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ABSTRACT

This paper presents a novel agent-based simheuristic (ABSH) approach that combines simheuristic and
multi-agent system to efficiently solve stochastic combinatorial optimization problems. In an ABSH
approach, multiple agents cooperate in searching a near-optimal solution to a stochastic combinatorial
optimization problem inside a vast space of feasible solutions. Each of these agents is a simheuristic
algorithm integrating simulation within a metaheuristic optimization framework. Each agent follows a
different pattern while exploring the solution space. However, all simheuristic agents cooperate in the
search of a near-optimal solution by sharing critical information among them. The distributed nature of the
multi-agent system makes it easy for ABSH to make use of parallel and distributed computing technology.
This paper discusses the potential of this novel simulation-optimization approach and illustrates, with a
computational experiment, the advantages that ABSH approaches offer over traditional simheuristic ones.

1 INTRODUCTION

Simulation with its capability of modeling complex systems involving uncertainty has become a popular tool
for modeling real-life business processes. Today, we see simulations being used in several areas including but
not limited to supply chain management, transportation and logistics, finance, telecommunication networks,
and health care management. Typically, when an analytical model is not available to gain insights about how
these systems and processes are operating, simulation is the tool of choice of practitioners in their decision-
making process. Recent advances in computing hardware coupled with the offering of powerful software
has made simulation even a more attractive method for analyzing complex systems under uncertainty (Lucas
et al. 2015).

Despite the power of simulation in modeling complex systems, pure simulation should not be used
alone to solve optimization problems. Instead, simulation-optimization methods are needed to obtain high-
quality / near-optimal solutions to stochastic optimization problems. For instance, for a decision maker
interested in developing an aggregate production plan that minimizes overload time, or a routing schedule
that minimizes costs while adhering to some capacity constraints of the vehicles, optimization is the right
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tool of choice. It is important to note that most optimization models typically assume that the inputs and
the constraints are deterministic and are known with certainty. This certainly simplifies the optimization
problem to hand. However, this simplification comes at the expense of not being able to model the real-world
process accurately. In the real-world, there are several uncertainties. For instance, for the decision maker
developing an aggregate production plan that minimizes overload time, inputs such as customer demand
and manufacturing times could be uncertain. Similarly, for the optimization problem that aims to find the
routing schedule that minimizes costs, processing and traveling times could be uncertain. Failure to address
the real-life uncertainty that characterizes these systems may lead to suboptimal decisions.

A close look at the literature reveals that it is actually possible to marry simulation and optimization
tools (Coulouris et al. 2005). The so-called simulation-optimization (SO) methods are proposed to take the
advantage of both methods simultaneously. In particular, SO methods can deal with optimization problems
with stochastic components as well as simulation models with optimization requirements. One special
class of SO methods is simheuristics (Juan et al. 2015), which is a promising approach for solving real-life
stochastic combinatorial optimization problems (COPs) that are typically large-scale and NP-hard. As it
is almost impossible to solve large-scale problems in reasonable computing times, traditionally, heuristics
and metaheuristics have been employed to obtain near-optimal solutions in low computing times. The
idea behind simheuristic algorithms is to integrate simulation methods into a metaheuristic optimization
framework to deal with real life COPs. The use of simulation in a metaheuristic optimization framework
allows one to address stochastic variables in the objective function and in the constraints of the optimization
model. In other words, it is the simulation component that addresses the uncertainty in the model and that
guides the metaheuristic component for a more efficient search. In addition, the simulation component
allows one to perform risk analysis. Unlike deterministic COPs, where the focus is on finding the solution
that minimizes costs or maximizes profits, in a stochastic COP, it is rarely enough to identify the solution
that minimizes expected costs or maximizes expected profits. One would be interested in identifying some
additional information such as the variance or the quantiles of each candidate solution to be able to make
more informed decisions. As simulation component can provide these statistics, it also arises as a natural
risk analysis tool.

We should also introduce distributed and parallel computing systems (DPCS), which have been utilized
to solve complex COPs. In their most general form, DPCS aggregate multiple computing resources that
work collaboratively to achieve a common objective (Coulouris et al. 2005). DPCS take different forms
such as grid computing (Foster and Kesselman 2003), cloud computing (Armbrust et al. 2009), volunteer
computing (Sarmenta 2001) and desktop grids (Cérin and Fedak 2012). Cloud computing allows users
avoid large up-front investments on the resources and pay only for the resources they consume and thus
is particulary attractive for small and medium enterprises (SMEs). Computing and desktop grids, on the
other hand, work similarly by focusing on utilizing surplus or idle computing resources.

Multi-agent metaheuristic frameworks have been employed in the past to solve deterministic versions
of COPs (Martin et al. 2016). Similarly, DPCS have been used in the past to solve stochastic COPs (Juan
et al. 2013). Following these initiatives, the main contribution of this work is to discuss how simheuristic
approaches can be extended into a more general approach that is called agent-based simheuristic (ABSH).
In an ABSH approach, multiple agents cooperate in searching a near-optimal solution to a stochastic COP
inside a vast space of feasible solutions. Each of these agents is a simheuristic algorithm integrating
simulation within a metaheuristic optimization framework. Each agent follows a different pattern while
exploring the solution space (e.g., by employing a different seed for the pseudo-random number generator,
different parameter settings, or even different metaheuristic frameworks). However, all simheuristic agents
cooperate in the search of a near-optimal solution by sharing critical information among them (e.g., by
using a shared memory where recent ‘discoveries’ are registered).

The rest of the paper is organized as follows: Section 2 provides an overview of simheuristics algorithms;
Section 3 proposes how these algorithms can be extended to an agent-based approach to increase their
efficiency; Section 4 discusses the potential of DPCS-based approaches in solving real-life SME problems;
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Section 5 introduces the stochastic COP that will be used in this paper to illustrate the use of our ABSH
approach; Section 6 analyzes a numerical experiment that illustrates the benefits of using an ABSH approach
over a classical simheuristic one. Finally, Section 7 highlights the main findings of our work and points
out future research lines.

2 SIMHEURISTICS FUNDAMENTALS AND APPLICATIONS

As mentioned earlier, real-life COPs are usually large-scale problems involving some type of uncertainty.
Therefore, simheuristics, which combine metaheuristics with simulation techniques, are particularly attrac-
tive to solve those problems. The simulation component addresses the stochastic nature of the model, which
could be located in the objective function or in the set of constraints, while the metauheristic component
deals with the optimization piece and focuses on identifying the “best” solution under the given set of
constraints.

The underlying assumption behind a simheuristic approach is that promising solutions for a deterministic
version of a COP are also likely to be good solutions for the stochastic version of the problem. It is important
to note that this does not imply the deterministic version and the stochastic version share the same solution.
The deterministic version of the COP only helps us to generate good solutions for the stochastic COP.
Although this sounds like a simplifying assumption, our experience shows that indeed in most practical
situations, this assumption is reasonable.

The typical approach in approximating a stochastic COP instance with its deterministic counterpart is
to replace each random variable in the stochastic COP instance with its expected value. Notice that this
approach is optimistic in the sense that it does not consider any variability around the random variables.
Nevertheless, it is an easy way of obtaining the deterministic COP instance from a real-life stochastic
COP instance. The next step is to solve the deterministic optimization problem. This is usually done
by a metaheuristic-driven algorithm, which performs an (efficient) search in the solution space of the
deterministic problem. This process continues iteratively until high-quality feasible solutions are identified
for the deterministic optimization problem. This process is summarized in Figure 1.After some promising
solutions are identified for the deterministic COP, these solutions are fed into the simulation. One important
capability of the simulation model is its ability to model the stochastic variables with general theoretical
probability distributions such as Normal distribution, Gamma distribution, and Beta distribution or even
with an empirical distribution. The simulation runs are performed and the estimated values provided by
the simulation are recorded. These solutions are considered as candidate solutions for the stochastic COP.
Recall that the simulation component and the metaheuristic component work iteratively at this stage. Thus,
the candidate solutions provided by the simulation serve as a feedback mechanism for the metaheuristic
component. Usually, we set an upper bound for the computational time that can be consumed by the
iterative process and the search stops when this upper bound is reached and a set of good solutions are
provided.

As discussed earlier, the objective function of stochastic COPs usually includes randomness and the
goal of the stochastic COP is to obtain a solution that maximizes (minimizes) the expected value of the
objective function. However, this is usually not enough information for the decision maker, who might be
also interested in some quartiles of the objective function. For instance, in addition to the expected profit,
the decision maker may want to know about the probability of making a profit greater than a specific value.
In order to compute this probability, the decision-maker needs to have access to the probability distribution
of the values generated by several alternative solutions. An important aspect of the simheuristic method is
its capability of providing these probability distributions (with the help of the simulation component) thus
introducing risk analysis criteria in the decision-making process.

We conclude this section by providing a brief review of the literature (in the chronological order) on
the use of simheuristics to solve stochastic COPs that arise in different fields. We note that our review is
not exhaustive and we only discuss some notable applications here. We refer the reader to Table 1 for a
summary of the related literature. The first application of simheuristics was in the area of vehicle routing
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Figure 1: Solving deterministic vs. stochastic COPs.

problems (VRP). Juan et al. (2011) consider a vehicle-routing problem with stochastic demands and design
a basic simheuristic approach to solve this problem. The authors continue the study of the stochastic VRP
in Juan et al. (2013) with the analysis of the parallel and distributed computing techniques to efficiently
solve this problem. Juan et al. (2014b) consider the stochastic version of an inventory routing problem with
stock-outs and design a simheuristic to solve this problem. Juan et al. (2014a), on the other hand, propose
a simheuristic algorithm for solving the permutation flow-shop problem with stochastic processing times.
An example of simheuristic application for solving the arc-routing problem with stochastic demands is
discussed in Gonzalez-Martin et al. (2018). Another interesting application of the simheuristic approach is
in the area of waste collection management. Gruler et al. (2017b) consider the stochastic waste-collection
problem with a single-depot, while Gruler et al. (2017a) extend the analysis to the multiple-depot case.
De Armas et al. (2017) analyze the stochastic uncapacitated facility location problem with a simheuristic
approach. Pagès-Bernaus et al. (2017) consider the problem of designing e-commerce supply chains and
propose a simheuristic approach for the stochastic capacitated facility location problem that arises in this
context. Very recently, Gruler et al. (2018) tackle a stochastic inventory routing problem with a variable
neighborhood search simheuristic and Panadero et al. (2018) use the same approach in the context of
selecting a portfolio of projects under uncertainty. We contribute to this literature by offering an agent-based
simheuristic that employs distributed and parallel computing techniques to efficiently solve stochastic COP
instances. We illustrate our approach in the context of a stochatic team orienteering problem discussed in
Section 5.

3 AGENT-BASED SIMHEURISTICS

We propose agent-based simheuristics as a multi-agent extension of the simheuristic concept reviewed in
the previous section. In agent-based simulation, systems are modeled as a set of autonomous agents that
interact among them in order to achieve a common goal. Similarly, in ABSH, each agent is an autonomous
and differentiated simheuristic algorithm that interacts with the rest of the agents while searching for a
near-optimal solution to a complex and stochastic COP (Figure 2). Similar to the way multi-agent system
benefits from distributed and parallel computing systems (Macal and North 2010), the distributed and
autonomous nature of agents in ABSH makes it a good candidate for executing it on a distributed and
parallel computing platform.
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Table 1: Application of simheuristic approaches in different areas.

Application/Problem Paper
Stochastic vehicle-routing problem Juan et al. (2011); Juan et al. (2013)

Stochastic inventory-routing with stock-outs Juan et al. (2014b)
Stochastic multi-period inventory routing Gruler et al. (2018)
Stochastic permutation flow-shop problem Juan et al. (2014a)

Distributed computer networks Cabrera et al. (2014)
Stochastic arc-routing problem Gonzalez-Martin et al. (2018)

Stochastic waste collection Gruler et al. (2017a), Gruler et al. (2017b)
Stochastic uncapacitated facility location De Armas et al. (2017)
Stochastic capacitated facility location Pagès-Bernaus et al. (2017)
Stochastic project portfolio selection Panadero et al. (2018)

Figure 2: Scheme of an agent-based simheuristic approach.

Thus, in an ABSH environment, a number of agents cooperate among them to complete a more
effective search of the vast solution space. Each of these agents is an autonomous simheuristic algorithm
integrating simulation within a differentiated metaheuristic optimization framework. Accordingly, each
agent follows a distinct pattern while exploring the solution space. This diversified behavior could be
achieved by employing different strategies, e.g.: (i) assigning a different seed to the pseudo-random number
generator that the metaheuristic component utilizes to introduce a random behavior into its searching
process; (ii) in the case of metaheuritics employing biased-randomized techniques (Grasas et al. 2017),
using different skewed probability distributions (e.g., geometric, decreasing triangular, etc.) to introduce
some bias in the searching process; (iii) assigning different configurations to the parameters that characterize
the metaheuristic component in each agent, including those affecting the local search, perturbation, and
acceptance criterion stages; (iv) using different metaheuristic frameworks for each agent, e.g., while some
agents can use an iterated local search framework (Lourenço et al. 2010), others can use a variable
neighborhood search (Hansen and Mladenović 2014), a greedy randomized adaptive search procedure
(Festa and Resende 2002), a tabu search (Glover and Laguna 2013), or any other similar metaheuristic
framework; and (v) any combination of the above. Despite each agent being autonomous, all agents
cooperate by sharing relevant information among them during the searching process. In particular, agents
can: (i) make use of a quick-access shared memory (e.g., a hash map) where they register high-quality
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components for a potential solution, such as the best way found so far to connect a given set of customers
in the case of a routing problem; or (ii) share a new base solution that improves the existing ones and that
can be used by a user-defined percentage of the agents to update their base searching position.

Notice that ABSH algorithms can be used in solving all the stochastic COPs where single-agent
simheuristics have been used already. The main difference, however, is that ABSH algorithms benefit from
distributed and parallel computing systems as well as from the cooperation among agents, which might
reduce the computation times requested to reach near-optimal solutions in the case of complex, large-scale,
and stochastic COPs. This might be an important contribution specially in sectors such as logistics and
transport systems in smart cities or telecommunication systems, where decisions need to be made in very
short time periods.

4 POTENTIAL FOR DISTRIBUTED AND PARALLEL COMPUTING SYSTEM

The distributed and autonomous nature of agents in ABSH means that agents can work independently
but with regular communications between them to share information as explained in the previous section.
Hence, ABSH is a good candidate for parallelization. We can use suitable distributed and parallel computing
system such as cloud computing, grid computing, computer cluster, or distributed computer. In our research,
we are interested in helping small and medium enterprises because they generate a critical piece of riches
in all developed economies. However, these enterprises usually lack computational resources despite the
fact that a significant number of them does need these resources to be able to solve their business problems
that involve simulation-optimization.

DPCS offer two main alternatives to the computing needs of the SMEs. The first alternative for the
SME is to use the resources provided by an external source. These resources could be in the form of virtual
machines that provide a cloud platform for the company. The second and perhaps more trivial alternative
for the SME is to use its underutilized computing resources (i.e. computer or desktop grid). This approach
is particularly attractive to the SME due to the issues related to costs, information security, and energy
consumption. It is cost-effective as the company is using its own resources and does not need to pay to a
third party for resources. It is more secure because the company does not have to share any information
with an external source. Finally, it is environmentally friendly as it consumes less energy (Cabrera et al.
2014).

A natural question to ask is then how the company can actually form these desktop grid systems and use
its underutilized resources. The first task would be to identify computers with more computing power or
computers that are idle during some days or parts of the day. The idea is to aggregate computational resources
from these different computers that form a network and run simultaneously thousands of instances of a
simulation-optimization algorithm. With the availability of more resources, more instances will be executed
simultaneously and this will reduce the computational time needed to identify near-optimal solutions. It
is important to note that this concept has been used successfully in several realistic applications. We refer
the reader to (Lázaro et al. 2012) for an example application.

5 THE STOCHASTIC TEAM ORIENTEERING PROBLEM

The team orienteering problem (TOP) is a variant of the well-known vehicle routing problem in which a set
of vehicle tours are constructed in such in a way that: (i) the total collected reward received from visiting
a subset of customers is maximized; and (ii) the length of each vehicle tour is restricted by a pre-specified
limit (Figure 3).

While most existing works refer to the deterministic version of the problem and focus on maximizing
total reward, some degree of uncertainty (e.g., in customers’ service times or in travel times) should be
expected in real-life applications. Accordingly, some authors have proposed a simheuristic algorithm for
solving the TOP with stochastic travel times (Panadero et al. 2017). These authors consider the problem
of a company that carries out repairs. The company employs m repair people who are each paid to work
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Figure 3: The team orienteering problem with stochastic travel times.

for T hours per day. The repairs are spread out over a geographical area and the repair people must travel
to each site to work on a job. At the start of each day, the company receives a list of repair jobs that it has
been asked to carry out, and it needs to make decisions over which of these jobs are accepted and how to
assign them to its staff. Each job has an associated reward value, which is known in advance. It is assumed
that the travel time between each pair of jobs is a random variable following a known distribution. This
means that standard methods for deterministic problems are not suitable, and a simulation-optimization
approach might be necessary to account for the system randomness.

In a stochastic TOP, several statistical properties of the generated solution should be considered apart
from its associated expected reward. In effect, in a stochastic environment one could be interested in
solutions that offer high reliability or robustness in terms of the number of times that the threshold is
violated or the number of jobs served out of time, i.e.: one solution (distribution plan) A would be more
robust than other B if, and only if, A shows a better behavior than B when both are considered under
a stochastic scenario. In other words, apart from measuring the cost of each solution, it is necessary to
analyze how well each solution can support uncertainty conditions without degenerating in other properties
such as reliability or robustness.

6 COMPUTATIONAL EXPERIMENTS

With the objective of analyzing how an agent-based approach affects both the quality of the solutions
provided by our algorithm and the associated computational time, we performed an experiment using a
subset of benchmark instances proposed in Chao et al. (1996), which are available in the repository (https:
//www.mech.kuleuven.be/en/cib/op/instances). We have selected this benchmark for our experimentation,
because is widely used in the literature. The instances that compose the benchmark are divided into seven
different sets as a function of the number of customers. Each instance in the benchmark is identified
following the nomenclature pX.Y.Z, where X is the number of sets; Y is the total number of vehicles;
and Z identifies the maximum allowed length for the vehicle tours. These instances are deterministic, so
we extended them to stochastic ones by employing Log-Normal distributions to model travel times, as
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described in Panadero et al. (2017). The experiment was aimed at answering the following question: “for
each instance, which is the best solution that our algorithm can provide in a reasonable time (less than 1
minute) using different scales of agents?”.

To answer the previous question, we designed a simple multi-agent model in which each agent was
an instance of our algorithm. Each agent used a different seed for the pseudo-random number generator.
This made each agent explore different locations in the solution space. At this early stage, we have not
addressed issues related to the synchronization and communications between agents. The solutions depend
on the distributed platform used and the characteristics of the stochastic COP. In our experimental setting,
all agents share a cache memory mechanism (Juan et al. 2011), which records the best-found-so-far routes.
This mechanism is implemented using a hash-map data structure, which is constantly updated by all the
agents whenever a better route is found. We also had not applied any fine-tuning to optimize the parallel
execution of the agents, since our goal was to prove that our algorithm is robust and can provide efficient
solutions to any STOP problem without any initial adjustments. We ran our experiment on a multi-core
processor Intel Xeon E5-2650 v4 with 32GB RAM. This platform represents a simple setting in a small
enterprise.

Table 2 shows the computational results obtained in the previously described experiment. The column
1 shows the obtained reward. The remaining columns show the time required to reach this reward using
different number of agents. The results show that the time required to obtain the reward is reduced, for all the
considered instances, as the number of parallel agents is increased. Figure 4 depicts a visual representation
of the speedup as the number of parallel agents is increased. As is shown in this figure, as the number of
parallel agents increases, the speedup also increases. Focusing on the maximum number of parallel agents
used in this experiment (8), we obtain a minimum speedup of 3.76 for the instance p6.2.n, and a maximum
speedup of 8.24 for the instance p3.3.o, making clear the benefits of using paralell agents.

Table 2: Reward obtained for a subset of TOP instances, and the computational time needed to reach the
reward using 1,2,4 and 8 agents.

Instance Reward 1 Agent (Serial exec.) 2 Parallel Agents 4 Paralell Agents 8 Parallel Agents
[1] (sec.) [2] (sec.) [3] (sec.) [4] (sec.) [5]

p3.2.s 800 2.61 2.13 1.46 0.35
p3.3.o 580 47.92 31.44 26.86 5.81
p5.2.p 1095 59.07 41.11 25.90 11.86
p5.2.z 1545 40.97 32.95 26.35 7.42
p6.2.n 1218 100.30 74.25 43.78 26.62
p6.3.k 828 48.16 32.75 28.66 11.74
p6.4.n 954 120.00 66.70 50.98 20.51

Finally, Figure 5 shows a 3D representation for one instance (i.e. p6.4.n). This figure shows the
evolution of the solution quality as we vary both the computing time and the number of agents. As
expected, an increase in the number of agents increases the quality of the solution. The increase in the
computation time increases the solution quality.

7 CONCLUSIONS

Simulation with its capability of mimicking complex systems has been a very popular approach in recent
years to solve real-life problems involving uncertainty. However, simulation itself is not a technique to
be used for optimization purposes. For example, simulation alone cannot be used to solve combinatorial
optimization problems. Optimization models, which are designed to find the “best” solution to a problem,
on the other hand, usually work under the assumption that all inputs are deterministic and thus lack the
ability to incorporate random inputs into the solution process. For instance, a combinatorial optimization
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Figure 4: Speedup of each instance as the number of parallel agents increases.

Figure 5: Surface plot for expected reward vs. time and number of agents for the instance p6.4.n.
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problem involving uncertainty cannot be solved with a pure deterministic optimization algorithm. In
other words, neither simulation nor optimization alone is enough to address stochastic combinatorial
optimization problems. Hybrid approaches such as simheuristics have been proposed to combine the power
of simulation and optimization to solve real-life optimization problems under uncertainty. It is no surprise
that these approaches have already been used in several areas such as transportation, logistics, supply chain
management, and telecommunication networks, and are gaining more importance as the real-life systems
are becoming more complex.

This paper has also demonstrated the benefit of distributed and parallel computing techniques to
agent-based simheuristics, in which each agent implements a different simheuristic setting, and all agents
cooperate among them by sharing critical information during the exploration of the solution space. These
concepts have been tested in solving a popular stochastic combinatorial optimization problem, and the
benefits of using an agent-based simheuristic approach over using a traditional one have been analyzed. In
addition, we have discussed the potential benefits of distributed and parallel computing systems for small
and medium enterprises, which often lack advanced technical skills and modern equipment.

Being an early work, many research lines remain open to be explored. Among them: (i) to test
agent-based simheuristic approaches in solving stochastic combinatorial optimization problems in the fields
of logistics, transportation, telecommunication networks, production, or finance; (ii) to develop cooperation
protocols among the multiple agents that increase the effectiveness of the proposed agent-based simheuristic
approach under various distributed and parallel computing platforms.
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Gruler, A., C. L. Quintero-Araújo, L. Calvet, and A. A. Juan. 2017b. “Waste Collection under Uncertainty: a
Simheuristic based on Variable Neighbourhood Search”. European Journal of Industrial Engineering 11
(2): 228–255.
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