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ABSTRACT

Energy consumption is a critical issue for high-performance computing (HPC) systems. Demand response
is a program offered by power service providers to reduce energy consumption. In this paper, we present the
simulation of an energy-efficient economic demand-response model based on contract theory. Simulation is
developed to examine the effectiveness of the demand-response model in a variety of real-world scenarios.
Results from simulation show that the model can achieve energy efficiency through the rewarding mechanism
of the contract-based design. In particular, the HPC users can be properly compensated to ensure their
willing participation in energy reduction.

1 INTRODUCTION

The demand for high performance computing to support large-scale scientific applications has steadily
increased over the last two decades or so. Recently, there has been an increasing effort to surpass the
computation capability of the current high-performance computing systems by at least one order of magnitude
to reach exascale. A major challenge for building future supercomputers is the energy consumption (SFP
Division Plasma 2014). There has been significant effort to reduce supercomputer energy consumption.
In particular, the HPC community in the U.S. is faced with the challenge of maintaining the energy
consumption of the future exascale systems within 20-40 MWs. Energy cost contributes significantly to the
total operational cost of HPC. For example, (Ludwig, and Dolz 2014) show that the power consumption is
the second-most contributing factor to the total supercomputer cost, right after the hardware cost (energy
cost contributes to 28% of the overall cost). A future exascale supercomputer with approximately 20−40
MWs power consumption is expected to incur $20−$40 million cost per year.

A number of programs have been offered from power grid to reduce energy cost. Demand response
is a popular program, which provides a means to reduce energy consumption during peak electricity price
period. The global market for demand response program has been projected to grow to $9.7 billion by 2023,
a 400% increase since 2014 (National Renewable Energy Laboratory 2018). An economic demand response
is a program that enables voluntary participation from the participants, without any prior commitment.
Economic demand response participation has also been steadily increasing over the years. For example,
PJM Interconnection, a regional electric transmission organization in the United States, observed a 4.7%
increase in demand response participation from $2.17 million in first nine months of 2017 to $2.27 million
in the first nine months of 2018 (PJM Interconnect 2018). Participation from different sectors, including
data centers and smart buildings, has significantly increased to reduce their energy bills.

This paper presents a simulation study of a contract-based demand-response participation model designed
specifically for HPC systems. Contract theory is a tool from microeconomics, where principle (or employer)
offers contracts to the agents (or employees). Since participation in economic demand response program
may cause “inconvenience” to the HPC users (with increased job execution time), we use to contract theory
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to design appropriate rewards to HPC users to ensure their willing participation in the demand response
program. The main contribution of this paper can be summarized as follows:

• We developed a trace-based simulator for the contract-based demand-response model, aimed at
examining the HPC system’s participation in economic demand response program.

• We studied several economic HPC demand-response participation scenarios. The simulation sce-
narios represent different types of HPC users’ behavior (e.g., greediness, apathetic to participation).
We demonstrate that the economic demand response model is capable of ensuring HPC system’s
participation for energy reduction through willing contribution from HPC users.

The rest of this paper is organized as follows. Section 2 presents the background and related work.
Section 3 describes the framework for HPC resource allocation based on economic demand response
participation. In Section 4, we present the simulator and a number of simulation scenarios which we use to
examine effectiveness of demand-response model in ensuring contract theory property. Section 5 presents
our conclusions.

2 BACKGROUND AND RELATED WORK

In this section, we provide the background and discuss existing work related to the demand-response
simulation model for HPC systems. We first introduce demand response and discuss existing work on
demand response for data center and HPC systems. Next, we describe existing approaches for job scheduling
simulation for HPC systems and provide a brief background on a parallel discrete-event simulation engine
used to develop our scheduling and resource allocation model. Finally, we present a brief introduction of
contract theory and its applications.

2.1 Demand Response

Demand response programs are designed to help the energy service providers to stabilize the power grid
during peak electricity period or during emergency incidents (e.g., extreme bad weather). Demand response
can be broadly categorized into two types: economic demand response and emergency demand response.
In economic demand response, participants voluntarily enroll in the programs (without the need of prior
commitment) and willingly reduce the load based on economic incentives offered by the supplier. Emergency
demand response requires prior commitment from the participants; once enrolled, it is mandatory for the
participants to reduce the energy consumption to requested levels when supply shortage situations or
emergency conditions occur.

Demand response has been noted as important policy goals to achieve power grid efficiency by
both the the U.S. Department of Energy (DoE) and the National Institute of Standards and Technology
(NIST) (Holmberg et al. 2014; Federal Energy Regulatory Commission 2016). Overall, demand response
has become increasingly popular among power utility companies, and as such has become a significant
source of revenue earnings. Much of this growth is comes from economic demand response participation,
where power grid signals participants to adapt their power consumption at various time granularity and
provides incentives based on participation.

Energy cost reduction in data centers and smart buildings with consideration of demand response
scheme has been studied quite extensively. Load shifting in time, geographical load balancing, speed-
scaling, server consolidation, power-capping are some of the approaches proposed in the literature for data
center’s demand response (Wierman et al. 2014; Liu et al. 2013; Wang et al. 2016). These approaches
however are applicable for internet transaction-based data center workload (e.g., map-reduce applications
or network transaction based applications), not for HPC applications. For data center workload, the service
time is typically assumed to be uniform and delay intolerant (most jobs need to be serviced within the
hour from which they are submitted). HPC jobs are much less uniform both in terms of service time
and job size (requested resources in the number of processors). Also, HPC users usually achieve for high
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performance, while data center users may not have such constraint. As such, energy saving is only a
secondary consideration to HPC users.

In our prior studies (Ahmed et al. 2017; Ahmed et al. 2018), we developed emergency demand
response participation models for HPC systems. To enable emergency demand response, the HPC operators
must establish an agreement a priori with the utility companies. HPC systems obligatorily reduce energy
consumption in response to signals received from utility companies in the event of transient surge in
power demand or other emergency events. Our demand response model considers HPC job scheduling
and resource provisioning algorithms (based on frequency scaling, power capping, and node scaling) to
allow power-bound energy-conservation during the critical demand response periods, while maintaining the
traditional performance-optimized job scheduling during normal operation. We also developed an economic
demand response model for HPC system using contract theory (Ahmed et al. 2018). Unlike emergency
demand response, economic demand response allows participants to voluntarily participate in the program
to earn rewards without prior commitment.

This paper focuses on the economic demand response model. The focus of this study is using simulation
methods to create different scenarios to examine the effectiveness of the contract-based design for HPC
demand response.

2.2 Job Scheduling Simulation

There exist many job scheduling simulators particularly focusing on HPC systems. For example, PYSS
(Python Scheduler Simulator) is an open-source HPC workload scheduling simulator written in Python (Par-
allel Systems Lab 2010). The simulator was developed by the Experimental System Lab at the Hebrew
University, and has been used to study various scheduling algorithms (e.g., (Georgiou et al. 2015; Liu and
Weissman 2015)). CQSim is another event-based simulator to study the detailed queuing behavior of job
schedulers using real system workload. The simulator was developed by Illinois Institute of Technology and
has been used to evaluate fault-aware utility-based job scheduling (Tang et al. 2009), adaptive metric-aware
job scheduling (Tang et al. 2012), and so on.

Our job scheduler simulator is developed based on Simian, which is an open-source, process-oriented,
parallel discrete-event simulation engine (Santhi, Eidenbenz, and Liu 2015). Simian has several unique
design features that make it more attractive for us to build our scheduler simulator (e.g., simple API,
minimalist design approach). Also, there has been a significant efforts in developing models for HPC
architectures and applications using Simian (e.g., (Ahmed et al. 2016; Ahmed et al. 2016; Chennupati
et al. 2017)). Our job scheduler can take advantage of these models.

2.3 Contract Theory

A contract is an agreement between involved parties that stipulates various actions that the parties are
expected to take. A major problem studied by contract theory is how parties contract in order to deal with the
presence of hidden or asymmetric information. In the adverse selection model, an uninformed “principal”
offers contracts to a privately-informed “agent” who decides whether to accept or refuse the offered contracts.
Akerlof studied this in the context of a used-car market where sellers had private information about the
quality of their cars in 1970 (Akerlof 1970), and since then the economics literature has applied this to
many types of applications in which the agent has private information about her productive ability or
cost of effort. Contract theory has been applied to various areas, such as economics and communication
systems. In communications, contract theory has been applied in radio networks (Zhao et al. 2015),
vehicular networks (Gao et al. 2013; Wang et al. 2014), cellular networks (Liu et al. 2017), wireless
networks (Zhang et al. 2018; Le et al. 2017), smart grids (Zhang et al. 2018), and Internet of Things (Hou
et al. 2017)).
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3 CONTRACT-BASED DEMAND RESPONSE MODEL

In this section, we briefly discuss the overall framework of our demand-response aware scheduling and
resource allocation model for HPC systems. A more detailed discussion of the contract-based design can
be found in (Ahmed et al. 2018).

We consider an HPC system with one HPC operator and a set of job types Θ = {θ1,θ2, · · · ,θi, · · · ,θn}.
Our model determines per-job resources (e.g., processor frequency, power-capping values) and rewards to
be provided to the HPC users for their willing participation. We assume that a job i runs at frequency fi
on the requested processors. We denote the processor’s power consumption at frequency fi for job i by
p( fi) and the execution time for job of i at frequency fi by t( fi). To reduce power consumption, the HPC
operator determines the optimal processor frequency f ′i for running job i. After changing the frequency to
f ′i , the power consumption and execution time are denoted by p( f ′i ) and t( f ′i ), respectively. We assume that
by default the jobs are run at highest frequency to achieve the best performance. Energy consumption for
job i at maximum frequency can be represented as following: ei = ni · p( fmax) · ts, where ts denotes duration
of job execution and ni denotes number of processors required for job type i. We assume job i is allocated
to homogeneous processors at running at same frequencies. However, our model can be easily extended
to heterogeneous processors by including number and type of the processors as decision variable. Energy
consumption for job i at frequency f ′i can be represented as following: e′i = ni · p( f ′i ) · ts. Therefore, energy
reduction is ∆ei = ei−e′i and the percentage change in execution time is ∆ti = 100 · [t( fmax)− t( f ′i )]/t( fmax).

To ensure willing participation of HPC users, they need to be compensated for application performance
changes. θi denotes the flexibility of jobs of type i to participate in demand response. A job with higher
value of θi are less flexible to participate in demand response (i.e., can tolerate little delays in job execution).
The inconvenience cost for jobs of type i is a function of changes in the job’s execution time, and can be
represented as: v(θi,∆ti) = θi · c(∆ti). Here, we assume that c(∆ti) = c0 · (∆ti)2 (Zhao et al. 2015; Kordali
and Cottis 2015). We define the utility for jobs of type i as follows: ui = ri− v(θi,∆ti),∀i ∈ {1,2 · · ·n},
and define the HPC operator’s utility function for jobs of type-i as follows: ui

op = mi · (φ ·γ ·∆ei− ri). Here
mi denotes the number of jobs for job type i, φ denotes electricity price, ri denotes reward awarded for
job type i and γ is the factor of power usage effectiveness (PUE), which is used to capture the power
consumption of non-IT parts of the HPC systems. The total utility for all jobs is thus uop = ∑

n
i=1 ui

op.
The optimization objective of the HPC operator can be given as following:

max
(∆e,r)

mi ·

[
n

∑
i=1

φ · γ ·∆ei− ri

]
(1)

s.t. ri−θi · c(∆ti) = 0,∀i (2)
ri−θi · c(∆ti)≥ r′i−θ

′
i · c(∆t ′i),∀i, i′,andi 6= i′ (3)

fmin ≤ f ′i ≤ fmax (4)

Equation 2 represents the individual rationality (IR) constraint, that ensures participants in contract
mechanism achieve non-negative pay-off or utility. Equation 3 denotes the incentive compatibility (IC)
constraint and represents the fact that a participants utility is maximized when it chooses the contract
intended (or designed) for its type over those intended for the other contract.

The problem in Equations 1– 4 is intractable to solve due to large number of IR and IC constraints.
However, we can resort to constraint reductions to reduce the number of constraints and make the problem
solvable. Using contract theory property, both IR and IC constraints can be reduced and represented as
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following:

max
(∆e,r)

mi ·

[
n

∑
i=1

φ · γ ·∆ei− ri

]
s.t. rn−θn · c(∆tn) = 0
ri−1−θi−1 · c(∆ti−1) = ri−θi−1 · c(∆ti)
fmin ≤ f ′i ≤ fmax

We can solve the reduced optimization problem using standard optimization solving methods, such
as the sequential least squares programming algorithm using the Han-Powel quasi-Newton method, and
determine optimal frequency and reward amount for the HPC users. In the literature, other methods (Zhang
et al. 2015; Zhang et al. 2016) have also been proposed to solve the same problem, such as taking
Lagrangian multipliers and then solve the Lagrangian formulation.

4 ECONOMIC DEMAND RESPONSE SIMULATION

In this section, we describe our simulation study of the economic demand-response model. First, we
describe the trace-based simulator we created for this purpose. Next, we present the data set we used in
simulation. Finally, we describe the simulation scenarios, along with the experiment results.

For the simulation study, we consider scenarios. They are summarized as follows:

• Scenario #1: This is the baseline model. In this scenario, we assume that HPC users act accordingly,
that is accepts contracts given to them based on their classification to different types.

• Scenario #2: We assume that HPC users may not select contract intended for them. We consider
two cases: in first case, the HPC users always select contract from the same contract type; in the
second case, the users randomly select a contract from the contract set.

• Scenario #3: We assume that some HPC users do not select any of the given contracts, and decides
not to participate in the demand response program.

• Scenario #4: We consider a different job trace, to demonstrate effectiveness of the demand-response
model for a different trace log.

4.1 Trace-Driven Simulator

Our trace-driven simulator is developed based on Simian, a parallel discrete-event simulation engine. The
simulator consists of five major components: a job dispatcher, a job executioner, scheduling policies,
application models, and a resource manager. The job dispatcher can handle different types of events, such
as job arrival, job departure, job eviction (e.g., when an executed job is interrupted and removed in the
middle of the run), and power demand change (e.g., changes in power limit from power grid during a
demand response event). After a job is submitted, it is entered to the job waiting queue and job dispatcher is
invoked. The job dispatcher determines which jobs to run from the waiting queue based on the scheduling
policies, application models (that describes the power and performance characteristics of the jobs), and
available resources from the resource manager. When a job is scheduled to run the job dispatcher removes
the job from waiting queue and put it in the list of running jobs. The job executioner allocates the resources
using the resource manager to represent the occupied processors with associated power consumption for
running the job. The job executioner then simulates the job execution. When a job completes its execution,
the job executioner removes the job from the list of running jobs and reclaims the resources occupied by
the job. The job scheduler simulator has been validated against real-life data (Ahmed et al. 2017).

Our simulator has also been augmented to handle both emergency and economic demand response (Ahmed
et al. 2017; Ahmed et al. 2018). We can schedule an event to indicate the power demand change, with a
lower power limit upon the arrival of a emergency demand response event, or an another when the power
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Figure 1: Data set used for different simulation scenarios.

limit returns to level for normal operations. In the former case, the job executioner may evict jobs if the
current power level is no longer sufficient to support all running jobs. In the latter case, the job scheduler
may start new jobs to run. Our simulator can also simulate economic demand response participation from
HPC system. It can determine optimal resource allocation values to incoming jobs, as well as users’ reward
amount to enable economic demand response participation.

4.2 Data Set

Our considered simulation setup includes an HPC system with one HPC operator and six job types. We
collected electricity price data from PJM Interconnect for a 24-hour period on a day of October 2017. We
use 1.3 as the power usage effectiveness (PUE) of the target HPC center. PUE is a ratio of the total energy
of the HPC center facility to the energy consumed by computing equipment.

We collected and used the power and performance data for six HPC applications from an existing
study (Auweter et al. 2014). More specifically, we used the performance and power data at different
frequencies for four scientific applications (including Quantum ESPRESSO (Giannozzi et al. 2009),
Gadget (Springel 2005), Seissol (Käser et al. 2008) and WaLBerla (Feichtinger et al. 2011)) and two synthetic
benchmarks (PMATMUL, a parallel benchmark for dense matrix multiplication, and STREAM (McCalpin,
John D 2002), a benchmark for measuring sustainable memory bandwidth). We denote the job types as
Type#1 to Type#6 correspondingly.

We used discrete frequency values for the processors, ranging from 1.2GHz to 2.4GHz at 0.2GHz
intervals and 2.7GHz. That is, the minimum and maximum frequency are 1.2GHz and 2.7GHz, respectively.
Figure 1 shows the empirical and fitted polynomial function for collected data. Figure 1(a) and Figure 1(b)
present the power and runtime, respectively. The peak power of the processors was set to 240W (determined
from the power consumption of the six HPC applications when running at the maximum frequency).

4.3 Simulation Scenario #1

This is an ideal scenario, where we assume that users behaves accordingly; that is, the users select contract
intended for their own job type.

We collected real-life HPC workload trace from the parallel workload archive (Feitelson, Dror and
others 2007). The workload traces contain runtime information collected at the Blue Gene/P system at
Argonne National Laboratory from January 2009 to September 2009. The trace contains 68,936 jobs. The
trace includes information about job start time, job run time, job wait time, requested processors, etc. We
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Figure 2: Scenario#1: simulation of demand-response model.

processed the data and collected the number of job arrivals during each hour to determine percentage job
arrivals throughout a day.

Figure 2 presents results for energy reduction, users’ rewards, and users’ and operator’s utilities.
Figure 2(a) shows energy reduction by all jobs of different types. As can be seen in Figure 2(a), different
jobs participate in energy reduction at varying level to ensure demand response participation. Figure 2(b)
demonstrates rewards awarded to all the jobs of various job types. During high electricity price periods, the
users contribute more to the energy reduction, and therefore are rewarded more. Figure 2(c) shows utility
(i.e., the difference of reward and inconvenience cost) of each job for different job types. As evident from
the figure, different job types have non-negative utility. Figure 2(d) shows the HPC operator’s utility (i.e.,
the participation benefit of HPC system after rewarding the HPC users). As can be seen in Figure 2(d),
the operator will have positive utility at different time period, which means that the demand response
participation will present participation benefits to the HPC operator, even after rewarding the HPC users
for their participation.

4.4 Simulation Scenario #2

In this scenario, we assume that HPC users select contract that is not intended for the type to which they
belong to. First, we consider a case where all the users select contract offered to one particular type (e.g.,
Type#1 in our simulation). Figure 3(a) shows utility of each job for each job type in such case. As can be
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Figure 3: Scenario#2: HPC users select other contracts.
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Figure 4: Scenario#3: some HPC users reject the contracts.
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Figure 5: Scenario#4: simulation with workload collected from MetaCentrum Czech National Grid.

seen in the figure, if the users do not select contract for their own type, they may incur negative utility and
therefore incur loss. Moreover, users have lower utility throughout the entire time period compared to the
results from scenario #1 (Figure 2(c)).

In second case, the users randomly select contract from another type. Figure 3(b) presents per-job utility
for different types when users randomly select contract from the uniformly distributed given contract set.
As can be seen in the figure, the users achieve lower (and sometimes negative) utility for such participation
compared to scenario #1 (Figure 2(c)).

Overall, this simulation scenario proves that our designed contract-based demand-response model
ensures that each user will select contract that are offered to them to achieve the maximum participation
benefit.

4.5 Simulation Scenario #3

In this scenario, we assume that some users do not accept any of the contracts given in the contract set.
More specifically, we consider a situation where approximately 25% of HPC users did not select any of
the contracts, and therefore did not participate in the demand response at all.

Figure 4 presents experiment results for energy reduction, users’ rewards, and users’ and operator’s
utilities. Figure 4(a) shows energy reduction by all jobs of different types. The energy reduction amount is
lower than scenario #1 (where all the users participated in the demand response). However, HPC operator
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can resort to energy storage device (e.g., batteries) to compensate low participation of users. We plan to
investigate this case in our future study. Figure 4(b) demonstrates rewards awarded to all the jobs of various
job types. As expected, the rewards earned by HPC users are lower compared to scenario #1 due to their
low participation. However, per-job utility remains the same as scenario #1, as evident from Figure 4(c).
Therefore, overall lower participation of HPC users does not effect the participation benefit of users who
participate in the program. Figure 4(d) shows the HPC operator’s utility. As can be seen in the figure,
HPC operator achieves non-negative utility throughout the entire time period. That is, participation in
demand response will always be beneficial to the HPC operator, even after rewarding the users for their
participation. The utility is higher during the time period with higher job arrivals or with higher electricity
price.

4.6 Simulation Scenario #4

We collected and used a different set of trace data for this scenario. The job trace is collected from
MetaCentrum Czech National Grid from January 2013 to April 2015. The workload contains 5,731,100
jobs.

Figure 5 shows the results for running this workload. With increased number of job arrivals per hour,
the possibility of energy reduction increases for this workload. As can be seen in Figure 5(a), various
amount of energy reduction is possible throughout time period. Figure 5(b) shows reward earned by
different job types. The rewards fluctuate in accordance with the job arrival rate. With a higher number of
job arrivals, the demand response algorithm offers higher rewards to users to incentivize them to take on
low-energy execution, as it tries to lower the overall energy consumption of the entire system. Figure 5(c)
and Figure 5(d) show utility for different job types and operator, respectively. Utility are non-negative for
both cases, showing that demand response participation is beneficial for both HPC users and HPC operator
with different job trace.

5 CONCLUSION

In this paper, we present a simulation study of economic demand response participation model for HPC
systems. Our model is designed based on contract theory mechanism to reward HPC users for their willing
participation in demand response. We created a trace-based simulator and designed various simulation
scenarios to show the effectiveness of the contract-based demand response participation model. The various
simulation scenarios replicate different behaviors of HPC users (e.g., greediness, apathetic to participation).
The trace-based simulation studies show that the contract-based economic demand-response model for HPC
systems can ensure willing participation from HPC users, and therefore prove that the economic demand
response participation model can be realized for HPC systems in practice to allow energy reduction.
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