Статьи 2018 года (А...Я)



Абд Эльрахим А.К., Шихин В.А. Решение по мультиагентному представлению субъектов в задачах оптимального управления микроэнергосистемой // Научно-практический журнал «Прикладная информатика». Том 13. №1 (73). 2018. С. 121-127.

Брежнев Д.Ю., Допира Р.В., Судариков А.А. Методический подход к моделированию обеспечения сложных технических систем запасными частями // Международный научно-практический журнал «Программные продукты и системы» (Software & Systems), том. 31, № 2, 2018. С. 374–381. DOI: 10.15827/0236-235X.031.2. 374–381.
В статье рассмотрен методический подход к построению модели многоуровневой системы обеспечения запасными частями сложных технических систем. Модель предназначена для обоснования количественного и номенклатурного составов комплектов зенитных частей, имущества и принадлежностей в условиях реализации требований к оперативности восстановления работоспособности образцов техники в составе системы.

Гаряев Н.А., Рыбина А.В. Имитационная модель материально-технического обеспечения // Научно-практический журнал «Системные технологии», №26, 2018. С.142–149.
В статье рассмотрен алгоритм имитационной модели материально-технического обеспечения строительных объектов на языке программирования JAVA. Модель решает проблему выбора рационального пути доставки стройматериалов на удаленный строительный объект по временным и стоимостным характеристикам, а также дает комплексную оценку по выбранным параметрам.

Гордеев А.С., Мишин Б.С. Имитационная модель определения местоположения корневой системы плодовых растений // ISSN 0136-5835. Вестник Тамбовского государственного технического университета. 2018. Том 24. № 1. С.58-65.
Предложена имитационная модель, позволяющая на основании данных с приемных датчиков определять координаты местоположения корневой системы растений. Разработаны алгоритм и математическая модель определения координат базовой метки, которые предполагают наличие трех приемных датчиков, блока генератора случайных величин для входных параметров. Представлена программа реализации алгоритма определения координат базовой метки в среде AnyLogic.

Ефимушкина Н.В., Орлов С.П. Комплекс имитационных моделей вычислительных систем и сетей // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Казак А.Н. Применение дискретно-событийного моделирования в гостиничной деятельности // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Климентьев К.Е. Мультиагентное моделирование процессов распространения и взаимодействия инфицирующих сущностей // Программные продукты и системы / Software & Systems. 1 (31). 2018. С.72–78.
В статье рассматриваются основные подходы к мультиагентному моделированию процессов инфицирования, характерных для технических сетей и живой природы. Примерами таких процессов являются развитие эпидемий болезнетворных микроорганизмов среди живых существ, распространение компьютерных вирусов и червей, расширение лесных пожаров и т.п. Кратко обрисованы традиционные подходы к решению этой и смежной задач.

Козлова Л.П., Морозова Е.В., Козлова О.А. Имитационное моделирование процессов стеклотарного производства // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Комаров А.В., Петров А.Н., Сартори А.В. (2018) Модель комплексной оценки технологической готовности инновационных научно-технологических проектов // Экономика науки. Т. 4. № 1. С. 47–57.
Описана модель комплексной оценки технологической готовности инновационных научно-технологических проектов, являющаяся составной частью методики экспертной оценки проектов. Модель может быть использована как на этапе отбора заявок на финансирование проектов, так и для создания инструментов измерения уровня технологической готовности проектов в ходе их выполнения.

Кораблев Ю.А., Лосева Д.М. Разработка benchmark-модели перевернутого маятника для исследования отказоустойчивых систем управления в среде AnyLogic // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Краснов Ф.В., Докука С.В., Яворский Р.Э. Командообразования в научной деятельности: анализ подходов на основании имитационной модели для научно-технического центра в нефтегазовой отрасли // International Journal of Open Information Technologies ISSN: 2307-8162, vol. 6, no.1, 2018. P.17-24.
Авторы рассмотрели научную деятельность как коллективное, многокомпонентное действие и проанализировали методические основы командообразования для проведения научных исследований. Для проверки исследовательских вопросов был использован аппарат имитационного моделирования. Для калибровки имитационной модели были использованы открытые данные о результатах научной деятельности научно-технического центра Газпромнефть.

Краснов Ф.В., Докука С.В., Яворский Р.Э. Командообразования в научной деятельности: анализ подходов на основании имитационной модели для научно-технического центра в нефтегазовой отрасли // International Journal of Open Information Technologies ISSN: 2307-8162, vol. 6, no.1, 2018. С.17–24.
Авторы рассмотрели научную деятельность как коллективное, многокомпонентное действие и проанализировали методические основы командообразования для проведения научных исследований. Для проверки исследовательских вопросов использован аппарат имитационного моделирования. Авторы создали многоагентную имитационную модель процесса научной деятельности и провели ряд цифровых экспериментов. Для калибровки модели использованы открытые данные о результатах научной деятельности научно-технического центра Газпромнефть.

Курочкин Л.М., Чуватов М.В., Глазунов В.В., Чернышев А.С. Сравнение результатов моделирования транспортных потоков сплошносредными и дискретно-событийным методами // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Кутузов О.И., Татарникова Т.М. К ускорению имитационного моделирования // Материалы XXI Международной конференции по мягким вычислениям и измерениям (SCM – 2018). 23 – 25 мая 2018 г. Санкт-Петербургский ГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина).

Маслобоев А.В., Путилов В.А. Технология и средства автоматизации имитационного моделирования процессов управления региональной безопасностью // Международный научно-практический журнал «Программные продукты и системы» (Software & Systems), том. 31, № 2, 2018. С.343-352. DOI: 10.15827/0236-235X.031.2.343–352.
Работа посвящена созданию инструментария для решения задач информационной поддержки принятия решений в сфере управления региональной безопасностью. С этой целью разработан программный тренажерно-моделирующий комплекс информационной поддержки сетецентрического управления региональной безопасностью.

Перл И.А., Петрова М.М., Мулюкин А.А., Каленова О.В. Исполнение моделей системной динамики на основе непрерывного потока входных данных // Международный научно-практический журнал «Программные продукты и системы» (Software & Systems), том. 31, № 2, 2018. С.353-361. DOI: 10.15827/0236-235X.031.2.353–361.
В статье описывается новый подход к расчету моделей системной динамики. Входными данными для работы модели является набор статических известных данных. В результате моделирования разработчик получает набор системных или событийных характеристик, вычисленных на базе входных параметров модели. Данный подход широко применяется в различных отраслях, однако не является единственным сценарием.

Ружицкий Е., Коркин П.С. Имитационное моделирование в задаче о распределении инвестиционных ресурсов в организации // Моделирование, оптимизация и информационные технологии. Научный журнал, Том 6, № 1.
Предлагаемая модель имитационного моделирования основывается на том, что используется представление системы в виде черного ящика. Определяются все входы и выходы для первого слоя модели, которые представляются в виде генераторов и терминаторов транзактов. Для второго слоя анализируются основные процессы, связанные с взаимодействием организации и ее контрагентов, то есть рассматриваются материальные, информационные и финансовые потоки. Управление финансовыми потоками осуществляется в третьем слое модели, в нем определена структура операций по счетам бухгалтерского учета на базе того, что есть договорные отношения предприятия и требования в налоговом законодательстве.

Шамлицкий Я.И., Охота А.С., Мироненко С.Н. Сравнение адаптивного и жесткого алгоритмов управления дорожным движением на базе имитационной модели в среде AnyLogic // Международный научно-практический журнал «Программные продукты и системы» (Software & Systems), том. 31, № 2, 2018. С. 403–408. DOI: 10.15827/0236-235X.031.2.403-408.

Щетнева В.А., Лучанинов Д.В. Моделирование работы магазина сотовой связи «Мегафон» // Постулат. 2018. №1.
В статье рассмотрено имитационное моделирование работы регистратуры городской поликлиники на примере Биробиджана.



Яндекс.Метрика