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ABSTRACT

Autonomous ridesharing systems (ARS) promise many societal and environmental benefits, including
decreased accident rates, reduced energy consumption and pollutant emissions, and diminished land use for
parking. To unleash ARS’ potential, stakeholders must understand how the degree of passenger participation
influences the ridesharing systems’ efficiency. To date, however, a careful study that quantifies the impact
of user participation on ARS’ performance is missing. Here, we present the first simulation analysis to
investigate how and to what extent user participation affects the efficiency of ARS. We demonstrate how
specific configurations (e.g., fleet size, vehicle capacity, and the maximum waiting time) of a system can be
identified to counter the performance loss due to users’ uncoordinated behavior on ridesharing participation.
Our results indicate that stakeholders of ARS should base decisions regarding system configurations on
insights from data-driven simulations and make tradeoffs between system efficiency and price of anarchy
for desired outcomes.

1 INTRODUCTION

Real-time ridesharing (or dynamic carpooling) services have emerged as a convenient and cost-efficient
option for commuters to mobilize themselves in cities (Furuhata et al. 2013). These ridesharing systems
dynamically assign passengers to unoccupied seats in (possibly the same) vehicles that satisfy the travelers’
trip constraints. In doing so, they are transforming urban transportation in an economically feasible,
environment-friendly, and socially beneficial way (Furuhata et al. 2013; Shen et al. 2016). Recent
advances in autonomous driving technology accelerate this transformation because they have the potential
to evolve traditional carpooling services into autonomous ridesharing systems (ARS) (Santi et al. 2014;
Shen and Lopes 2015; Shen et al. 2016; Alonso-Mora et al. 2017). Autonomous ridesharing systems
eliminate the strategic behavior of drivers, making it possible for centralized dispatching. Through system-
wide coordination, ARS promise a host of social and environmental benefits, including alleviated traffic
congestion, reduced energy consumption and greenhouse gas emissions, less need for land use, as well as
increased safety (Shen and Lopes 2015; Shen et al. 2016).

Prior studies show that three key factors influence the performance of autonomous ridesharing sys-
tems (Santi et al. 2014; Gargiulo et al. 2015; Shen et al. 2016; Alonso-Mora et al. 2017). The three
factors are: (1) the trip-vehicle assignment (i.e., scheduling, routing, and pricing) algorithms used to match
the requests to the vehicles and to compute the fares for the trips (Cordeau 2006; Santi et al. 2014; Shen
et al. 2016; Alonso-Mora et al. 2017); (2) the physical structure of the transportation network, such as
road networks, the fleet size, the vehicle capacity and the request distribution (Alonso-Mora et al. 2017);
and (3) user participation (Shen and Lopes 2015; Shen et al. 2016; Gargiulo et al. 2015). To unleash
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ARS’ potential, it is important for the stakeholders to understand how these factors influence the systems’
performance (Shen and Lopes 2015; Gargiulo et al. 2015; Alonso-Mora et al. 2017).

Despite much research on ridesharing, most of them focus on the dynamic assignment problem and
the network infrastructure (Cordeau 2006; Santos and Xavier 2013; Shen et al. 2016; Santi et al. 2014;
Alonso-Mora et al. 2017). On the one hand, stakeholders of ARS might not be able to implement efficient
policies to regulate the systems for societal benefits without knowing how users’ individual behavior
influences the systems’ efficiency Shen et al. (2017). On the other hand, little attention has been paid to
understanding how passengers’ uncoordinated behavior on deciding whether to opt in ridesharing or not
affects the systems’ performance (e.g., total operational cost). However, passengers are likely to opt out of
shared rides due to a variety of concerns, including privacy, quality of service, reputation and trust Shen et al.
(2016). It remains unknown that to what extent such uncoordinated behavior on ridesharing participation
diminishes the efficiency of ARS.

To fill the gap, we present the first simulation analysis to quantify the impact of user participation on
the efficiency of autonomous ridesharing systems with different configurations. Our work advances the
state of the art in the following ways:

• We describe a modular, agent-based platform, called SpaceTime for Autonomous Ridesharing
Systems (STARS), for simulating large-scale autonomous ridesharing systems.

• We conducted extensive experiments on the STARS platform with 96 different sets of system
configurations using the travel demand information extracted from the New York City Taxi trip
public data. Experimental results demonstrate that tradeoffs between system efficiency and the
price of anarchy are necessary and are typically viable in order to achieve desired outcomes.

2 SIMULATING AUTONOMOUS RIDESHARING SYSTEMS

This section discusses methods for solving the trip-vehicle assignment problem, and approaches for modeling
users’ choice of ridesharing participation.

2.1 Trip-Vehicle Assignment

Traditional algorithms (e.g., the branch-and-cut algorithm (Cordeau 2006), and the annealing meta-heuristic
algorithm (Braekers et al. 2014)) for the trip-vehicle assignment problem usually suffer scalability problems
and are not applicable to large ridesharing systems that have thousands of vehicles, requests, and streets.
This is primarily due to the large search space and the spatial-temporal constraints in the dynamic ridesharing
problem (Furuhata et al. 2013; Alonso-Mora et al. 2017).

Recently, Alonso-Mora et al. (2017) extended the static shareability network model by Santi et al.
(2014) to dynamic ridesharing with high-capacity vehicles (serving up to ten passengers at the same time).
They introduced an anytime algorithm that can compute optimal solutions to the trip-vehicle assignment
for large-scale ridesharing systems in real time (Alonso-Mora et al. 2017). The method consists of the
following three steps: generating the request-vehicle (RV) graph, generating the request-trip-vehicle (RTV)
graph, and computing the optimal assignment. The anytime approach also runs a load rebalancing process
to redistribute the idle vehicles to pick up unassigned requests.

The STARS platform in our work utilizes the anytime algorithm to allow simulating real-time operations
of city-scale ridesharing systems.

2.2 Modeling User Participation

In our work, we used Price of Anarchy (PoA) (Roughgarden 2005) as the indicator to quantify the extent
to which passengers’ uncoordinated behavior of ridesharing participation diminishes ARS’ performance.
The is because price of anarchy has been used as a measure to quantify how the efficiency of a system
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degrades due to uncoordinated behavior of its agents in many areas, including transportation systems (Youn
et al. 2008), smart buildings and power grids (Shen et al. 2017).

We take a data-driven approach to compute the price of anarchy. Specifically, we select different
portions of the passengers as participants, and the rest of the population as non-participating riders. We
assume that each of the selected choice profiles follows a stochastic user equilibrium (Daganzo and Sheffi
1977): no user believes she can improve her utility by unilaterally changing her decision on whether to
participate to not. This assumption allows us to model passengers’ choice behavior based on real-world
data instances rather than synthesized samples. Similar assumptions are also made in literature (Youn et al.
2008).

3 SIMULATION PLATFORM

In this section, we describe the SpaceTime for Autonomous Ridesharing Systems (STARS) simulation
platform. We first introduce the basic design of STARS and then discuss details of its implementation.

3.1 System Design

STARS is a multi-agent simulation platform on top of a simulation framework called Spacetime (Valadares
et al. 2016; Lopes et al. 2017). Spacetime follows a proof-of-concept paradigm called Predicate Collection
Classes (PCCs) (Lopes et al. 2017) to increase modularity. The design of STARS consists of five
aspects: frame, time flow, data flow control, data model, and data store. In STARS (See Figure 1a),
applications compute within a both computational space-constrained and time-constrained frames. That is,
these applications operate in an environment with a fixed portion of the shared data during a fixed period of
time. The locally modified data may be pushed back to the shared data store at the end of each time step.
Pulling data from and pushing data to the data store is done declaratively using two small domain-specific
languages: one is for handling sets of objects used for specifying numerical operations on data sets, and
the other is for controlling the directions and permissions of data flow.

In the original design of Spacetime, each application is encapsulated and is independent of each
other (Valadares et al. 2016; Lopes et al. 2017). However, multi-agent simulations typically require
interactions between different applications (agents) (Macal and North 2010). Different from Spacetime,
STARS enables communications between different applications on top of each individual application
component. The communications between the interacting applications also follow a chronological order
(i.e., arranged in order by time). With a dedicated modular design, the STARS platform supports complex,
scalable simulations in a distributed, or multicore environment, making it a good fit for autonomous
ridesharing simulations.

3.2 Platform Implementation

We next report the implementation details of the STARS platform. STARS comprises five simulation
components: the request generating component that reads requests from raw data, the request updating
component that refreshes the status of requests, the vehicle updating component that initializes vehicles
and updates vehicle status, the data logging component that records the state of the ridesharing sytem,
the dispatching component that computes optimal assignments, and the load rebalancing component
that redistributes vehicles for picking up unassigned requests. Among them, the dispatching component is
composed of three workers: the RV-graph generator, the RTV-graph generator and the assignment optimizer.
The RV-graph generator computes which requests can be paired and which vehicles can service which
requests individually. The RTV-graph generator calculates feasible trips that can be combined and picked
up by a vehicle. The assignment optimizer computes the optimal assignment using the anytime algorithm
described in the work by Alonso-Mora et al. (2017).
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In STARS, each component independently fulfills its role in the simulation within a frame that has
predefined computational space and time flow. In what follows we discuss the role of each agent in turn.
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Figure 1: The STARS simulation platform.

• Request Generating: The request generating component produces request objects and pushes
them to the data store every time interval θ (θ = 1s in our experiments). A request is defined as a
tuple of origin, destination, the time of the request, the latest acceptable pick-up time, the pick-up
time, the expected drop off time, and the earliest possible time for reaching the destination.

• Request Updating: Given the locations of the vehicles and the vehicles’ passengers (the requests
that are being serviced by the vehicles), the request updating component refreshes the status of the
requests every time interval θ (θ = 0.5s in our experiments). If the destination of a request has
been reached, the request will be deleted.

• Data Logging: The component records the state of the assignment, vehicles, and the requests
every time interval θ (θ = 0.5s in our experiments).

• Dispatching: The dispatching component performs three steps using the algorithm described
in (Alonso-Mora et al. 2017): Computing the pairwise request-vehicle RV graph, generating the
request-trip-vehicle RTV graph and calculating the optimal assignment. We elaborate each step in
turn as follows:
• Computing RV graph: Given available vehicles and a batch of requests, this step is to compute

the requests that can be pairwise combined, and to search the vehicles that can serve which
requests individually (θ = 30s in our experiments).
• Generating RTV graph: Given the RV graph, this step is to find feasible trips that can be

combined and picked up by a vehicle subject to all the constraints. It is done by computing
complete subgraphs or cliques of the RV graph (θ = 30s in our experiments).
• Calculating the optimal assignment: Given the RTV graph, this step is to calculate the optimal

assignment of vehicles to trips with one trip per vehicle at most. It is solved incrementally by
formalizing the problem into an Integer Linear Program (θ = 30s in our experiments).

• Vehicle Updating: Given the assignment computed by the dispatching component, the vehicle
updating component adds the requests in the assigned trip to the respective vehicles. Once the
an assignment has been processed, it will be deleted from the data store. The component updates
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the location of each vehicle according to the designated route associated with it (θ = 0.5s in our
experiments). The vehicles are initialized at the beginning of the simulation.

• Load Rebalancing: Given the idle vehicles, and the unassigned requests, the rebalancing com-
ponent redistributes vehicles to the locations of unassigned requests (θ = 30s in our experiments).
Specifically, after each assignment, if there are some unassigned requests and some available ve-
hicles, the rebalancing process is executed.

STARS adopts a modular design, making it easily expandable and configurable. By using the state-
of-the-art dispatching algorithm (Alonso-Mora et al. 2017), STARS is capable of simulating real-time
operations of autonomous ridesharing systems that have thousands of requests and vehicles at the same
time in large road networks. Thus, it is feasible to use STARS to conduct extensive simulations with real-
world data in ridesharing to gain insights on how user participation influences the efficiency of autonomous
ridesharing systems.

4 DATA AND METHODS

This section describes the experimental settings, including the dataset used in the simulations, and the
procedures followed to investigate the impact of user participation in autonomous ridesharing systems.

4.1 Dataset

We used the New York City Taxi trip Dataset (Donovan and Work 2016) to generate the trip demand in the
experiments. The New York City Taxi Dataset includes trips in which a vehicle only served one passenger
as well as the ones where several passengers shared a taxi. We selected a typical week (i.e., a week without
major holidays included) in the year of 2011, from Monday, June 6th 00:00:00, to Sunday, June 12th
23:59:59, as the time duration for simulating the operation of the autonomous ridesharing systems. We
extracted the whole week’s trips of which the origins and the destinations were within Manhattan from the
raw dataset. The resulting dataset contains 3,014,628 trips ranging from 391,246 (Saturday) to 465,331
(Monday) per day. The trips were originally serviced by a fleet of 13,586 taxis. Each trip in the raw data
has the following attributes: pickup datetime, dropoff datetime, passenger count, pickup longitude, pickup
latitude, dropoff longitude, and dropoff latitude.

In this work, we defined a request r as a tuple (or,dr, trr, tl pr, t pr, tdr, ter,mr), where or denotes the
origin, dr is the destination, trr represents the time of the request, tl pr is the latest acceptable pickup time,
t pr denotes the pickup time, tdr is the expected dropoff time, ter denotes the earliest dropoff time possible,
and mr indicates user participation – user r’s decision on whether to participate in a shared ride (i.e., mr = 1)
or to opt for a private one (i.e., mr = 0). Since the raw data does not include all the information as required
for autonomous ridesharing simulations, we processed the data with the following procedures: we used
the pickup datetime as the request time. We calculated the latest acceptable pickup time by tl pr = trr +Ω,
where Ω is the maximum waiting time allowed in a ridesharing system. The earliest dropoff time possible
ter is computed by ter = trr + τ(or,dr), where τ(or,dr) is the shortest travel time from or to dr. The total
delay δr due to ridesharing for a serviced request r is calculated by δr = tdr− ter. In our experiments,
we required that δr ≤ ∆ for all serviced requests, where ∆ is the maximum delay allowed in a ridesharing
system. That is, for all r, we have tdr ≤ ter +∆.

We converted the road map of Manhattan into a graph with 4,092 nodes and 9,453 edges. We then
estimated the hourly travel time on each edge for each day of the week by using the method described in
the work by Santi et al. (2014). With the road network and the travel time estimate, we precomputed the
shortest paths and travel time between all the nodes in the network and then stored the calculated results
in a lookup table for later use.
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4.2 Methods

To study how user participation affects ARS’ performance, we selected the following metrics: the service
rate (the percentage of requests serviced, the higher the better), the mean waiting time (the smaller the
better), the mean in-car delay (the difference between the travel delay and the waiting time, the smaller
the better), the percentage of shared rides (the higher the better), the mean travel distance (the smaller
the better) and the total cost (the smaller the better). Let R denote the set of requests, P represent the
set of profiles that characterize all the passengers’ choices on participation, and p = (mr)r∈R be a generic
profile in P. The total cost C (p) of the system under the profile p is the sum of travel delay δr of all
serviced requests r ∈ Ro ⊆ R plus a constant cost cd (cd = 1000 in our experiments) for each denied request
r ∈ Rd = R\Ro. That is,

C (p) = ∑
r∈Ro

δr + ∑
r∈Rd

cd . (1)

The price of anarchy due to passengers’ uncoordinated behavior of ridesharing participation is defined as

PoA =
maxp∈Psue C (p)
minp∈P C (p)

, (2)

where Psue ⊆ P is the set of choice profiles under stochastic user equilibria.
We varied the percentage of user participation from 0% to 100% with an increasing step of 10% to see

how different levels of user participation affects the performance of different systems. We used the stratified
sampling method (Neyman 1934) to select the participating requests because previous research indicates
that differences in both neighborhoods and hour of the day can affect passengers’ choices of commute
modes (Jackson and Jucker 1982; Schwanen and Mokhtarian 2005). The method first categorized the
request data into 888 subgroups according to both spatial differences (37 neighborhoods in Manhattan, see
Figure 2b) and temporal variations (24 hours, see Figure 2d). For each subgroup, it then randomly selected
corresponding percent of requests as the participating requests (mr = 1) and the rest as the non-participating
requests (mr = 0). This produced 11 datasets in total, with each contained the request data for a week.

We considered autonomous ridesharing systems with different settings, including vehicle fleet sizes
(1000, 2000, 3000, and 4000), vehicle capacities (1, 2, 4, 6, 8, and 10) and maximum waiting time (2, 4,
6, and 8 minutes). The maximum delay time allowed, including both waiting time and in-car delay time,
was calculated by doubling the maximum waiting time (i.e., 4, 8, 12, and 16 minutes). This resulted in 96
different ridesharing systems. For each system, we performed a simulation on the STARS platform with
each of the 11 generated datasets using the anytime optimal algorithm described in (Alonso-Mora et al.
2017). There were 1,056 simulations in total. For each simulation, we recorded the following information:
service rate, average in-car delay (δ −ω), average waiting time, mean distance traveled by each vehicle
during a day, the percentage of shared rides, and the total cost. For each ridesharing system, we then
computed the price of anarchy by assuming Psue ⊆ P = {pl}, where l ∈ {0%,10%,20%,30%, ...,100%} is
the percentage of user participation, and pl denotes the profile where there are l percent of users that are
willing to take a shared ride. Essentially, a profile is a set of all users’ decisions on whether to participate in
ridesharing or not. We performed another two groups of experiments to study if user participation affects the
efficiency of the same ridesharing system with different request density and different traffic conditions. In
the first group, we varied the request density. The typical travel demand in Manhattan are about 3,000,000
trips per week. We compared three kinds of density: half of the demand (x0.5, by removing the even
number of requests), the nominal demand (x1.0), and double of the demand (x2.0, by adding the requests
of the subsequent week). In the second group, we used the travel time estimate of three different periods in
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the day: the estimate at 12:00 (lower speed than the average, see Figure 2c), the estimate at 19:00 (higher
speed than the average), and the mean daily travel time estimate (average speed). For each condition in
each of the group, we ran a simulation on the same ridesharing system (fleet size = 3000, capacity = 4,
maximum waiting time = 6 miniutes).
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Figure 2: The distribution of request (a), the request count per square mile of each neighborhood (b), the
average traffic speed per hour (c), and the request count per hour (d) in Manhattan on Wednesday, June
8th, 2011.

All the simulations were conducted on the same 24-core 3.0GHz Linux machine with 128GB RAM.
We used the Gurobi solver (version 7.0.2 with free Academic license) for mixed integer programming
optimization. To reduce the total time for simulations, all the time steps for all simulations were multiplied
by a discounting factor 0.1. The 1,122 simulations took five weeks.

5 RESULTS

This section describes the experimental results, followed by a discussion of their implications.

5.1 Main Observations

Based on the data points from the numerical simulations, we highlight six main observations. We will next
discuss each in turn.

Observation 1 User participation typically improves the performance of autonomous ridesharing
systems, but the degree of improvement generally slows down as user participation increases to a high
level.

This was observed in all the ARS in terms of total cost, service rate, mean waiting time, percentage
of shared rides, and average distance traveled by each vehicle during a day. Due to space limitations, we
will report the findings mainly based on the total cost.

Figure 3 shows that when the levels of user participation increased, the total cost of all the ridesharing
systems (capacity ≥ 2) decreased. This was expected since a higher degree of user participation provided
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Figure 3: Estimated total cost for ridesharing systems with different configurations.

the rideshairng systems with more room for system-wide optimization: more requests were paired for
shared rides and subsequently were serviced. However, when the level of user participation increased
to a high level (i.e., above 80%), the degree of cost reduction slowed down. This was also expected
because when the level of user participation reached to certain level, substantial improvement by system
optimization no longer sustained due to physical limits of the transportation systems such as spatial and
temporal factors (Tsao and Lin 1999).

Note that systems in which the vehicles have the capacity of 1 are excluded since they are not capable
of offering carpooling services. In our work, we listed the performance of these systems for comparison
purpose only.

Observation 2 User participation typically has a greater impact on the performance of autonomous
ridesharing systems with small fleets of high-capacity vehicles.

Figure 3 shows that the ARS experienced a larger degree of cost reduction when they were equipped
with small fleets of high-capacity vehicles. For instance, higher degree of performance improvement was
observed in the ridesharing systems with the following conditions: (1) Vehicle Size = 1000, Capacity = 8
(See Figure 3E); (2) Vehicle Size = 1000, Capacity = 10 (See Figure 3F); (3) Vehicle Size = 2000, Capacity
= 8 (See Figure 3K); and (4) Vehicle Size = 2000, Capacity = 10 (See Figure 3L). This trend implies that
participation tends to have a greater impact on the performance of ARS with small fleets of high-capacity
vehicles than others. An explanation for this trend is that the service rates for the former systems were
initially quite low (20% – 40%) due to small fleet sizes and no ridesharing participants. As the level of user
participation increases, the large capacity of the vehicles allowed a higher degree of ride sharing, making
the degree of performance improvement substantially higher than others.

Observation 3 User participation typically has a smaller impact on the performance of autonomous
ridesharing systems with a short period of maximum waiting time allowed. This was also observed in ARS
with all the configurations. For example, Figure 3B demonstrates that systems with maximum waiting time
of 2 minutes had a lower degree of cost cutting than the other three systems. The cost of the system with
maximum waiting time of 2 minutes dropped from 1.0 to 0.88 as the participation level increased from 0%
to 100%, while the system with maximum waiting time of 8 minutes experienced a greater reduction (from
1.0 to 0.72) in the total cost. This reason is that a looser constraint on maximum waiting time enabled the
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Figure 4: Price of anarchy for ridesharing systems with different configurations.

systems to service more requests, which was not possible if given a narrow time frame. Similar patterns
were also found when the vehicle capacity varied while other settings kept unchanged: systems with larger
capacity tended to have a larger shrinkage in the cost.

Observation 4 As the fleet size increases, the price of anarchy due to users’ uncoordinated choices on
participation typically first increases and then decreases.

Figure 4 shows that as the fleet size increased, the price of anarchy first rose steeply (from Vehicle Size
= 1000 to 2000) and then dropped to a level with small fluctuations (from Vehicle Size = 2000 to 4000).
Specifically, when the fleet size was small (1000), the price of anarchy climbed gradually as the vehicle
capacity increased. When the fleet size increased to 2000, the price of anarchy jumped more than doubled
when the vehicle capacity was switched from 2 to 4, for all conditions of maximum waiting time. Several
factors contributed to this sharp rise: the service rate of the system with vehicle capacity 2 experienced a
larger boost than that of the system with vehicle capacity 4, while the changes in the average in-car delay
and the mean waiting time kept the same pace.

It is interesting to note that when the fleet size was large (≥ 3000), the price of anarchy fluctuated
slightly as the vehicle capacity changed. The price of anarchy for systems with a fleet size of 3000 was
almost the same as the systems with a fleet of 4000 vehicles. The reason is that the service rates for
both conditions were initially at the same level (about 60%), and systems with both configurations were
sufficient for satisfying the travel demand of daily commuters in Manhattan. This implies that a fleet of 3000
vehicles might serve the travel demand of passengers in Manhattan reasonably well. This was consistent
with the results by Alonso-Mora et al. (2017). It further indicates that appropriate configurations of the
autonomous ridesharing systems can be set to keep the inefficiency caused by passengers’ uncoordinated
behavior on ridesharing participation minimal.When the fleet size was large (≥ 3000), the PoA experienced
a significant increase (more than 50%) when switching the maximum waiting time from 2 minutes to 4
minutes. This was expected since the service rates of systems with both were almost the same, while
systems with maximum waiting time of 4 minutes had looser constraints and allowed more room the ride
matching than the other. As a result, the former experienced a greater improvement of system efficiency.
Interestingly, as the maximum waiting time increased from 6 minutes to 8 minutes, the price of anarchy
stayed almost the same despite variations on vehicle capacity or fleet size. The reason is that when the
maximum waiting time reaches a sufficient long duration (e.g., 6 minutes), additional waiting time does
not improve the performance of ridesharing systems significantly. Other parameters become critical. This
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implies that it is possible to reduce the influence of user participation on the performance of ridesharing
systems by identifying proper maximum waiting time.

Observation 5 Request density or traffic condition typically has little impact on the price of anarchy,
although the system efficiency generally boosts when the traffic condition improves or the request density
reduces. Figure 5 demonstrates that user participation had similar impact on ridesharing systems with dif-
ferent request density. Specifically, when the level of user participation increased, the total cost decreased
(See Figure 5b). This was expected since higher levels of user participation typically increase the chance
of successful ride matching (See Figure 5c) and shared rate (See Figure 5f).
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Figure 5: A comparison of the price of anarchy and efficiency on a ridesharing system (fleet size =3000,
capacity=4, and maximum waiting time = 6 minutes) by varying request density.

Noticeably, the price of anarchy remained almost unchanged (approximately 5.0) as the density increased
(See Figure 5a). The reason is described as follows: from Figure 5c, one can see that the service rates of
systems with half of the demand (x0.5), and nominal demand (x1.0) were fairly close, and were higher
than the service rate of the system with double demand (x2.0). However, they grew slower than the service
rate of the system with double demand. Although the latter system performed worse than the former two
in terms of mean waiting time and mean in-car delay, the ratios between the total cost of the worst state
(participation level = 0%) and the best state (participation level = 100%) were the same.

Observation 6 The price of anarchy due to users’ uncoordinated choices on participation typically
keeps steady when the maximum waiting time is sufficiently long. Figure 6 illustrates that as the travel
condition improved, the system efficiency increased. Similarly, the price of anarchy did not vary according
to traffic condition.

5.2 Discussion

All the six findings tell a similar story: there are sweet spots (e.g., Vehicle Size = 3000, Capacity = 6,
Maximum Waiting Time = 6 minutes) that can be utilized to make tradeoffs to keep the price of anarchy
minimal while maintaining a good system efficiency. Stakeholders of ridesharing systems should base
decisions regarding system configurations on insights gained from realistic simulations with real-world
data when experiments on deployed systems are not possible or too costly. Our work distinguishes itself
from game-theoretic approaches in the sense that we do not assume passengers share the same utility
function as many works (Roughgarden 2005; Christodoulou and Koutsoupias 2005; Shen et al. 2016) do.
In particular, we do not make the assumption that passengers’ utilities on participation are determined
by a unified function or drawn from a probability distribution. This is because passengers’ choices on
commuting modes are usually influenced by many factors, such as time variability (Jackson and Jucker
1982),neighborhoods (Schwanen and Mokhtarian 2005),habits and prior experiences (Gargiulo et al. 2015).
It is rather difficult or even unrealistic to isolate a utility function or a probability distribution that characterizes
all passengers’ decision-making processes.While illuminating, we must be careful not to overgeneralize
these results. Although we conducted 1,122 simulations on ridesharing systems with 96 configurations,
our work is an exploratory study rather than an exhaustive one. Similarly, when sampling the ride requests
as the ridesharing participants, it was not possible for us to include all the combinations. Our work is
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intended to spur a pipeline of further studies to deepen our understanding of how human dynamics impact
the efficiency of large social-technological systems.
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Figure 6: A comparison of the price of anarchy and efficiency on a ridesharing system (fleet size =3000,
capacity=4, and maximum waiting time = 6 minutes) by varying the time of the day used for travel time
estimate.

6 CONCLUSION

In this paper, we describe a modular design for agent-based simulations of ridesharing systems. We introduce
a multi-agent simulation platform called STARS, for simulating city-scale, autonomous ridesharing systems.
Via extensive experiments on STARS with real-world datasets in ridesharing, we present the first simulation
analysis toward quantifying the impact of users’ uncoordinated behavior on participation in autonomous
ridesharing systems. The two messages to take away are: (1) specific configurations (e.g., fleet size,
vehicle capacity, and the maximum waiting time) of ridesharing systems can be identified to counter the
effect of user participation on the system efficiency; and (2) tradeoffs between system efficiency and
price of anarchy are needed and are often feasible to achieve desired outcomes. There are a number of
interesting avenues for further research. One of them is to investigate whether our results will generalize to
autonomous ridesharing systems with different road networks. Another one is to develop novel approaches
(e.g., incentive mechanisms, information structures and regulations) to reduce the price of anarchy in
autonomous ridesharing systems.
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