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ABSTRACT

This paper discusses the development of an efficient algorithm that minimizes overproduction in the
allocation of wafers to customer orders prior to assembly at a semiconductor production facility. This study
is motivated by and tested at Nexperia’s assembly and test facilities, but its potential applications extend
to many manufacturers in the semiconductor industry. Inspired by the classic bin covering problem, the
wafer allocation problem is formulated as an integer linear program (ILP). A novel heuristic is proposed,
referred to as the multi-start swap algorithm, which is compared to current practice, other existing heuristics
and benchmarked with a commercial optimization solver. Experiments with real-world data sets show that
the proposed solution method significantly outperforms current practice and other existing heuristics, and
that the overall performance is generally close to optimal. Furthermore, some data processing steps and
heuristics are presented to make the ILP applicable to real-world applications.

1 INTRODUCTION

This work is motivated by the problem of allocating semiconductor wafers to customer orders in the
back-end production process of integrated circuits (ICs) at Nexperia’s assembly and test facilities. The
back-end sites work with a make-to-order policy, in which customer orders have to be made with wafers
which are stored in a warehouse waiting to be assembled. It is a challenging task to allocate these wafers to
the orders prior to assembly. Inefficient allocation can cause more produced finished goods than requested
by the customer orders, i.e. overproduction. This overproduction has a severe impact on the company’s
profit, since it will consume more expensive material, produce excess inventory and occupy manufacturing
machines longer. Thus, in the $470.3 billion semiconductor industry (Association. 2019), which is still
growing every year, improving the wafer allocation process to minimize overproduction, is highly valuable.

The manufacturing process of ICs can basically be divided into the following four steps. The first one
is wafer fabrication, where many ICs are fabricated on a blank disk of semiconducting material (such as
silicon) using photo-lithography techniques. A single IC on a wafer is called a die. The second step is
wafer testing, where the dies are probed on their electrical properties and can be identified as a good or
bad die. The first two steps, wafer fabrication and wafer testing, are carried out in the front-end wafer
fabs, whereafter the wafers are transported to the back-end assembly and test facilities for the third step.
Here, the good dies are cut out of the wafers and assembled into a package. In the fourth and final step,
these packaged ICs receive a full final functional test after which the ones that pass the tests can be sold
to customers. The reader is referred to Frederix (1996) for an elaborate overview of the manufacturing
process.

At the back-end facilities wafers are allocated to customer orders. This process is prone to overproduction
because (1) underallocation is not allowed and (2) once a wafer is allocated to an order the complete wafer
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has to be consumed. This task of allocating wafers to customer orders prior to assembly is called the wafer
allocation problem. This problem has received significant attention by researchers and is also known as the
lot-to-order matching problem (Knutson et al. 1999). The main objective is to minimize overproduction
while fulfilling a given set of orders. Important to note is that the wafer allocation problem, which is a
variation of the bin covering problem, is NP-complete and therefore it is often not possible to provide
an exact optimal solution within a reasonable time limit, even for moderately sized problems (Garey and
Johnson 1990; Woeginger and Zhang 1999). This justifies the use of heuristics.

The bin covering problem is a dual version of the bin packing problem and it belongs to the packing
problems. The literature on packing problems (which includes bin packing, bin covering and knapsack
problems) is very broad and one can find many heuristics to approximately solve the problem. A comparison
between heuristics has been made by Bischoff and Marriott (1990). The main conclusion of this comparison
is that the performance of these heuristics is very domain-dependent, and their performance may vary with
the number and relative size of the different items. Especially when the number of bins (orders) is small
and the average size of the items (wafers) is large, it is more difficult to pack each bin effectively. More
recently, Coffman Jr. et al. (2013) give a survey and classification of many approximation algorithms
for the bin packing problem and showed that a First-Fit-Decreasing (FFD) heuristic has one of the best
performance with respect to the worst case as well as the average case behavior for the bin packing
problem, outperforming a First-In-First-Out (FIFO) policy significantly. The First-Fit-Decreasing (FFD)
policy originates from the bin packing problem, as is described in Dyckhoff (1990). Knutson et al. (1999)
first used the FFD algorithm for the application of matching wafer lots to customer orders. Fowler et al.
(2000) and Carlyle et al. (2001) introduced several variations of the FFD policy for the same problem,
where FFD1(Si), which is an algorithm that combines a search routine with a priority rule system, eventually
had the best average performance. Boushell et al. (2008) extended the FIFO and FFD algorithms with the
improved endgame (IEG) heuristic, of which FIFO/IEG appears to perform the best.

In this paper a novel multi-start swap (MS-Swap) heuristic is proposed to solve the wafer allocation
problem. MS-Swap uses multiple initial solutions complemented with a smart swapping mechanism. This
algorithm is applied to real-world problem instances. Although the problem in this paper is motivated
by Nexperia, its potential applications extend to many manufacturers in the semiconductor industry.
Furthermore, the performance of MS-Swap is compared to the current practice at Nexperia as well as to the
best existing methods, i.e. FFD/IEG and FIFO/IEG. Also, a mathematical programming solver is used to
serve as a benchmark for the selected problem instances and gain insight in the performance of all solution
methods.

The remainder of this paper is organized as follows: in Section 2 the mathematical problem description
is given. The solution methods used in this work are described in Section 3. Details on the application are
explained in Section 4 and the results are presented in Section 5. Finally, conclusions and suggestions for
future work are given in Section 6.

2 PROBLEM DESCRIPTION

The wafer allocation problem (WAP) has many similarities to the well-known variable-sized bin covering
problem (VSBCP), which in turn is a variation of the classic bin covering problem. The classic bin covering
problem is the dual version of the bin packing problem. As is done by Assmann et al. 1984, it can be
described as follows: suppose that there is a set of items I = {a1,a2, . . . ,an}, each having a size s(ai)> 0,
and an infinite number of equally sized bins, each having a threshold capacity T > 0. The objective is to
determine the maximum number m such that I can be partitioned into sets I1, ..., Im where each set Ii has
total size s(Ii) = ∑α∈Ii s(ai)≥ T .

The VSBCP has a finite set of variable sized bins B = {b1,b2, ...,bm} with size s(bi)> 0 for each bin
bi, where the cumulative size of all bins is bigger than the cumulative size of all items. Similarly the
objective is to cover, with the given list of items, a set of bins with the largest total size.
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The bins and items in the classic bin covering problem are considered to be orders and wafers respectively
in the wafer allocation problem. The set of orders is denoted by O and the set of wafers by W . The size
of order i is Si with i ∈O and the size of wafer j is L j with j ∈W , both expressed in die quantities. Using
this notation the model formulation of the WAP is given as follows:

min
δ

∑
i∈O

[
∑
j∈W

δi jL j−Si

]
, (1)

subject to

∑
j∈W

δi jL j ≥ Si ∀ i ∈ O (2)

∑
i∈O

δi j ≤ 1 ∀ j ∈W (3)

where

δi j =

{
1 if wafer j allocated to order i
0 otherwise.

The objective function (1) minimizes the cumulative overallocation. Constraints (2) ensure that all
orders are covered and constraints (3) ensure that a wafer can only be allocated to at most one order.

Generally, the set of orders O is selected such that there is sufficient supply of wafers to cover all
orders. However, for real-world instances this cannot be ensured beforehand and therefore the problem
can still be infeasible. If it is infeasible, one or more orders will be removed from the set of orders until
the problem becomes feasible. This will be discussed more elaborately in Section 4.1.

3 SOLUTION METHODS

In this section, several methods will be described to solve the wafer allocation problem. In Sections 3.1
and 3.2, two existing methods are described briefly. For an elaborate step-by-step explanation of both
these methods, the reader is referred to Boushell et al. (2008). In Section 3.3, the novel multi-start swap
is described in more detail. Finally, the commercial solver used for benchmarking is discussed shortly.

3.1 First-Fit-Decreasing with Improved Endgame

The FFD/IEG algorithm consists of two parts. The first part fills the orders according to the FFD policy
and the second part is the improved endgame which attempts to cover the orders in an efficient way. For
the first part, the orders and wafers are sorted in non-increasing size, as in the FFD policy. The algorithm
starts filling the largest order first and it only moves to the next order once the current one is covered. An
order is sequentially filled with the largest available wafers. Before adding each wafer, it is first checked
whether the two largest wafers can cover the order. If this is possible, the algorithm enters the so-called
improved endgame, otherwise the next largest wafer is allocated to this order.

In the improved endgame (IEG), the algorithm searches for the two wafers which (1) cover the order
and (2) minimize the overallocation. In our implementation, the IEG enumerates over all possibilities,
unless a wafer pair is found which perfectly covers the order (i.e. zero overallocated dies).

3.2 First-In-First-Out with Improved Endgame

The FIFO/IEG is very similar to the FFD/IEG algorithm and uses the same improved endgame. The only
difference is that it fills the orders with wafers in FIFO order instead of in FFD order, i.e. the wafer with
first due date is allocated first instead of the largest wafer. Due to the randomness of wafer arrivals in the
inventory, this results in a larger diversity of wafer sizes once the algorithm reaches the improved endgame.
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This may result in improved performance (Boushell et al. 2008). Another advantage of allocating the
wafers in FIFO order is that it helps to prevent wafers stocks to expire.

3.3 Multi-Start Swap Algorithm

The main procedure of the multi-start swap algorithm proposed here is outlined in Algorithm 1 below.
It starts with the generation of the set of initial solutions, Sall , followed by attempts to find improve-
ments for each initial solution s ∈ Sall via iterations over local search (LocalSearch(s)) and 0-cost moves
(ZeroCostMoves(s)). The latter search methods are both based on swap moves, i.e. the exchange of two
wafers. The number of times the algorithm iterates over the sequential local search and 0-cost moves, is
determined by parameter R. If the resulting objective of solution s (ObjectiveOf(s)) is smaller than the
current best objective (Obest), the solution s and its objective are saved. In the subsequent sections the
components of the proposed MS-Swap algorithm are described in more detail.

Algorithm 1 Multi-Start Swap (MS-Swap) algorithm.
1: Obest ← ∞

2: Sall ← GenerateInitialSolutions(); . See Algorithm 2
3:

4: for each solution s ∈ Sall do
5: ireps← 0;
6: while ireps < R do
7: LocalSearch(s); . See Algorithm 3
8: ZeroCostMoves(s); . See Algorithm 5
9: ireps← ireps +1;

10: end while
11:

12: if ObjectiveOf(s) < Obest then . ObjectiveOf(s) calculates the objective of solution s
13: Obest ← ObjectiveOf(s);
14: sbest ← s;
15: end if
16: end for

3.3.1 Initialization and Random Fill

Inherently, swap moves do not alter the number of wafers allocated to each order as well as the number of
unallocated wafers. Thus, the number of wafers allocated to each order is dictated by the initial solution.
Consequently, since an optimal solution contains a certain number of wafers for each order, it may not be
reached from certain initial solutions. For this reason, multiple initial solutions are generated, each with a
different number of wafers per order. Given the required die quantity of an order together with the available
wafers, it is rather straightforward to determine the minimum and maximum number of allocated wafers
for each order. The total number of initial solutions with a different number of wafers for each order then
equals,

i=I

∏
i=0

(|W |max
i −|W |min

i )

where |W |min
i and |W |max

i are the minimum and maximum number of allocated wafers to order i respectively.
When the variation of die quantity among wafers is relatively small, this number remains small as well.
However, since this is not necessarily the case for every problem, it is not scalable to evaluate all possible
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Algorithm 2 Initialization for MS-Swap.
1: procedure GENERATEINITIALSOLUTIONS

2:

3: cmin← MinConfiguration(|W |min); . Configuration cmin uses min. amount of wafers per order
4: smin← RandomAllocateWafers(cmin); . Solution smin is generated
5: Add smin to set Sall; . Sall is set of all initial solutions
6:

7: for each order i ∈ Oall do
8: kinc← 0;
9: while kinc < K do

10: cnew← Increase order i in configuration cmin with kinc;
11: if cnew is feasible then
12: s← RandomAllocateWafers(cnew); . Allocates wafers according to configuration cnew

13: Add s to set Sall

14: end if
15: kinc← kinc +1;
16: end while
17: end for
18:

19: return Sall

configurations. Instead, the set of initial solutions, Sall , is generated as in Algorithm 2. First, the configuration
with a minimum number of wafers for each order, cmin, is determined. Then, solution smin is generated
through a random assignment of a certain number of wafers per order, defined by cmin. After that, another
series of initial solutions is generated where the allocated number of wafers is increased by 1 for each
order separately. This procedure continues until a certain number of increments is reached, specified by
a parameter K. Each newly generated configuration cnew is checked on feasibility, i.e., the total number
of allocated wafers may not exceed the total number of available wafers. Furthermore, due to the random
assignment of wafers it can happen that the initial solutions contain orders which are not filled. However,
the subsequent local search methods will attempt to solve this.

3.3.2 Swap Moves

Once a random initial solution is generated, attempts are made to find improvements by means of swap
moves. As mentioned, a swap move is based on the exchange of two wafers. The swap neighborhood is
searched as described in Algorithm 3. The search propagates through each order as follows: at first, an
allocated wafer wi is selected. Then, swap moves with all unallocated wafers, w j ∈ WUA, are evaluated.
Finally, the move that results in the largest improvement is accepted, i.e. steepest descent. This move is
implemented by ImplementSwap(BestMove). Among preliminary experiments with different acceptance
strategies, e.g. any descent, the strategy of steepest descent yielded the best results in terms of computational
efficiency. The search for feasible swap moves continues until no more improvements are found. Then,
the search continues with the next order.

The acceptance criterion for a swap move is implemented in DetermineIfImprovement, which is shown
in Algorithm 4. The total allocated quantity can be smaller or larger than the total required quantity, i.e.
underallocation or overallocation respectively. In case of underallocation the following two conditions have
to be satisfied: (1) the move has to decrease the underallocation and (2) the swap move has to be better
than the currently best found swap move (BestSwap). In case of overallocation, the swap move between
two wafers, wi and w j, has to satisfy following three conditions: (1) the swap move has to decrease the
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overallocation, (2) the swap move has to be better than currently best found swap move (BestSwap) and
(3) order i has to stay filled after the swap move.

Algorithm 3 Local search for MS-Swap.
1: procedure LOCALSEARCH(solution s)
2:

3: for each order i ∈ O do . O is the set of all orders
4: ImprovementFound ← true;
5: while ImprovementFound = true do
6: ImprovementFound ← false;
7: for each allocated wafer wi in order i do
8: for each unallocated wafer w j ∈ WUA do . WUA is the set of all unallocated wafers
9: if DetermineIfImprovement(BestSwap, i,wi,w j) = true then . See Algorithm 4

10: BestSwap ← SaveSwap(wi,w j);
11: ImprovementFound ← true;
12: end if
13: end for
14: end for
15: if ImprovementFound = true then
16: ImplementSwap(BestSwap);
17: end if
18: end while
19: end for

Algorithm 4 Acceptance criterion of local search.
1: procedure DETERMINEIFIMPROVEMENT(BestSwap, order i, allocated wafer wi, unallocated wafer

w j)
2:

3: if order i is in underallocation then
4: if Swap(wi,w j) decreases underallocation and Swap(wi,w j) is better than BestSwap then
5: return true;
6: end if
7: end if
8:

9: if order i is in overallocation then
10: if Swap(wi,w j) decreases overallocation and Swap(wi,w j) is better than BestSwap and order

i stays filled after Swap(wi,w j) then
11: return true;
12: end if
13: end if
14:

15: return false;

Since the objective is to minimize the total overallocation, swapping wafers among orders in many
cases moves the overallocation from one order to another. Since these moves do not improve the ob-
jective they are referred to as 0-cost moves. Nevertheless, these moves can diversify the search. Capua
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et al. (2018) reported that these moves have a significant contribution to the search performance. In
the method proposed in Algorithm 5, 0-cost moves are considered between all possible combinations of
two orders i and j. For each order combination, all possible combinations of two allocated wafers wi
and w j are checked on feasibility, i.e. whether both orders stay filled after the swap move. If the swap
between wi and w j is feasible, it is accepted with probability P and implemented by ImplementSwap(wi,w j).

Algorithm 5 0-cost moves for MS-Swap.
1: procedure ZEROCOSTMOVES(solution s)
2:

3: for each order i ∈ O do
4: for each order j ∈ O do
5: if i 6= j then
6: for each allocated wafer wi in order i do
7: for each allocated wafer w j in order j do
8: if both orders stay filled after swap then
9: ImplementSwap(wi,w j) with probability P

10: end if
11: end for
12: end for
13: end if
14: end for
15: end for

3.4 Gurobi Optimizer

Gurobi Optimizer is a commercial optimization solver for mathematical programming problems, such as
the integer linear programming (ILP) problem introduced in Section 2. To solve ILP problems it uses a
linear-programming based branch-and-bound algorithm. For a more elaborate description of this algorithm
the reader is referred to (Gurobi Optimization. 2019).

4 REAL-WORLD CASE STUDY

As mentioned before, the solution method proposed in this paper is applied of Nexperia’s back-end assembly
and test facility in Malaysia. The product portfolio at this site is large: it contains approximately 900
unique products, using more than a 1000 different wafer types. In total, Nexperia produces more than 90
billion products annually. In this section, the steps that are required to translate the practical problem to
solvable WAPs will be described.

4.1 Order Selection

In Nexperia’s order planning, it is often not possible to cover all requested customers orders with the
available wafer supply. In this case, the ILP presented in Section 2 would become infeasible. To prevent
this, the orders first go through an order selection phase.

First the planned orders of the same finished good (FG) type are combined. Similarly, all wafers of
the same type are grouped together. Then, the order-wafer relations are mapped in a bipartite graph. An
illustrative example is shown in Figure 1. Orders for FG type B need wafers of type 1 and 2, while FG
type D uses wafer type 2 and wafer type 3 and so forth. Clearly, two closed groups of orders and wafers
are found. These disjoint groups are referred to as matching groups.
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1 2 3 4 5

B C D F

Group 1 Group 2

X

Y Wafers of type Y

Orders of FG type XA E

Figure 1: A bipartite graph to illustrate the order-wafer relations. This graph decomposes into two disjoint
groups, so-called matching groups.

The order selection stage has many similarities with the bin packing problem. Recall that the bin
packing problem is a dual version of the bin covering problem. For the complete formulation of the classic
bin packing problem the reader is referred to Baker (1985). In this case the bins represent the available
quantity of a certain wafer type and the items represent the planned orders. The only difference is that in
some cases an order requires two wafer types, meaning that if selected, it fills two bins simultaneously.

The objective of the order selection stage is threefold: (1) to make the ILP problem feasible, (2) to
maximize the fulfilled planned orders given the wafer supply and (3) to meet the due dates of the planned
orders as much as possible. To mimic the manual order selection the FIFO-First-Fit policy is used. This
heuristic attempts to satisfy the conflicting objectives (2) and (3). However, this policy does not suffice to
ensure the first objective of ILP feasibility, an aspect that will be addressed shortly. The FIFO-First-Fit
policy is described below:

FIFO-First-Fit for order selection:

1. For each wafer type: sum all wafer quantities and set this as the capacity of the corresponding bin.
2. For each planned order: translate the total FG quantity to the required wafer quantities.
3. Sort the planned orders by due date, nearest due date first.
4. Select first unallocated planned order.
5. Check if planned order fits for all corresponding wafer types. If it does not fit, go to Step 8.
6. Move order to the selected group.
7. Allocate order to bins of corresponding wafer types, go to Step 9.
8. Move order to the unselected group.
9. If there are remaining planned orders, go to Step 4.
10. Stop.

Even though the sums of the requested wafer quantity of the selected planned orders will not exceed
the available wafer quantities, the ILPs can still be infeasible. This will only be noticed when the actual
matching is started. If this appears to be the case, the wafer types that cause the problem to be infeasible
are identified and the order with the latest due date is removed. This procedure is repeated until the ILPs
become feasible.

4.2 Translate to WAPs

The matching groups require a translation step to obtain multiple WAPs. Each unique wafer type creates
one ILP. For example, considering the matching groups in Figure 1, there are five different wafer types.
Thus, the problem is split into five disjoint WAPs. Orders of FG type B need wafers from both wafer
type 1 and 2. Therefore, the orders of FG type 2 will decompose in two separate orders B1 and B2 for
WAP1 and WAP2 respectively. The size of order B1 and B2 is the sum of the requested die quantities for,
respectively, wafer type 1 and wafer type 2 from all selected planned orders of FG type B. Thus, the set of
orders O in WAP1 is {A1, B1} and the set of wafers W consists of all wafers of type 1. Now, one of the
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solution methods presented in the previous section can be applied to solve each of the WAPs separately,
as will be discussed in the next section.

1 2 3 4 5

A1 B1 C2 D3 F4 E5

Y

Single WAP order

Wafer of type Y

B2 D2 E4 F5

WAP1 WAP2 WAP3 WAP4 WAP5

X0

Figure 2: Schematic overview of the WAPs corresponding to the matching groups of Figure 1.

5 COMPUTATIONAL RESULTS

This section discusses the computational results of the solution methods based on several data sets of a
back-end assembly and test facility of Nexperia. All algorithms are coded in C# 6.0 and all experiments
are run on a computer with an Intel 2nd Generation Core i5 processor running at 3.10 GHz and 4 GB of
RAM memory.

5.1 Problem Instances

Real-world production data sets of four separate weeks are obtained from Nexperia’s back-end facility.
One average weekly data set consists of a large number of wafers and orders, which can be decomposed
into approximately 70 disjoint WAPs. The WAPs differ greatly in size, the number of orders in the largest
WAP can be 15 times as much compared to the smallest one, while the number of wafers can be 50 times
as large.

To make a fair comparison between the different solution methods, the planned orders in the data sets
are selected such that all the solution methods are able to find feasible solutions for the same set of planned
orders. For each data set, this is done by running the order selection heuristic explained in Section 4.1,
with each of the solution methods in Section 3. Then, the selected planned orders of each run are compared
and the smallest set of planned orders is chosen. This chosen set of planned orders is then used for all
solution methods.

5.2 Parameter Settings

For the experiments in this work, the parameter settings shown in Table 1 are used. The parameters for
MS-Swap are chosen based on preliminary experiments, showing that these settings yield good results within
acceptable computational time for these data sets. The purpose of each of the parameters is elaborately
discussed in Section 3.3. Although the MS-Swap algorithm contains randomness, these experiments also
showed that for the chosen parameters the variation in the outcome is negligible.

For the Gurobi solver, all parameters are set to default, as recommended in (Gurobi Optimization. 2019),
except for Tlim and I f eas. Tlim is chosen to be 500 seconds per disjoint group, such that the computational
time is acceptable for this application. For many WAPs, Gurobi found the proven optimal solution within
Tlim. For the WAPs where it did not, the time limit had to be increased beyond what was acceptable for the
application to prove optimality. However, the current Tlim provided objective values which were very close
to the lower bound already. Furthermore, an integrality constraint is satisfied in Gurobi if the variable’s
value is less than I f eas from the nearest integer value. This tolerance is chosen to be tight enough (1e-8), such
that the value of the found objective did correspond to the same value of the calculated overallocation using
the allocated wafers. Loosening this tolerance slightly reduces the runtime, but allows larger integrality
violations, causing errors in the objective.
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Table 1: Parameter settings for MS-Swap and Gurobi Optimizer.

Parameter settings.
Algorithm Parameter Description Value

MS-Swap K
The maximum increase in number of wafers in
each order at initialization.

2

P Acceptance probability of 0-cost moves. 0.5

R
Number of iterations through the sequence
of local search and 0-cost moves.

2

Gurobi Tlim
Limits the total runtime (in seconds) of the
solver per disjoint group.

500

I f eas

Integrality restriction on a variable is considered
satisfied when the variable’s value is less than
I f eas from the nearest integer value.

1e-8

5.3 Overallocation Performance

As formulated in the WAP, the objective is to minimize overallocation. Overallocation is defined as the
portion of the total allocated dies which will result in overproduction. Overallocation is computed according
to equation (4) where the allocated die quantity is the sum of dies on each allocated wafer and the required
die quantity is the sum of requested die quantities of all the orders.

Overallocation (OA) =
Allocated die quantity−Required die quantity

Allocated die quantity
·100% (4)

Table 2 shows the performance results in terms of overallocation of all the proposed solution methods. The
actual overallocation at Nexperia’s back-end facility resulting from the current practice of wafer allocation
is shown under Manual. The overallocation of Manual is normalized to 100% and the overallocation of
all other solution methods is relative with respect to the manual allocation. For the Gurobi Optimizer, the
Incumbent (Inc) and the Lower Bound (LB) are shown. The incumbent is the best feasible solution found
within the set time limit. The bound LB is a lower bound on the optimal objective. The difference between
the incumbent and the lower bound is known as the Gap. Thus, if the gap is zero, the found solution is
proven to be optimal. Gurobi Optimizer did not prove optimality for any of the weeks, even though it is
suggested by the provided decimal numbers of week 40.

Several observations can be made from these results. The first observation is that all algorithms perform
substantially better than the manual current practice. This means that there are gains possible for Nexperia
by implementing any of the methods of wafer allocation proposed in this work, potentially resulting in
major cost savings. Secondly, the novel heuristic MS-Swap outperforms other existing heuristics such
as FFD/IEG and FIFO/IEG. Lastly, for each week, the solutions provided by the MS-Swap heuristic are
close to the benchmark solutions. Although the benchmarks provided by Gurobi Optimizer are not proven
optimal solutions, the overall optimality gaps are very small.

The only drawback of MS-Swap compared to the existing heuristics is the computational complexity.
MS-Swap is computationally more expensive than the existing heuristics. For instance, for the data set
of week 41, FFD/IEG and FIFO/IEG solved the problem both in 0.9 seconds, while MS-Swap did it in
155.3 seconds. However, for the application discussed in this work, the computation time of MS-Swap is
acceptable and significantly faster than current practice.

Since the time limit given to Gurobi Optimizer is acceptable in practice, it is noted that for these
industrial cases both the MS-Swap and Gurobi Optimizer can be used, with a slight preference towards the
latter. However, larger problem instances exist in other factories and it is unsure how either of the methods
scale with the problem size.
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Table 2: The overallocation performance (OA) of all algorithms: First-Fit-Decreasing with improved
endgame (FFD/IEG), First-In-First-Out with improved endgame (FIFO/IEG), MS-Swap and the Gurobi
Optimizer.

Overallocation performance of all algorithms.
Manual FFD-IEG FIFO-IEG MS-Swap Gurobi

Inc LB
Week OA (%) OA (%) OA (%) OA (%) OA (%) OA (%)

39 100 82.636 80.099 68.670 68.663 68.662
40 100 52.204 51.499 41.094 40.879 40.879
41 100 40.161 40.340 31.142 30.996 30.995
42 100 67.793 65.735 56.985 56.971 56.970

Mean 100 54.187 53.236 43.842 43.736 43.736

6 CONCLUSIONS AND FUTURE WORK

In this work, a solution method is presented, which successfully solves the problem of allocating wafers
to customer orders prior to assembly at a semiconductor production facility. The objective of the solution
method is minimizing the overallocation. This is important for the industrial application, because of
unnecessary occupation of manufacturing equipment and overproduced products are considered excessive
inventory. Some products even expire and have to be disposed. Also, less overproduction implies that
more products are made which can be sold immediately, in other words, the effective capacity increases.
All in all, the reduction of overproduced products has following three main advantages: (1) less inventory
has to be stored, (2) less material and time is wasted on products which might be disposed and (3) more
customer orders can be delivered on time.

Several existing methods and a novel heuristic are applied to real-world instances from one of Nexperia’s
back-end facilities. From this, it can be concluded that the proposed MS-Swap method significantly
outperforms existing methods and current practice.

Both the MS-Swap heuristic as well as Gurobi Optimizer produce close-to-optimal solutions within time
limits that are acceptable in practice. Further investigations are necessary to evaluate how these methods
perform for larger industrial cases. Although the optimality gap achieved by Gurobi Optimizer might not
be as small as here, the quality of early solutions provided by Gurobi Optimizer should be evaluated as
well.

In reality more variations of the wafer allocation problem can be distinguished due to the presence of
multiple die (quality) classes on the same wafer. Certain FG types may require only specific die classes.
These features complicate the allocation problem, and demand for extensions of the solution methods. This
is left for future research.
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