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ABSTRACT

Biological emergency response planning plays a critical role in protecting the public from possible devastating
results of sudden disease outbreaks. These plans describe the distribution of medical countermeasures across
the affected region using limited resources and within a restricted time window. The ability to determine
that such plans will be feasible, in terms of successfully providing service to affected populations within
the time limit, is crucial. Current efforts, such as live drills and training, to validate plans may not test plan
activation at the appropriate scale or account for dynamic real-time events. This paper presents Validating
Emergency Response Plan Execution Through Simulation (VERPETS), a novel computational system for
the agent-based simulation of biological emergency response plan activation. This system integrates raw
road network, population distribution, and emergency response plan data, and simulates traffic in the affected
region using SUMO, or Simulations of Urban Mobility.

1 INTRODUCTION

Biological emergency response planning plays a crucial role in protecting the public from possible devastation
resulting from disease outbreaks. In order for cities/counties to adequately prepare for potential biological
emergencies, two key steps need to be taken. First, response plans need to be developed describing how a city
would actually distribute medical countermeasures. This task is often performed by emergency managers
and planners, who use personal knowledge of the area to decide where and how points of dispensing (PODs)
should be set up to distribute these countermeasures. More recently, emergency managers and planners are
utilizing software systems, such as RE-PLAN (O’Neill II, Mikler, and Schneider 2014) or RealOpt(Lee
2018), to make data-driven decisions. Second, the execution of these plans needs to be evaluated and
validated, which is typically achieved through the use of drills and exercises. These live testing scenarios,
however, are very limited with respect to scale as only a small percentage of the total population participates
in these exercises. Additionally, real-time dynamic situations such as road blockages or closure of a POD
are not tested in these exercises.

These limitations of live testing pose a significant risk to the public at large; therefore it is critical to
find alternatives to exercises and drills as a means for evaluating and validating plans. Specifically, both
the feasibility and efficacy of a plan must be thoroughly analyzed before that plan is executed. Feasibility
refers to a plan’s ability to meet certain key criteria, such as being able to medicate the entirety of the
affected population within a specified time window. If a plan is determined to be feasible after testing,
it can be deemed usable for a given emergency scenario. Efficacy describes, in general, how well a plan
performs during ideal conditions or a controlled scenario. This can be measured in terms of how POD
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placement or the removal of road network segments affects network-wide traffic flow. Information of that
nature can help distinguish between similarly feasible plans, in order to select a more optimal plan for later
execution.

Validating Emergency Response Plan Execution Through Simulation(VERPETS), a novel agent-based
system that simulates a response plan activation is presented in this study. VERPETS evaluates the feasibility
of an emergency response plan by simulating the traffic activity caused by plan activation. Each individual
or head of household in the affected region is treated as an agent in the system. During plan activation,
these agents drive the shortest route to the POD or service center assigned to them to obtain medical
supplies and then return home after receiving service. This research highlights the need for computational
tools to validate response plans and shows that the proposed system VERPETS is successful in handling
the dynamic nature of plan activation. VERPETS can be used to investigate the effect of traffic congestion
and real-time road closures on the feasibility of the plan.

Existing computational tools to aid emergency response planners are discussed in the next section. The
VERPETS system is described in detail in Section 3. Experiments and results are presented in Section 4,
followed by the conclusion in Section 5.

2 BACKGROUND

Attempting to validate response plans only through the use of live drills and training exercises is both
prohibitively expensive for examining multiple different plans and may not examine the PODs at full
capacity (Nelson et al. 2012). Thus, it has been necessary to use modeling and simulation to evaluate
various aspects of emergency response. The Integrated Emergency Response Framework (iERF) developed
by Jain et. al. sought to bring a holistic approach to modeling emergency responses. In their work, they
describe a set of tools and standards to address different emergency response needs. They highlight the
importance of interoperability between available tools as well as support and training for responders and
planners who will be using these tools (Jain and McLean 2003) (Jain 2003).

In addition to interoperability, the ability to simulate and examine plans from a variety of geographic
scopes can provide emergency planners with a holistic view of a planned emergency response. From
macro-scale simulations of national, state, or multi-county responses, to the mezzo-scale simulation of a
single countys response plan execution, to the micro-scale level of the inner workings of a single POD,
each scope sheds light on different facets of plans that can be useful for evaluation. At the macro-scale are
simulations which examine emergencies that encompass hundreds of thousands to millions of people, and
may involve one or more states or counties. At this scale, the geographic elements become increasingly
important, such as ensuring that medicines are distributed efficiently to affected counties from the Strategic
National Stockpile (SNS) to regional supply centers and then to individual counties. This takes into account
individual PODs and how and when supplies are delivered to them. For example, the RE-PLAN system can
be configured to create and evaluate biological emergency response plans at this scale. It allows users to
design plans for one or more counties at a time, which potentially allows for cross county resource sharing.
This takes into account the populations in those areas, their distribution, and the road network in the areas.
Once a plan has been developed, RE-PLAN allows users to evaluate its feasibility and efficacy. This is
performed by first determining if all PODs will be able to provide service for their respective populations,
given a set of throughputs for each POD. After that, through the use of mathematical models, a user can
analyze if the surrounding road networks will be able to adequately accommodate the traffic created by the
activation of a plan. While this provides a substantial level of analysis, it ignores dynamic problems during
plan execution such as traffic accidents or POD closures. Further, the mathematical rates also ignore fine
grain traffic dynamics that appear when using agent-based models, such as the fact that vehicles may not
travel at a constant speed at all time or the occurrence of gridlock (O’Neill II, Mikler, and Schneider 2014).
Another example of planning and evaluation at the macro-scale is the RealOpt Regional system in a variety
of different scenarios from the perspective of being on the ground during the emergency(Environmental
Tectonics Corporation 2016).
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At the micro-level, examining emergency response frequently provides a detail-oriented view of an
emergency within a small area such as a portion of a city, a section of an area affected by the emergency,
or inside a POD. For instance, DrillSim, as developed by Massaguer et. al., was constructed specifically
to test a variety of IT solutions during an emergency situation. It evaluates a particular IT configuration
by modeling agents, the affected area, the crisis itself, and the infrastructure involved. It further provides
a number of visualizations for users to examine, in both a 2-D and 3-D live renderings, how the drills are
executing the planned response(Balasubramanian, Massaguer, Mehrotra, and Venkatasubramanian 2006).

RealOpt also provides some POD evaluation functionality with RealOpt-POD. This system allows users
to design and compare POD floor plans inter terms of usage and efficiency. It also analyses personnel usage
and placement to determine how to minimize the average waiting time for individuals seeking treatment.
Further, RealOpt-POD allows for simulations of the inner workings of a POD during POD activation, to
allow for alternative analysis of multiple layouts and staffing configurations (Lee 2018).

Based on this review, there is a clear need for the use of computational tools in the field of emergency
management. In the case of RE-PLAN and RealOpt, these systems allow the emergency manager and
planner to develop response plans more quickly and easily. However, while they do provide some evaluative
processes, this can be expanded upon in terms of geographic scale and the addition of more realistic processes.
Thus, this work presents a new system that expands upon current emergency response plan evaluation and
validation methodologies, while introducing new metrics and processes.

3 METHODOLOGY

The VERPETS system takes an emergency response plan as an input and simulates its activation to validate
its feasibility. The input emergency response plan is created by RE-PLAN. This plan is described briefly
in the next section.

3.1 Biological Emergency Response Plan

A Biological Emergency Response Plan (BERP) consists of a mapping of individuals or heads of households
in the affected region to a facility where they can receive necessary medical supplies. A response plan
may be created either at the individual level for vaccines or the household level for pill bottles depending
on the type of medical service being provided. Point locations for individuals or households in a region
are not known, so centroids of a Geographical Spatial Unit (GSU) are used as representative locations
for all individuals/households in the GSU. The U.S. Census Bureau has divided each county in the U.S.
into a hierarchy of different sized GSUs. Each county is made up of census tracts, and census tracts are
further divided into census block groups. The lowest GSU in this hierarchy is a census block, i.e. each
census block group contains one or more census block(s). RE-PLAN uses census block groups, the second
lowest level in the hierarchy to represent individuals as the most reliable and up-to-date data is available at
this level (Gwalani, Mikler, Ramisetty-Mikler, and O’Neill 2017). The block groups assigned to the same
POD are combined to create catchment areas. Figure 1 shows an example of a response plan created by
RE-PLAN. Each POD is usually equipped with multiple lanes or booths that can cater to the incoming
population in parallel. Each POD Pi in the response plan must satisfy Equation 1 for the plan to be feasible.
TimeWindow is the time limit within which the entire population needs to be served. pop(Pi) is the total
demand to be served at POD Pi, while numberO f Booths(Pi) defines the number of individuals that can be
served concurrently, and processing time is the time need to serve one individual/household.

Time Window≥ pop(Pi)∗ProcessingTime
numberO f Booths(Pi)

(1)

An emergency response plan is represented by a graph G(V,E), with vertices V and edges E. V is the
combined set of all POD locations P, U : the set of nodes representing the centroids of the GSUs and set
of nodes representing the intersection of two or more road segments I, i.e V = P∪U ∪ I. E is the set of all
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Figure 1: Biological Response Plan for Denton County.

road segments. The goal of the system is to simulate the movement of agents from the respective GSUs
to the POD such that the travel time is optimized.

3.2 Data Requirements

The creation and validation of an emergency response plan require integration of demographic data,
geospatial data on the affected region and the locations of the service centers or PODs, and road network
data. These data requirements and corresponding sources are listed in Table 1.

Table 1: Data Requirements and Sources.

Data Source
Demographic Data American Community Survey, Tables: B01001 and B25002

Geo-spatial Data Topologically Integrated Geographic Encoding and Referencing
Road Network Data Open Street Maps

3.3 VERPETS Framework

As seen in Figure 2, the VERPETS framework is divided into three major components: the Master Controller,
the Data Manager, and the Simulation Manager. The Master Controller initializes the VERPETS system via
a configuration file, facilitates all communication between the Data Manager and the Simulation Manager,
and reports final results. The Data Manager component functions as a centralized data storage and quick-
access location for the VERPETS system. The response plan data generated by RE-PLAN and the road
network data is stored in a PostgreSQL database. The Data Manager reads in the database tables and
creates XML files needed to run the simulations. The Simulation Manager component is the core of the
system’s ability to evaluate emergency response plans. It handles the generation of files required by the
simulator, the execution of one or more simulations, and the recording and processing of simulator output
data. The Simulation Manager also performs static flow analysis.

Figure 3 presents a flow diagram of the major tasks performed by VERPETS. These tasks include
preprocessing the OSM road network data to create a strongly connected network that can be used in the
simulation, reading in the response plan created by RE-PLAN from the corresponding PostgreSQL tables
and integrating the road network data created in the previous step, executing the traffic simulation at the
PODs and reporting results on the success or failure of a plan activation. The VERPETS system can also
be used to perform a static flow analysis to identify road segments that might suffer from heavier traffic
flow due to their locations. These analyses can help emergency planners in taking additional steps to avoid
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Figure 2: The three major components of the VERPETS system.

slowdowns if needed. The remainder of this section describes these tasks in detail.

Figure 3: VERPETS: Flow Diagram.

3.3.1 Road Network Preprocessing

Simulation of Urban MObility (SUMO) was selected as the simulation engine for VERPETS. This engine
boasts high portability, dynamic routing, and is free and open-source. Additionally, it requires only a
simple set of XML files to setup an experiment and provides a concise XML formatted output that can be
configured to display all or a selection of vehicles in the output. Further, it has been used to simulate the
traffic patterns in the city of Cologne, Germany, containing roughly one million people, during a visit from
the Pope and during the 2006 Soccer World Cup, so it can function with a large number of concurrent
agents (Krajzewicz and Hertkorn 2002) (Behrisch, Bieker, Erdmann, and Krajzewicz 2011).

The OSM file downloaded for the road network data in the affected region cannot be used by VERPETS
in its raw format to simulate the traffic during plan activation. An OSM file contains a list of tagged ways,
where a way is a sequence of nodes or locations that make up a road or path. The simulation environment,
SUMO provides a tool called NETCONVERT, that can take in an OSM file and convert it to a proprietary
network file. This process breaks an OSM way into its individual road segments for easier simulation.
Since many drivers rely on large road arteries when driving, this assumption was taken into account by
NETCONVERT, whereby only highway roads that were labeled by OSM as primary, secondary, tertiary,
motorway, or trunk were retained for the actual simulation. Additionally, any segment that was not attached
to the majority of the network was deemed isolated and removed. The removal of these road segments,
however, caused some locations in the network to become unreachable. While the majority of the U.S.
road network has multiple routes to connect any road to other roads, by only selecting a portion of the road
network and removing lower class roads, some of the highway class roads ended in a one-way segment
that had no turn-around. In order to solve this problem, Tarjan’s strongly connected components algorithm
(Tarjan 1972) was employed on the dual graph to remove any road segment that could not reach or be
reached by every other segment.
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Figure 4: Workflow for processing OSM data.

Once the weakly connected components are discovered, NETCONVERT is executed again to remove
those particular road segments. These network files are XML files that define each road segment (edge) and
the corresponding attributes including coordinates, lanes, speed limit and length. This produces a strongly
connected road network on which routing can now be automatically performed and a round-trip route for
a census block group to its associated POD is guaranteed. This road network data is then used to identify
the road segments corresponding to the GSUs and PODs to mark the start and end point of the trip for an
agent.

3.3.2 Validation Simulation

The agents or cars leave from the edge closest to the corresponding GSU, reach the edge their PODs are
located at and make it back to the starting edge in the simulation. These edges form the destinations a
vehicle must visit during its trip. SUMO requires the creation of this trip file to generate a route for a
vehicle. The edge-by-edge route for each vehicle is generated using DUAROUTER, which uses Dijkstra’s
shortest path algorithm on the road network to compute the routes where edges are weighted by travel
time. In order to receive treatment at a POD location, an individual must spend a certain amount of time
in processing at the POD. This processing time accounts for activities such as filling out and submitting
forms, standing in line, answering questions, and actually receiving the medication. This processing time
was controlled by the stop parameter in SUMO. The number of spots in the parking lot at a POD simulated
the lanes or booth functionality.

The departure time of a vehicle can be altered to simulate different vehicles leaving at different times.
Effectively, the simulator loads a car into the simulation at its departure time, where it waits in a queue,
the insertion-backlog, to be inserted onto the road network. Once inserted, the vehicle follows its route to
its POD location and then back to the road segment it was inserted on. Upon reaching the final edge in
the route, the car is removed from the simulation and marked as arrived.

The vehicle release interval controls how often cars are loaded into the insertion-backlog. If the
vehicle release interval is set to 0, all cars are loaded into the simulation and their respective backlogs at
the beginning of the simulation. Given a sufficiently large number of agents, this can cause significant
slow-down in the performance of the simulator.

One of the strategies to increase performance and decrease the time to simulation completion was to
break the plan into its component catchment areas and simulate each catchment area in parallel. Due to
these catchment areas being formed by Voronoi partitioning, the overlap between them was minimized.
However, because of the possibility of perturbations caused by these overlaps, experiments were performed
to analyze the difference between simulating all of the agents in a plan at the same time and simulating
the catchment areas in parallel.

A different strategy employed was to simulate all agents at the same time, halt the simulation after the
cut-off time, and predict the remaining time using a rate based analysis. In the event that the average arrival
rate is greater than the processing rate, cars will begin to queue at the POD. This is significant because if
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the arrival rate is maintained throughout the simulation, once cars begin queuing the queue will not become
empty until the last waiting car is processed. We call this situation of a perpetually expanding queue at
the POD runaway congestion. Runaway congestion significantly decreases the relevance of travel-time on
plan feasibility, as the POD processing rate becomes the rate-determining step due to the POD being at
perpetual maximum utilization.

If runaway congestion is allowed to occur, then after a period of time, travel time does not impact plan
completion. Thus, after this occurs, a rate-based calculation can be performed to estimate plan completion
time. To calculate this, first the total number of unprocessed vehicles must be calculated using Equation 2,
where Total Vehicles is the count of all households in the county, Total Processed Vehicles is the number
of vehicles processed before the simulation was halted, and Total Exited Vehicles is the number of vehicles
that have been processed and exited the simulation. Once the number of unprocessed vehicles has been
determined, the BERP completion time can be calculated using Equation 3. In this equation, Final Timestep
is the last timestep simulated by the simulator, Average Processing Time is the average processing time
for all booths, Total Booths is the total number of booths in the BERP, and Unprocessed Vehicles is the
result from Equation 2. These equations effectively estimate the completion time due to the processing
rate becoming the rate-limiting step of the simulation.

Unprocessed Vehicles = Total Vehicles− (Total Processed Vehicles −Total Exited Vehicles) (2)

BERP Completion Time = Final Timestep+
Average Processing Time

Total Booths
∗Unprocessed Vehicles (3)

However, before these equations can be used, it must be determined when a POD has reached runaway
congestion. Preliminary experiments were performed to test whether some standard time could be used to
halt the simulation and then estimate the final completion time. Using SUMO’s GUI, a visual inspection of
when a POD reached runaway congestion was performed. In this case, a POD was said to have achieved
runaway congestion if the number of agents waiting to enter the POD was one plus the number of booths.

4 Experiments and Results

To test the effectiveness of VERPETS’s ability to evaluate emergency response plans, multiple experiments
were performed using different emergency response plans. In this study, three plans were developed to
examine VERPETS’s performance and is described here. VERPETS’s ability to validate each plan was
examined, and compared to analysis available via RE-PLAN.

4.1 Response Plans

As stated, in order to evaluate VERPETS’s ability to validate biological emergency response plans (BERPs),
it was necessary to generate multiple BERPs. This was performed by using RE-PLAN to develop plans for
Denton County, Texas, USA. Figure 5 shows the census block groups and the road network and general
demographic statistics for Denton County.

Table 2: A list of the response plans used for evaluating VERPETS.

County Response Plan Name Number of PODs Total Number of Booths Processing Time (sec)
Denton denton 1 29 429 180

denton 2 22 322 180
denton 3 24 358 180

In order to simulate a BERP for each of these counties, three emergency response plans were created.
Table 2 describes the three plans. All of these plans assume a 36 hour deadline for the treatment of
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Figure 5: Census block groups(black) and the road network(red) in Denton County.

the entire population, and were constructed to examine the four different possible outcomes of plan
development: Theoretically Feasible and Realistically Feasible, Theoretically Feasible and Realistically
Infeasible, Theoretically Infeasible and Realistically Feasible, and Theoretically Infeasible and Realistically
Infeasible.

A plan is said to be theoretically feasible if the plan satisfies Equation 1. It is deemed theoretically
infeasible otherwise. A plan is said to be realistically feasible if the total completion time, as determined
by plan activation simulation, is less than or equal to the time limit. A theoretically infeasible plan cannot
be realistically feasible. The total processing time of a plan is defined by Equation 4. The completion time
for a plan is always less than the total processing time.

Total Processing Time = (Total Population∗Processing Time)/Total Number Of Booths (4)

The first plan was designed to have a total processing time of around 30 hours, which is well below
the deadline. This represents a plan that was both theoretically and realistically feasible. By setting the
processing time at 30 hours, this ensured that even with some possible traffic delays, the plan would
complete before the 36-hour limit. The second plan for each county was designed to have a processing
time for 40 hours, thus causing it to exceed the deadline by a great margin. This represents a plan that was
both theoretically and realistically infeasible, due to the insufficient number of resources allocated to the
plan. The third plan for each county was designed to have a processing time as close to, but below, the
36-hour time limit. This plan was designed to be theoretically feasible, but potentially could be realistically
infeasible when activated due to traffic dynamics and booth distribution.

4.1.1 Static Flow Analysis

Once a response plan was generated, an analysis of the traffic flow across the road network could be
performed. Because SUMO generated a route for each census block group before simulation, the number
of individuals on each road segment could be calculated. Thus, an analysis of which road segments had the
largest number of agents cross them during plan activation could be performed. The Jenks natural breaks
classification method (Jenks and F. 1971) was used to generate the five classifications. Figure 6 shows the
results of these analyses for denton 1,denton 2 and denton 3.

As can be seen in Figure 6, some of the PODs are relatively close together, which may cause some
census block groups from one POD to use the same road network segments as census block groups from
another POD. In order to determine the extent of this potential overlap, further analysis was performed.

To calculate the overlap between different PODs’ usage of the road network, the route from each census
block group to its POD were first generated. Next, based on those routes, the number of PODs using each
road segment were counted. This was used to determine the number of road segments that were unused,
used by one or more PODs, and used by more than one POD.
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Figure 6: The load on the road network for Denton county during plan activation for the plans denton 1,
denton 2, and denton 3 respectively.

Figure 7 shows the outcomes for the three Denton county plans. Less than half of the total road
network for Denton was used for routing. Additionally, only roughly 6% of the road segments for denton 1,
roughly 5% of the road segments for denton 2, and roughly 6% of the road segments for denton 3 were
used by census block groups from more than one POD. Again, it can be concluded that overlap on the road
network was minimal between the PODs in these plans. This analysis supports the strategy of executing
independent simulations for catchment areas in parallel to reduce the load on the simulation engine.

Figure 7: The number of road segments used for routing denton 1, denton 2, and denton 3.

4.2 Simulated Time Limit

Due to the dynamics caused by runaway congestion at the PODs, it was inferred that the simulation could
be halted early and the completion time extrapolated. If a standard time limit could be identified, then
plans could quickly be run and then their completion time estimated. However, because travel time to the
POD differs between census block groups, this standard time limit must be experimentally determined.

For this experiment, using SUMO’s GUI, a visual examination of each census block group in a plan
was performed. The goal was to determine the time (in simulated seconds) it would take for a POD to
reach runaway congestion. It was assumed a POD had reached runaway congestion when all of its booths
were full, and a number of agents equal to the number of booths plus one, had queued up in front of the
POD waiting for service. Each plan was simulated with a POD processing time of 180 seconds, and at a
1:1 scaling factor using the plan denton 1.

Different vehicle release intervals can affect the time to runaway congestion, therefore, three different
intervals were used. The first interval test was releasing all agents into the simulation at the same time.
This has an effective release rate of one agent every 3 seconds, but may decrease performance as all
agents are in the insertion-backlog. The effects of releasing one agent every 30 seconds and one agent
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every 60 seconds were also examined. Figure 8 shows the average and maximum time to runaway congestion.

Figure 8: The average and maximum time in seconds, to runaway congestion.

Based on the results of these experiments, 3600 seconds or one hour, was chosen as a safe time limit.
In addition to determining a time limit, the effects of using that limit were examined. Each of the three
plans was simulated with a processing time of 180 seconds, a release rate of 30 seconds. Figure 9 shows
the results of these simulations and it was seen that there was no variation about the mean for each of the
experiments. As the results show, the completion times for each of these experiments was stable as the
variation was almost negligible.

Figure 9: The average time, in hours, to plan completion using a one hour time limit.

4.3 Simulation vs Rate-based Validation

To determine the effectiveness of using a time limit on simulation it was compared to the rate-based
time results from RE-PLAN. The simulated completion time is compared with the theoretical minimum
completion time or the total processing time (Equation 4), and the estimated completion time from RE-
PLAN, which is the maximum time taken by a booth to serve its demand. The completion time for the
parallel catchment area strategy is the maximum time across all catchment areas. The theoretical completion
time assumes an equal distribution of the population assigned to each booth. However, catchment areas
created by Voronoi Partitioning does not ensure an equal distribution of the population across PODs. Figure
10 shows the results of these experiments.

5 DISCUSSION

Based on these experiments, it is shown that agent-based simulations of emergency response plan activation
could be effectively performed. First, it is demonstrated that the results of simulating the activation of
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Figure 10: A comparison between the theoretical, RE-PLAN POD Manager, and VERPETS determined
completion times.

each individual catchment area are comparable to the results of simulating the activation of an entire plan
at once. This allows for a reduction in load on the simulator by allowing for multiple instances of SUMO
to be run in parallel. This also improves performance as multiple agents can now be processed in parallel
across multiple threads.

Next, the use of a time limit for the simulation to further decrease agent load was tested. It is shown
that using a one-hour time limit is a safe limit as all examined catchment areas reached runaway congestion
before one hour of simulated time. When using the time limit, the results are shown to be stable across
all plan activation simulations.

Finally, simulating response plan activation using VERPETS is compared to RE-PLAN’s rate-based
analyses. Both RE-PLANs and VERPETS’s analysis determined a longer plan activation than the theoretical
analysis, because theoretical analysis ignores traffic time and booth distribution across PODs. As expected,
VERPETS’s plan completion time is greater than RE-PLAN’s expected plan completion time because of
travel time considerations. VERPETS can effectively validate emergency response plans and determine
their feasibility in real time.

Biological emergency response planning plays a critical role in protecting the public from the possible
devastating results of sudden disease outbreaks. Thus, the ability to validate that the activation of a plan will
successfully provide service to an affected population within some time limit is crucial. While emergency
response plan generation software tools such as RE-PLAN (O’Neill II, Mikler, and Schneider 2014) or
RealOpt (Lee 2018) (Lee, Maheshwary, Mason, and Glisson 2006) do provide some rate-based validation
analyses, an agent-based validation system is presented to allow for additional realistic traffic dynamics to
be modeled and evaluated in this work.

Finally, VERPETS can be expanded to validate emergency response plans for other hazards. In the case
of hurricanes, planning for contraflow lanes and evacuation routes must be planned and constructed before a
hurricane arrives (Centers for Disease Control and Prevention 2016). This necessitates evaluation of these
routes and plans in advance so that upon activation, potential problems have already been identified and
mitigated. Additionally, in the wake of a hurricane, supplies such as fresh water, and medical supplies must
be distributed in a timely and effective manner. Potentially, these supplies can be distributed via mobile
distribution centers, and these resource distribution plans can be tested via simulation. Thus, VERPETS
could be restructured to both test evacuation strategies and mobile resource distribution strategies.
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