. 1993. “A Tourist Guide Through Treewidth”. Acta Cybernetica 11(1-2):1–22.
Box, G. E., and N. R. Draper. 1987. Empirical Model-Building and Response Surfaces. New York, NY: Wiley.
Bruch, E., and J. Atwell. 2015. “Agent-Based Models in Empirtical Social Research”. Sociological Methods and Re-

search 44(2):186–221.
Campos, M. R., A. Biondi, A. Adiga, R. N. Guedes, and N. Desneux. 2017. “From the Western Palaearctic Region to Beyond: Tuta

Absoluta 10 Years After Invading Europe”. Journal of Pest Science 90(3):787–796.
Carley, K. M. 1996. “Validating Computational Models”. Technical report, Carnegie Mellon University, Pittsburgh, PA.
Carnap, R. 1936. “Testability and Meaning”. Philosophy of Science 3(4):419–471.
Centola, D. 2010. “The Spread of Behavior in an Online Social Network Experiment”. Science 329:1194–1197.
Centola, D. 2011. “An Experimental Study of Homophily in the Adoption of Health Behavior”. Science 334:1269–1272.
Charness, G., R. Cobo-Reyes, and N. Jimenez. 2014. “Identities, Selection, and Contributions in a Public-Goods Game”. Games

and Economic Behavior 87:322–338.
Crama, Y., and P. Hammer. 2011. Boolean Functions: Theory, Algorithms, and Applications. New York, NY: Cambridge University

Press.
Eubank, S., H. Guclu, V. S. Anil Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang. 2004. “Modelling Disease

Outbreaks in Realistic Urban Social Networks”. Nature 429:180–184.
Forrester, J. W. 1971. “Counterintuitive Behavior of Social Systems”. Technology Review 73:53–68.
Forrester, J. W., and P. Senge. 1980. “Tests for Building Confidence in System Dynamics Models”. In System Dynamics, edited by

A. A. Legasto Jr., J. W. Forrester, and J. M. Lyneis, Volume 14 of Studies in the Management Sciences, 209–228. Amsterdam,
The Netherlands: North-Holland.

Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco:
W. H. Freeman & Co.

Gomes, C. P., H. Kautz, A. Sabharwal, and B. Selman. 2008. “Satisfiability Solvers”. In Handbook of Knowledge Representation,
edited by F. van Harmelen, V. Lifschitz, and B. Porter, Chapter 2, 89–134. The Netherlands: Elsevier.

Granovetter, M. 1978. “Threshold Models of Collective Behavior”. American Journal of Sociology 83(6):1420–1443.
Hahn, H. A. 2013. “The Conundrum of Verification and Validation of Social Science-Based Models”. Procedia Computer Sci-

ence 16:878–887.
Hahn, H. A. 2017. “The Conundrum of Verification and Validation of Social Science-Based Models (Redux)”. Technical report,

Los Alamos National Laboratory, Los Alamos, NM.
Kaluza, P., A. Kölzsch, M. T. Gastner, and B. Blasius. 2010. “The Complex Network of Global Cargo Ship Movements”. Journal

of the Royal Society Interface 7(48):1093–1103.
Kleijnen, J. 1995. “Verification and Validation of Simulation Models”. European Journal of Operational Research 82:145–162.
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