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ABSTRACT 

It is arguably difficult to reproduce the results of published work in Modeling & Simulation (M&S). 

Authors have certainly raised concerns about this issue and attempts by journals and conferences are 

being made to improve the situation.  As part of a movement to tackle reproducibility in M&S, the 

Strengthening The Reporting of Empirical Simulation Studies (STRESS) reporting checklists were 

introduced in 2018.  The STRESS guidelines aimed to improve knowledge management in industry and 

to maximize the chance that all important M&S details are included when writing up simulation research 

for publication. We extend this work by providing an applied example of using the STRESS-ABS 

checklist for documenting an Agent Based Simulation model.  It is hoped that an applied example will 

both encourage and guide authors and practitioners to improve their reporting.   

1 INTRODUCTION 

The STRESS guidelines (Strengthening the Reporting of Empirical Simulation Studies) were introduced 

to improve the reproducibility of computer simulation models (Monks et al. 2018). This raises the 

question of why we should be worried about reproducibility, a topic which has been under discussion for 

several years in the modeling community. In 2014, a panel discussion on the future of simulation research 

argued that reproducibility is key to credibility in research and went further to suggest that automated 

provenance tracking, discoverability across the artifacts of M&S research and the appropriate use of 

Creative Commons licenses was also vital (Yilmaz et al. 2014). This was followed up in a panel 

discussion from the Winter Simulation Conference in 2016 (Uhrmacher et al. 2016) In this it was 
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suggested that repeatability, replicability, and reproducibility should be at the core of reporting of applied 

simulation modeling studies but finds that this is not always the case. 

 The argument in favor of reproducibility is that it allows models to be reused, to avoid reinventing the 

wheel and that it is a necessity in the era of Open Science, which aims to make research, particularly 

public-funded, more widely accessible outside of academia. While applied simulation papers currently 

include some information about the model and the experimentation, it is rare to find one that includes 

sufficient information for the work to be reproduced. This is not a “simulation only” problem, and 

scientists across the board are concerned about the quality of the descriptions of both computer simulation 

and experimental studies (Baker 2016).  

A wider discussion of Open Science and how its principles apply to the modeling and simulation 

community is given in (Taylor et al. 2017) but we further note that the benefits of good reproducibility 

practice might also include: 

 

 The advancement of operational knowledge (through reusing a published model to further 

investigate a system); 

 To enable reuse of knowledge (models are expensive to develop; reusing models (or model 

components) can save time and money in M&S projects that could be devoted to a wider ranging 

study or analysis forms); 

 To further conceptual modelling knowledge (a published model will argue how a 

conceptualization of a system has led to a given model, simulation, results and analysis; 

accurately reporting this conceptualization will help other researchers tackling similar problems 

in deciding what to model and what not to model; 

 To reuse data where none exists (in many M&S projects data cannot be collected or is limited. In 

this case expert opinion is captured and modelled and/or missing data is approximated; capturing 

these assumptions in systematic manner will help to understand the validity of the study and help 

others to understand and build on the techniques used); and  

 Testing of novel simulation methods (the validation of new analysis methods, algorithms, 

experimentation techniques require careful specification so that they can be assessed and reused 

elsewhere). 

 

 To summarize the full discussion of the issues in (Monks et al. 2018), there have been several papers 

that highlight issues with reproducibility in, e.g., forecasting (Boylan et al. 2015) and agent based 

modeling (Janssen 2017) with corresponding efforts in system dynamics (Rahmandad and Sterman 2012) 

and specific areas of agent based modeling (Grimm et al. 2006) to develop guidelines for modeling 

studies. These are a little disjointed and STRESS is introduced to give a comprehensive view of all three 

modeling paradigms: discrete-event simulation (DES), agent-based modeling (ABM) and system 

dynamics (SD) with specific checklists for each type of modeling study (freely available online at 

https://doi.org/10.1080/17477778.2018.1442155). We also note the efforts being made by the journal 

ACM Transactions on Modelling and Computer Simulation, which now provides an optional 

reproducibility review for submitted models as does the ACM SIGSIM PADS conference.  This “peer-

review” of results provides a “seal of reproducibility” and more faith in the results but, arguably, it may 

not give researchers the necessary documentation needed to independently reproduce the contents of a 

paper.   

This article goes beyond the initial description of STRESS to analyze how it can be used in practice, 

using the example of an ABM model of diseases by way of demonstration.  

2 BRIEF OVERVIEW OF STRESS 

The STRESS checklists attempt to provide guides for authors writing up applied simulation studies, 

ensuring that all of the necessary details of the study are described. While focused principally on 
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academic reports, it is also useful for practitioners as part of a knowledge management process. In 

developing the guidelines, we relied on good and bad examples of reporting within the literature as well 

as lessons learned from other guidelines. The authors are each experts in one or more of DES, ABM and 

SD, which allowed a certain amount of practical experience to be incorporated. One piece of work 

remaining at the end of the study was to apply the guidelines to a real problem, as is done in the following 

section.  

There are three checklists, STRESS-ABS, STRESS-DES and STRESS-SD, and while the details 

differ between the three checklists, the key areas for reporting remain the same. Each is split into six 

sections: objectives, logic, data, experimentation,  implementation and code access, covering all aspects 

of a modeling study that might need to be reproduced. We do not reproduce details of the checklists here 

and instead refer the interested reader to the full paper (Monks et al. 2018). 

3 STRESS: A CASE STUDY 

To illustrate how STRESS can be used to document a simulation study, we use a case study introduced in 

earlier work to illustrate approaches to Open Science in M&S (Fabiyi et al. 2016; Taylor et al. 2017).  

In what follows we describe the model and the experimentation carried out and use a STRESS record 

to ensure that all of the relevant characteristics of the modeling study have been described, working 

through the six sections in turn. The STRESS guidelines are deliberately not prescriptive as to how the 

checklists should be used with no requirements about the structure of a write up or the terminology that 

should be used. They are instead designed to be a checklist for both authors and reviewers to ensure that 

the work is reproducible.  We break the model documentation in to 6 sections: objectives, logic, data, 

experimentation, implementation, and code sharing.  Each section has a table that completes the checklist 

items.  Section 3.6 is a single checklist item.   

3.1 Objectives 

We describe an agent-based infection model implemented in REPAST (repast.github.io).  This “studies” 

the spread of infection in a population after an outbreak. The model is designed to be relatively 

straightforward, making it more obvious to see how the reporting has worked. Table 1 shows the checklist 

for objectives. 

Table 1: STRESS Checklist of Objectives. 

Section/Subsection Item Recommendation 

1. Objectives   

Purpose of the model 1.1 Explain the background and rationale for the model. The purpose of the 

model is to study infectious disease spread for various population dynamics. 

Model Outputs 1.2 State the qualitative or quantitative system level outputs that emerge from 

agent interactions within the ABS. The outputs of the model are the sizes of 

the infected, susceptible and recovered population. The output is recorded 

every five days (simulation time unit is day). 

Experimentation Aims 1.3 If the model has been used for experimentation, state the research questions 

that it was used to answer. 

The experimentation aim is to demonstrate the deployment of Agent-Based 

Simulation in Science Gateways/Open Science. 

3.2 Logic 

Agents can be infected, susceptible or recovered. When an infected agent approaches a susceptible agent, 

the latter becomes infected and if there is more than one susceptible agent in the cell, only one, randomly 

selected agent, is infected. Infected agents recover after a period and when recovered are assumed to have 

some immunity to being reinfected. This immunity decreases every time they are approached by an 
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infected agent and, when immunity reaches zero, the recovered agent becomes susceptible and can be 

infected again. 

The STRESS checklist follows and, as can be seen, contains a significant amount of information. We 

acknowledge that some of this material may be better placed in appendices in a real example of STRESS 

being used. Table 2 shows the logic checklist. 

Table 2: STRESS Checklist of Logic. 

Section/Subsection Item Recommendation 

2. Logic   

Base model overview 

diagram 

2.1 Provide one or more of: state chart, process flow or equivalent diagrams to 

describe the basic logic of the base model to readers.  Avoid complicated 

diagrams in the main text.  

Use case diagram of infectious disease model 

 
 

Base model logic 2.2 Give details of the base model logic. This could be text to explain the 

overview diagram along with extra details including ABS product and 

process patterns. Include details of all intermediate calculations.  

The model starts an infection outbreak with an initial population of infected 

and susceptible agents. Infected agents move close to susceptible agents and 

infect them while susceptible agents move where the least infected agents 

are located. Infected and susceptible agents interact with each other every 

simulation time unit (day). Infected agents recover after a period of time and 

become recovered with a level of immunity. When an infected agent gets in 

touch with a susceptible agent, the susceptible agent becomes infected. 

When an infected agent gets in touch with a recovered agent, the recovered 

agent decreases its immunity. When the immunity level is 0, the recovered 

agent becomes susceptible and can be infected again. The outbreak occurs 

annually. When this happens, the population changes to reflect the initial 

conditions taking into account the population of the previous year.    

Scenario logic 2.3 Give details of any difference in the model logic between the base case 

model and scenarios.  This could be incorporated as text or, where 

differences are substantial, could be incorporated in the same manner as 2.1. 

N/A (only parameter sweep) 

Algorithms 2.4 Provide further detail on any algorithms in the model that (for example) 
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Section/Subsection Item Recommendation 

mimic complex or manual processes in the real world. 

N/A 

Components 2.5 2.5.1. Environment 

Describe the environment agents interact within, indicating its structure, and 

how it is generated.  

Euclidean 2D space for free movement, Grid for neighborhood definition, 

Network for infection connections 

2.5.2. Agents 

List all agents and agent groups within the simulation. 

Initial population: {Infected=20, Susceptible=1500, Recovered=0} 

Infected 

Attributes: Location, Days infected: 

Logic 

01. Find where most susceptible are located 

02. Move towards this grid location 

03. If in contact with an agent{ 

05. If (contacted agent = susceptible){infect} 

06. If (contacted agent = recovered){reduce immunity}} 

07. Count days infected 

08. If (infected days = recovery days){change state and become recovered} 

 

Susceptible 

Attributes: Location 

Logic 

01. Find where least infected are located 

02. Move towards this grid location 

03. If in contact with an infected agent {change state and become infected} 

 

Recovered 

Attributes: Location, Immunity 

Logic 

01. Move randomly 

02. If in contact with an infected agent{reduce immunity by 0.5} 

05. If (immunity = 0){change state and become susceptible} 

 

Describe all decision-making rules that agents follow in either algorithmic 

or equation form.   

 The data that agents access (I.e. internal attributes or external 

information from the environment) and how it is used. 

 Internal distributions 

 The objectives agents seek to achieve. 

 Infected: move close to susceptible 

 Susceptible: move away from infected 

 The algorithms, optimizations, heuristics and rules that agents use to 

achieve objectives. 

 Infected: find where most susceptible are located 

 Susceptible: move where least infected are located 

 How agents work together within a group along with any rules for 

changes in group membership. 

 They do not work in groups 

 Predictions of future events and adaptive action.   

 N/A 
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Section/Subsection Item Recommendation 

2.5.3. Interaction Topology  

Describe how agents and agent groupings are connected with each other in 

the model define: 

 with whom agents can interact, 

 Interacting agents: infected with susceptible and recovered 

 how recipients of interactions are selected 

 Random selection 

 what frequency interaction occurs.   

 Every simulation time unit 

 How agents handle and assign priorities to concurrent events 

 No priorities (random execution of actions scheduled for the same time 

unit) 

2.5.4 Entry / Exit 

Where relevant, define how agents are created and destroyed in the model. 

All agents are created at initialization. They are not destroyed however they 

change state. 

3.3 Data 

The input parameters for the model include: 

 

 simulation period (specifies how many years the simulation will run);  

 recovered count (specifies the initial recovered population);  

 infected count (specifies the initial infected population); and  

 susceptible count (specifies the initial susceptible population). 

 

For this particular example, there is relatively little data but in a bigger study, this section may refer to 

publicly available datasets. Table 3 shows the Data checklist. 

Table 3: STRESS Checklist of Data. 

Section/Subsection Item Recommendation 

3. Data   

Data sources 3.1 List and detail all data sources. Sources may include: 

This is a demo model with no real data. 

Input parameters  3.2 List all input parameters in the model, providing a description of each 

parameter and the values used.   

Model parameters: 

 Initial population: {Infected=20, Susceptible=1500, Recovered=0} 

 Recovery days: {Uniform distribution (30,50)} 

Immunity: {Uniform distribution (5,10)} 

Pre-processing 3.3 Provide details of any data manipulation or filtering that has taken place 

before its use in the simulation.  

None. 

  

Assumptions 3.4 Where data or knowledge of the real system is unavailable, state and justify 

the assumptions used to set input parameter values and distributions; agent 

interactions or behaviour; or model logic. 

See above. 
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3.4 Experimentation 

We ran five experiments to produce five sets of results. We also created a simple visualization tool that 

allows easy analysis of infected/non-infected population trends. Following good Open Science practices, 

the model, results, visualization tool and summary pack have been deposited in an open access repository 

and assigned Digital Object Identifiers (DOIs) as follows: 

 

 REPAST Infection Model Example DOI Collection (summary pack) https://dx.doi.org/10.15169/sci-

gaia:1457690398.43 

 REPAST Infection Model Virtual Appliance https://dx.doi.org/10.15169/sci-gaia:1455182324.71 

 Graphical Visualization Tool for REPAST Infection Model https://dx.doi.org/10.15169/sci-

gaia:1457432416.29 

 REPAST Infection Model Experiment 1 Results https://dx.doi.org/10.15169/sci-gaia:1457431676.23 

 REPAST Infection Model Experiment 2 Results https://dx.doi.org/10.15169/sci-gaia:1457431835.0 

 REPAST Infection Model Experiment 3 Results https://dx.doi.org/10.15169/sci-gaia:1457432005.33 

 REPAST Infection Model Experiment 4 Results https://dx.doi.org/10.15169/sci-gaia:1457432129.78 

 REPAST Infection Model Experiment 5 Results https://dx.doi.org/10.15169/sci-gaia:1457432242.73 

 

Table 4 shows the Experimentation checklist. 

Table 4: STRESS Checklist of Experimentation. 

Section/Subsection Item Recommendation 

4. Experimentation    

Initialisation 4.1 State if a warm-up period has been used, its length and the analysis method 

used to select it. 

No warm-up period 

State what if any initial agent and environmental conditions have been 

included.   

Initial population: {Infected=20, Susceptible=1500, Recovered=0} 

Run length 4.2 Detail the run length of the simulation model and time units. 

20 years 

Estimation approach 

 

4.3 State if the model is deterministic or stochastic. 

Deterministic 

3.5 Implementation 

The ABS model was implemented in Repast Simphony.  Full details are found in Table 5. 

Table 5: STRESS Checklist of Implementation. 

Section/Subsection Item Recommendation 

5. Implementation   

Software or 

programming language 

5.1 State the operating system and version and build number.  

It can run in any OS, Repast Simphony 2.1, Java 7.5.1.  

Random sampling  5.2 State the algorithm or package used to generate random samples within the 

software/programming language used.  

Repast Random Helper. 

Model execution 5.3 If the ABS model has a time component, describe how time is modelled 

(e.g. fixed time steps or discrete-event).   

Fixed time steps 

Random execution of agent actions 

Last priority for recording outputs 
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Section/Subsection Item Recommendation 

First priority for annual outbreak 

System Specification 5.4 State the model run time and specification of hardware used.   

Runtime: 20 min 

VM with all dependencies (repast libraries, model source code and 

scenario, java runtime) 

All results and software can be found in the DOI Collection 

https://dx.doi.org/10.15169/sci-gaia:1457690398.43 

3.6 Code Access  

The STRESS record for these experiments was created and assigned the following DOI: 

http://dx.doi.org/10.15169/sci-gaia:1494421530.94. 

4 CONCLUSIONS 

Over a series of recent publications, authors within the field of computer simulation have highlighted a 

problem with the reproducibility of simulation studies.  The STRESS guidelines were introduced to 

improve the reporting of studies and minimize the chance that important details of the modelling were 

omitted from public records.  This paper extends this work by providing an applied example of STRESS 

to an agent based simulation.   

 Reproducibility of results is one aspect of Open Science, a “movement” that encourages the digital 

sharing of the scientific artefacts.  While reproducibility is important, we hope that our community will 

encourage the appropriate open sharing of models, data, results and software that will enable us all to 

build on each other’s work and perhaps benefit our discipline as a whole. 
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