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ABSTRACT  

Enemy anti-ship cruise missiles (ASCM) are increasing in capability thereby posing a greater threat to 
United States Navy ships. Core to a ship’s defensive system is a computer-based command and decision 
element that directs simultaneous operations across a broad set of mission areas. Fortunately, software-only 
changes to this command element can be evaluated and fielded much more quickly than hardware-based 
changes; and hence, methods to identify viable software-only changes are needed. This study presents a 
simulation optimization methodology to identify and evaluate such changes using a notional scenario. First, 
a raid of ASCM threats against a single ship is simulated and then metaheuristics are used to determine the 
configuration for a ship’s defensive system that maximizes survival. The simulation scenario, a ship’s 
defensive system, and three specific optimization cases are presented. Results are provided for each 
optimization case to show the defensive system configuration that best ensures the ship’s survival.              

1 INTRODUCTION 

The United States (US) Navy faces rapidly evolving air threats from potential adversaries as advancing 
missile technologies are fielded. The advancement of long-range anti-ship cruise missiles (ASCM) and anti-
ship ballistic missiles, paired with compatible command, control, communications, computers, intelligence, 
surveillance, and reconnaissance architectures, are enabling adversary nations to execute more complex 
and threatening missions both near and far from home. ASCM research and development programs are 
robust and focused on increasing missile speed, range, and employment flexibility in order to penetrate a 
ship’s defensive system. At the core of the ship’s defensive system is a computer-based command and 
decision element capable of simultaneous operations in anti-air warfare, ballistic missile defense, surface, 
subsurface, and strike missions.  

Upgrading ships and the many subsystems that make up their defensive system is one response to 
countering enhanced adversary threats, but the time to develop and field new hardware is extensive and 
costly. Changes can be made more quickly to the Anti-Air Warfare (AAW) system software that drives the 
offensive and defensive performance of these ships (and its subsystems) and implements the tactics, 
techniques and procedures (TTPs) and Concept of Operations (CONOP) that drive how resources are 
managed and how the battle is fought. Simulation models can be used to evaluate how changes to TTPs and 
CONOPs, as well as other software-only changes, will impact the performance of a ship’s defensive system 
against different threat scenarios. However, determining the best set of changes is a non-trivial task since 
the number of possible combinations of friendly (i.e., blue) and adversary (i.e., red) configurations and 
actions is quickly overwhelmed by the curse of dimensionality. In addition, there are often complex 
effectiveness and efficiency tradeoffs to be considered when evaluating the outcome of a military scenario. 
Therefore, a means to optimize these simulation models is needed, based on one or more metrics of interest, 
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over the very large set of possible changes. This provides a way to identify software-only changes that yield 
significant capability improvements in countering relevant ASCM threats. These changes can then be 
deployed to a ship’s defensive system more quickly (and cheaply) than hardware changes. 

This paper presents a maritime AAW scenario that is analyzed using simulation optimization to 
determine the best configuration for a ship’s defensive system to defeat a specific raid of ASCM threats.  
The paper is organized as follows. Section 2 describes the maritime AAW scenario, a ship’s defensive 
system, and metrics of interest for optimization. Section 3 presents the simulation optimization 
methodology to simulate the maritime AAW scenario and determine the defensive system configuration 
that best counters the ASCM threats. Section 4 reports the results of this simulation optimization analysis, 
and, finally, Section 5 concludes the paper and details areas for future research.            

2 PROBLEM DESCRIPTION 

This section describes a notional maritime AAW scenario in which a single ship is attacked by two waves 
of ASCMs. The ship’s defensive system is also described along with its primary operational parameters to 
prescribe using simulation optimization in Section 3. Finally, measures of effectiveness and one measure 
of performance (or efficiency) for optimization are defined. 

2.1 Maritime Anti-Air Warfare Scenario 

The scenario depicted in Figure 1 is a notional maritime AAW scenario that can be simulated using a 
combat simulation. This scenario consists of anti-ship cruise missile (denoted henceforth as CM) raids on 
a single ship, where the CMs approach the ship in two separate raids, each raid consisting of 15 CMs. The 
first and second raids approach the ship from 345° and 325° respectively, indicating a narrow threat sector. 
Furthermore, the first raid starts from a point 65 nautical miles (nm) from the ship and travels at a speed of 
500 kilometers per hour (km/h), whereas the second raid starts from 87 nm and travels at 625 km/h. Both 
raids approach the ship from an altitude of 300 meters (m). The scenario does not model weather or soft 
defensive effects such as electronic jamming. 

 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
 
 

Figure 1: Visual representation of notional maritime AAW scenario. 

2.2 Ship Defensive System 

A ship’s defensive system consists of its sensors that detect and track threats, its weapons that engage and 
destroy threats, and its crew that command, control, and operate this system. This defensive system 
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originates with the sensor, as it is responsible for the detection of the CMs. In the notional maritime AAW 
scenario, the ship possesses a single radar sensor, which has a default range of 0 to 90 kilometers (km) (i.e., 
49 nm). The sensor has a rectangular field of view and performs independent search with deterministic 
detection and tracking. Additionally, it has a default azimuth and elevation of 120°, with an azimuth 
pointing angle of 0° and an elevation pointing angle of 30°. The default sweep rate is set to 3 seconds and 
the slew rate to 0 deg/s.   

To physically combat the encroaching CM threat, the ship is equipped with eight Surface-to-Air Missile 
(SAM) launchers, four short-range and four medium-range. Furthermore, the ship is equipped with two 
types of intercept missiles: short-range and medium-range interceptors. As defaults, there are 40 
interceptors of each type, and each interceptor type can be launched from its corresponding launcher. 
Intuitively, the medium-range interceptor can destroy the threat at a greater distance; however, the 
probability of kill (Pk) is 65% for these interceptors. Likewise, the short-range interceptors destroy the threat 
at a closer distance but have a Pk of 85%. Pk is the main source of uncertainty in the simulation. 

A final component of the ship’s defensive system is the human element that reflects the command and 
control paradigm (such as manual or autonomous), tactics, techniques, and procedures (TTP), operational 
doctrine (or best practices) and limitations, and crew experience and proficiency.         

For this study, sensor, weapons, and crew preparedness parameters were chosen as inputs to vary in a 
simulation of the maritime AAW scenario. Initial values and ranges for these input parameters were selected 
based on examining opensource resources such as the US Navy Fact File (US Navy 2019) and adjusted 
based on initial experimental runs to ensure changes to these parameters had a meaningful impact on the 
key measures of effectiveness and performance.  

The specific sensor inputs that were varied are listed in Table 1 along with their description and the 
extent to which they can vary in the scenario.   

Table 1: Sensor inputs to vary. 

Input Name Description Min Value Max Value 
Azimuth Horizontal field of vision 30° 120° 
Azimuth Point Angle Axis of symmetry for azimuth 0° 359° 
Elevation Vertical field of vision 10° 60° 
Elevation Point Angle Axis of symmetry for elevation 5° 60° 
Sweep Rate Time to scan sensor’s entire field of view 1 second 30 seconds 
Maximum Range Maximum distance to detect threat 50 nm 120 nm 

 
The sweep rate is a dependent sensor input since it depends on the azimuth and elevation, as increasing 

the field of vision (FOV) of the sensor will consequently increase the time needed to scan this FOV. For 
this study, the relationship between sweep rate and the corresponding azimuth and elevation is defined in 
Table 2 (e.g., it takes the sensor 11 seconds to scan the FOV when its azimuth is 60° and elevation is 40°). 

Table 2: Sensor sweep rates (in seconds) for (azimuth, elevation) pair. 

Azimuth 
Elevation 

10° 20° 30° 40° 50° 60° 
30° 1 2 4 8 13 20 
45° 2 3 5 9 14 21 
60° 5 6 7 11 15 22 
75° 8 9 10 12 18 24 
90° 12 13 14 15 20 26 
105° 16 17 18 19 23 28 
120° 20 21 23 25 27 30 
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The weapon inputs that were varied are listed in Table 3 along with their description and the extent to 
which they can vary in the scenario.  

Table 3: Defensive weapon inputs to vary. 

Input Name Description Min Value Max Value 
Max Medium-range Maximum distance the medium-range 

intercept missile may engage threat 
60 nm 90 nm 

Min Medium-range Minimum distance the medium-range 
intercept missile may engage threat 

20 nm 40 nm 

Max Short-range Maximum distance the short-range 
intercept missile may engage threat 

15 nm 30 nm 

Min Short-range Minimum distance the short-range 
intercept missile may engage threat 

5 nm 10 nm 

Medium-range 
Inventory 

Number of medium-range intercept 
missiles 

0 80 

Short-range Inventory Number of short-range intercept missiles 0 80 
 

The experience and proficiency of the ship’s crew is critical to operational effectiveness. To explore 
crew preparedness in the simulation, this study used an operator delay parameter defined as the time needed 
by the crew to assess the detection of a CM by the sensor and then decide to engage the CM with an intercept 
missile. Logically, more experienced crews will take less time to process and engage a threat given the 
same tracking information from the sensor. Therefore, this operator delay parameter was set to 60 seconds 
for a low experience crew, 40 seconds for a medium experience crew, and 20 seconds for a high experience 
crew.    

2.3 Measures of Effectiveness and Measure of Performance 

This study uses two measures of effectiveness (MoE) and one measure of performance (MoP) for 
optimization as follows: 

 
• MoE 1: Probability of Raid Annihilation (PRA) – the probability the ship survives the CM raids, 

(i.e., the probability all CMs are detected, tracked, engaged, and destroyed). 
• MoE 2: Closest Range – the distance from the ship at which the closest CM is destroyed (this 

measure is only meaningful (non-zero) when all CMs are destroyed). 
• MoP 1: Weapons Expended (WE) – a count of the number of intercept missiles used to engage 

CMs. 
 

These key measures translate to meaningful optimization objective functions. Specifically, any of the 
two MoEs (PRA and Closest Range) would be maximized (more is better) whereas the MoP (WE) would be 
minimized (less is better). The MoEs relate to the operational effectiveness of the ship’s defensive system 
whereas the MoP relates to the resource expenditures of the defensive weapons. Operationally speaking, 
effectiveness of the ship’s defensive system is the primary goal (existential in nature) and efficiency is a 
secondary goal (resource preserving in nature).   

3 SIMULATION OPTIMIZATION  

This section presents a simulation optimization methodology that uses the maritime AAW scenario to 
determine the ship’s defensive system configuration that best counters the CM raids. The simulation is first 
described followed by the optimization objective functions and constraints. This section concludes with a 
description of the method used to solve the simulation optimization problem. 
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3.1 Simulation of the Maritime AAW Scenario 

The Extended Air Defense Simulation (EADSIM) is a many-on-many simulation of air, missile, and space 
warfare that models fixed and rotary wing aircraft, tactical ballistic and cruise missiles, sensors, satellites, 
and command & control structures. Furthermore, EADSIM is widely-used across the US Department of 
Defense (DoD) and contains several configurable data inputs related to sensors, weapon systems, and rules 
of engagement. The simulation code is managed by the US Army Space and Missile Defense Command 
and is currently used by 390 total agencies worldwide. See Teledyne Brown Engineering, Inc. (2019), the 
support contractor for EADSIM, for additional details.  
 EADSIM has an unclassified scenario representing a missile attack against an established air base. 
Using the air base as a proxy for a ship, which assumes the ship’s speed is negligible relative to the CMs, 
this scenario was adapted to represent a maritime AAW scenario to simulate the ship’s defensive system in 
EADSIM and evaluate the different MoEs and MoP for a ship against a CM raid. Specifically, for the 
maritime AAW scenario, the sensor, defensive weapon, and crew preparedness parameters described in 
Section 2 were chosen as simulation inputs to vary in EADSIM.      
 To evaluate the MoEs and MoP, the key EADSIM outputs collected for each simulation were the 
number of CMs killed (of the 30 CMs launched), number of medium and short-range intercept missiles 
launched at CMs (i.e., WE), and the simulation times when the last CM is successfully destroyed from both 
raids, denoted TLS, for time of last success. TLS was used as a proxy measure for the Closest Range MoE 
since time is easier to extract from EADSIM than range. This is a suitable proxy since time can be expressed 
as a distance given the velocity of the threatening CM. In the results, TLS  = time of last success in CM raid 
1 + time of last success in CM raid 2, which, when minimized, means the simulation time when the last 
CM was destroyed was as early as possible in both raids. Therefore, TLS should be minimized because 
earlier success times means the CMs are killed sooner, or further from the ship.      

3.2 Optimization Objective Functions and Constraints 

To determine the ship’s defensive system configuration that best counters the CM raids within the maritime 
AAW scenario, the following three optimization cases were considered: 

 
• Case 1: Maximize PRA. 
• Case 2: Minimize TLS (thereby maximizing the Closest Range MoE) subject to PRA = 1. This case 

demonstrates a preemptive multi-objective optimization problem (Ehrgott 2005) where PRA is the 
primary objective function and then TLS is the secondary objective function. Therefore, given PRA 
= 1 (i.e., the ship survives the raid), the next goal is to destroy the closest CM as far away from the 
ship as possible, which equates to minimizing TLS. 

• Case 3: Minimize TLS and minimize WE, subject to PRA = 1. This case demonstrates a classic multi-
objective optimization where the objectives TLS and WE are equally important, and hence, there is 
a tradeoff to consider between these two objectives (Ehrgott 2005). This introduces the concept of 
Pareto optimality where the optimal set is expressed as a frontier (called the Pareto frontier) of 
solutions that balance the tradeoff between the objectives. In this case, a solution is Pareto optimal 
if for any other solution in which TLS decreases (increases), WE increases (decreases).  

 
The cases above describe the optimization objective functions, which are constrained by real-world 

operational or resource limitations. This study included two constraints that are now described. The first 
constraint is that the layers of defense must overlap to ensure a ship can defeat threats once a CM is in range 
of intercept. Therefore, for a defense layered with two intercept missiles (i.e., a short-range interceptor and 
a medium-range interceptor), the maximum range of the short-range interceptor must be at least as far as 
the minimum range of the medium-range interceptor. That is, the engagement layers between the layers of 
defense must overlap as shown in Figure 2. This is mathematically denoted by Max Short-range > Min 
Medium-range.   
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 The second constraint varies the number of intercept missiles in the scenario. In all optimization cases, 
the total number of intercept missiles is limited by a given total inventory. The number of interceptors for 
each defense layer can vary so long as the sum of the inventories for each defense layer is equal to the given 
total inventory. Returning to a defense layered with two types of intercept missiles, the number of short-
range interceptors plus the number of medium-range interceptors must equal the given total inventory. This 
is mathematically denoted by Short-range Interceptors inventory + Medium-range Interceptors inventory 
= total inventory. In the EADSIM scenario, the given total inventory is equal to 80 intercept missiles. As 
shown in Table 3, the inventory for either interceptor type is permitted to equal any integer value between 
0 and 80 (in step sizes of 4), provided the total weapon inventory is equal to 80. Ultimately, this constraint 
on weapon inventory allows the optimization to determine the impact of the quantity of medium and short-
range interceptors without also varying the total weapon inventory, since the intent was not to limit overall 
resources within the scenario (i.e., varying the total weapon inventory in the optimization would introduce 
another layer of complexity).    

3.3 Solution Implementation  

Using EADSIM to simulate the maritime AAW scenario, an optimization program was used to determine 
the input settings that maximize the ship’s ability to defeat a cruise missile raid. Specifically, the inputs, 
outputs, MoEs and MoP, and three optimization cases were explored. The optimization program selected 
is called OptDef, which interfaces with an optimization engine called OptQuest, both of which are 
developed by OptTek Systems, Inc. (2019). OptDef has a custom graphical user interface that integrates 
with EADSIM and OptQuest is a recognized commercial solver for simulation optimization.   
 Figure 3 depicts the iterative solution process by which the optimization program updates simulation 
inputs in EADSIM, executes EADSIM, and then collects simulation results. The optimization program 
provides a set of simulation inputs to EADSIM, where a set of simulation inputs includes one value within 
the minimum and maximum range for each sensor and defensive weapon variable given in Tables 1 and 3 
in addition to an operator delay time. The program then executes EADSIM and collects the resulting number 
of CMs killed, WE, and TLS as output. The optimization program then determines a new set of simulation 
inputs using metaheuristics. Specifically, the metaheuristic combines distinct sets of inputs that have 
yielded the best simulation outputs found in the search thus far to create a new distinct set of inputs to 
simulate. This new set of inputs for EADSIM then results in another set of outputs, and this process is 
repeated iteratively until some stopping criteria is reached (e.g., the total number of simulation runs to 
execute, a specified time to search, or a given number of search iterations without finding an improving 
solution are common stopping criteria). Once the stopping criteria is met, the optimization program returns 
the defensive system configuration that optimizes the objective function of interest subject to the constraints 
discussed in Section 3.2. For the multi-objective optimization cases, there may be several defensive system 
configurations that result in a set of non-dominated output values, which estimates the Pareto frontier. 
 

Figure 2: Notional defense layers for a naval ship. 
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The term metaheuristic refers to a class of optimization solution algorithms used to solve difficult 

problems; however, metaheuristics do not always find an optimal solution. Unlike simple heuristics, like a 
greedy or hill-climbing heuristic, metaheuristic algorithms combine multiple strategies to form a higher-
level algorithm with more sophisticated solution generating properties (Reeves 1995). A simple greedy 
heuristic may quickly converge to a local optimum but will not find the best solution in a nonconvex 
solution space. Metaheuristic techniques have strategies that allow them to escape local optima (solutions 
that are optimal for their immediate neighborhood) and search for a global optimum (solutions that are 
optimal over the entire solution space). Commonly known classes of metaheuristic algorithms include 
techniques such as tabu search, scatter search, and genetic algorithms (see Glover 1986; Glover 1977; 
Glover and Laguna 1997; Glover et al. 2000). The primary metaheuristics employed by the optimization 
program in Figure 3 are scatter search and tabu search. 

4 ANALYSIS AND RESULTS 

This section details the specific simulation optimization analysis performed to identify the ship defensive 
systems that significantly improve PRA, TLS, and WE for the three previously described optimization cases.   

Each optimization case had the same scenario setup as described in Section 2.1, including the inputs 
and outputs specified above. The three optimization cases used the same EADSIM engagement output 
report that was built from 30 Monte Carlo (MC) replications (a sufficiently large number given the study 
scope) for each described simulation run (i.e., set of inputs). To illustrate, as depicted in Figure 3, the 
optimization program provides EADSIM with a set of values for each input parameter defined in Tables 1 
and 3 and an operator delay time. For this given set of input values, EADSIM executes 30 MC replications 
and then returns the outputs (based on the 30 MC replications) back to the optimization program. For 
example, a PRA = 0.8 for a simulation run in the optimization program means all CMs were killed in 24 of 
the 30 MC replications. The optimization program then sends another set of input values to EADSIM in an 
attempt to find a set of inputs to produce a larger PRA, and this cycle iterates until a stopping rule is satisfied.  

Before analyzing the specific optimization cases, it’s worth considering the complexity of solving this 
simulation optimization problem. For this maritime AAW scenario in EADSIM, there are 11 independent 
input variables that can vary according to the ranges defined in Tables 1 and 3 coupled with operator delay. 
Considering all feasible combinations of values for these independent variables, there are over 55 trillion 
simulation runs to evaluate if one was to enumerate the feasible decision space. To put this in context, for 
this EADSIM scenario with 30 MC replications for each simulation run, it took nearly 7 hours (6h:56m:10s) 
to run 4,493 simulation runs using 15 cores on a 24 core, 48GB RAM desktop computer. Thus, assuming a 
rate of 5,000 runs in 7 hours, it would take over 8,886 millennia to enumerate the decision space. Even 
doing a full factorial design of experiment (DoE) with only three values for each input variable would 

Figure 3: Simulation optimization solution process. 
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require 177,147 simulation runs, which would take over 10 days assuming the same computational rate. 
Clearly, the curse of dimensionality takes a heavy computational toll as the number of input variables grows. 
Fortunately, advanced optimization methods make explicit enumeration of the decision space unnecessary 
for nearly all practical problems. As demonstrated below, optimization enhances the utility of complex 
simulation models making it possible to find optimal or near-optimal system configurations with a relatively 
small number of simulation runs. 

4.1 Case 1 (Maximize PRA) 

Case 1 maximizes PRA (a PRA = 1 indicates all 30 CMs were destroyed in each of the 30 MC replications). 
The optimization program executed 4,400 simulation runs, each with a different input and found a set of 
inputs yielding a PRA = 1 after only 75 runs. Figure 4 displays the PRA for each simulation run (denoted as 
iterations) as an individual point (or dot) on the graph. The blue line on the graph indicates the best PRA 
found to date as the iterations progress (e.g., iteration 75 is the first simulation run to have a PRA = 1). 1,746 
of the 4,400 simulation runs resulted in a PRA = 1 indicating many alternative optimal defense system 
configurations. Figure 4 shows both the diversification (wide exploration across the decision space) and 
intensification (focused search in promising areas of the decision space) in the optimization search. 
Diversification is indicated by seeing simulation runs with PRA across the range of 0 and 1. Moreover, the 
graph shows a significant number of iterations where PRA = 0, which indicates many “bad” areas of the 
decision space were also searched (in case one of these “bad” areas is in fact a “good” area). Alternatively, 
intensification is indicated in the graph by the streaks of iterations with similar PRA values, especially where 
PRA is close or equal to 1. This indicates a focused search in the “good” areas of the decision space.  

 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

4.1.1 Results 

Case 1 successfully demonstrates that for this scenario, by modifying a few key sensor and defensive 
weapon inputs, a PRA of 1 is attainable (i.e., it is possible to destroy all CMs). A PRA = 1 is best achieved 
with a high experienced crew and an even mix of short-range and medium-range interceptors.   
 The significance of the interceptor quantities was found using variable sensitivities analysis that 
considered linear and non-linear effects such as linear regression, mutual information, and regression trees. 
This is an intuitive result since the medium-range interceptors can hit a CM further away from the ship, 
allowing the CMs to be destroyed earlier. However, the short-range interceptors have a higher Pk. Therefore, 
attaining a PRA = 1 is best achieved when there are both types of intercept missiles.  

The crew experience level was seen to be impactful in the regression tree analysis, which is a tool to 
segment the decision space into combinations of variable value ranges that yield good or bad results. The 
regression tree was configured to split by crew experience level in order to show the contrast in PRA between 

Figure 4: Case 1 optimization progress. 
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the different crew experience levels. When the simulation had a low experience crew, the average PRA was 
0.08. Likewise, when the simulation had a medium experience crew, the average PRA was 0.101, and, finally, 
when the simulation had a high experience crew, the average PRA was 0.709. While it was possible to 
achieve a PRA = 1 with all three crew experience levels, a vast majority of the simulation runs that destroyed 
all CMs were obtained with a high experience level. The figures and data analyses described above and 
throughout Section 4 come from the OptDef optimization program. 

4.2 Case 2 (Minimize TLS) 

Case 2 minimizes the time of the last success (TLS) as the secondary objective subject to the constraint that 
the primary objective function is optimal (i.e., PRA = 1). PRA is the most important effectiveness measure, 
as improving WE or minimizing risk by making TLS as small as possible are insignificant if PRA is not equal 
to 1, since this means the ship was hit by at least one CM. Therefore, once PRA = 1 is achieved, then it 
becomes important to improve these other measures. Recall TLS is a composite variable that sums the time 
at which the last CM was shot down in the first and second raid. By minimizing this sum, it effectively 
keeps both CM raids as far from the ship as possible. This is intended to minimize the inherent risk 
associated with a CM gaining a closer proximity to the ship. This optimization case was run for 2500 
simulation runs, and the minimum TLS was achieved on simulation run 890 with a time of 739.99 seconds. 
Figure 5 shows TLS for each simulation run (again denoted as iterations) as individual points on the graph. 
The points are further differentiated by color, as red points now show solutions at which an infeasible 
solution was attained due to the additional constraint on PRA. That is, the red points are the simulation runs 
with a PRA < 1. The gray points are feasible solutions that fail to improve the current best value for TLS, 
whereas the blue points represent feasible solutions that improved the objective value. As before, the blue 
line indicates the best TLS value found to date as the simulation progresses. Many simulation runs had no 
result for TLS

 , and hence, no point is displayed. Figure 5 additionally highlights diversification as there is a 
large range of values attained for TLS over the entirety of the optimization. Furthermore, intensification is 
also indicated by the distinct clusters of points that closely follow the blue line. 

 
 

4.2.1 Results 

Case 2 considers TLS since a PRA = 1 was achieved in Case 1. As stated previously, TLS is a means to quantify 
risk by attempting to destroy the CMs as far from the ship as possible (when all CMs are destroyed).  For 
this case, a high experienced crew and small sensor elevation tended to produce the best solutions when 
minimizing TLS (e.g., the best 30 runs all had a high experienced crew and sensor elevation of 20°).   

Figure 5: Case 2 optimization progress. 
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 The variable sensitivity analysis for the optimization case showed that the sensor’s elevation and 
maximum range, and the maximum range for the medium and short-range interceptors are the most 
influential variables to the results that successfully obtain a PRA = 1 and minimize TLS. Therefore, changing 
the optimization focus from maximizing PRA to minimizing TLS (while ensuring PRA = 1) also changed the 
most influential inputs. This demonstrates the valuable insights that can be gained by analyzing different 
optimization cases.  
 Correlation analysis showed positive correlations of 0.67 and 0.65 with the sensor’s elevation and 
maximum range, respectively (i.e., TLS increases as the sensor’s elevation and maximum range increase) 
and negative correlations of -0.63 and -0.53 with the maximum range for the medium and short-range 
interceptors, respectively (i.e., TLS decreases as the maximum range for the medium and short-range 
interceptors increases). 
 As sensor elevation has a positive correlation, this indicates that having a larger vertical FOV is 
correlated with an increase in TLS. This positive linear correlation may seem counterintuitive, as the sensor’s 
ability to see more should hypothetically improve the objective (i.e., decrease TLS). However, one factor 
that explains this result is the dependency between sweep rate and elevation. An increase in elevation also 
increases the sweep rate, which denotes an increase in the number of seconds that it takes to scan the entire 
FOV of the sensor. If there is a precise elevation pointing angle, then a small elevation can greatly improve 
the results as this will also decrease the sweep rate. More frequent scans will allow for an earlier first 
detection, which consequently reduces TLS.  
 The sensor’s maximum range also has a positive correlation with TLS, when it seems the opposite should 
be true. Increasing the sensor’s maximum range should decrease TLS, as increasing the range of the sensor 
should never worsen the objective. Further analysis revealed the simulation runs that had a sizeable value 
for both the sensor’s maximum range and TLS also have a low quantity of medium-range interceptors. 
Having a low quantity of medium-range interceptors makes the sensor’s maximum range irrelevant, as a 
majority of CMs will have to come into the range of the short-range interceptors. Since this occurs later in 
the simulation, this increases TLS for these simulation runs. Therefore, the positive correlation seen by the 
sensor’s maximum range on TLS is in fact caused by the simulation runs with a low medium-range quantity.  
 Finally, the maximum ranges of the medium-range and short-range interceptors both have a negative 
correlation with TLS. This is intuitive since the ability to engage CMs further out (i.e., with an increase in 
the maximum range of the interceptors) should decrease TLS. 

4.3 Case 3 (Minimize TLS and WE) 

Case 3 minimizes both the time of the last success (TLS) and the number of weapons expended (WE) subject 
to the constraint that PRA = 1. In this case, both objective functions are of equal importance (i.e., no 
weighting or strict preference is given). Moreover, these are competing objective functions by nature, as 
decreasing TLS is expected to come at the cost of increasing WE. In order to decrease TLS, the raids must be 
intercepted further from the ship necessitating the use of more medium-range interceptors. Furthermore, 
the medium-range interceptors also have a lower Pk than short-range in this scenario, which means even 
more medium-range interceptors would need to be expended to defeat the CM raids. For this case, the 
optimization program executed a total of 3500 simulation runs; however, there is no longer a clear best 
solution as defined by a single objective value. Figure 6 depicts the tradeoff between TLS and WE with the 
blue line estimating the Pareto frontier. In other words, moving from one point to another on the blue line 
will invariably make one of the objectives better at the cost of worsening the other objective. For example, 
the furthest left point in Figure 6 has a TLS of 805.65 seconds and a WE of 34.26 (these values are averaged 
over 30 MC replications). The next point to the right has a TLS of 780 seconds and a WE of 34.4, which is 
better in terms of TLS but worse in terms of WE, thus a tradeoff between the two objective functions.    
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4.3.1 Results 

For this multi-objective optimization problem, correlation analysis showed the medium-range and short-
range quantities are the most significant inputs for both TLS and WE. However, these two inputs have 
opposing impacts upon the different objectives, as the sign on the correlation flips when looking at the 
correlation values with TLS versus the correlation values with WE for each input variable. Specifically, 
medium-range quantity had a -0.734 correlation on TLS and a 0.841 correlation on WE, whereas short-range 
quantity had a 0.734 correlation on TLS and a -0.841 correlation on WE.  
 As the short-range interceptors have a significantly higher Pk, increasing the short-range quantity will 
decrease the number of weapons expended as it will use less weapons to achieve a success. However, 
increasing the quantity of medium-range interceptors positively affects the time of the last success, as 
medium-range interceptors can intercept the targets at an earlier point in time within the simulation. 
Therefore, the optimal ratio of interceptor quantities depends on which objective is prioritized. A greater 
number of short-range interceptors will produce better results in terms of WE; however, a greater number 
of medium-range interceptors will produce better results in terms of reducing TLS. This demonstrates the 
utility of multi-objective optimization to evaluate the tradeoffs between different measures of significance.  

5 CONCLUSION AND FUTURE WORK 

The objective of this study was to develop a simulation optimization and analysis concept for future 
integration with US Navy modeling and simulation (M&S) tools. For a notional scenario, this study 
identified and defined key input categories to vary for a simulation of the ship’s defensive system, outputs 
to collect for the maritime AAW scenario, measures to optimize, and three distinct optimization cases. This 
study also developed a simulation optimization and analysis approach for an operationally-meaningful 
maritime AAW scenario modeled in EADSIM and optimized using a metaheuristic optimization program. 
This approach effectively demonstrated the ability to determine specific sensor and weapon input values 
that maximized, within the EADSIM scenario, the ship’s probability of raid annihilation while minimizing 
the number of intercept missiles used and the operational risk by destroying cruise missile threats as far 
away from the ship as possible. Furthermore, good sensor and weapon parameters were found using a 
relatively small number of simulation runs compared with a simple experimental design or full enumeration 
of the decision space. 
 Simulation optimization is a technically challenging endeavor especially for complex simulation 
environments. Certainly, the US Navy’s M&S federation qualifies as such an environment. Going forward, 
the goal is to infuse this M&S federation with a robust and flexible optimization and analytics capability 
that will allow engineers, analysts, and planners to quickly evaluate and identify optimal system 
improvements to counter evolving ASCM threats thereby allowing the US Navy to test and field new 

Figure 6: Case 3 pareto frontier. 
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capabilities at a pace that counters the advancing technology of adversaries. Ideally, this capability will 
provide the ability to quickly set up and configure common scenarios and make it possible to find and 
evaluate the best blue option(s) across a diverse range of possible red actions such as the number and types 
of threats and attack angles. These scenarios will be far more complex such as defending a fleet of ships.  
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