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ABSTRACT

Particle tracking in physical systems is a well known simulation challenge in many domains. In particular,
High Energy Physics (HEP) demand efficient simulations of charged particles moving throughout complex
detector geometries in a magnetic field. Quantized State Systems (QSS) is a modern family of hybrid
numerical methods that provides attractive performance features for these problems. Its state-of-the-art
implementation is the general-purpose QSS Solver toolkit. Meanwhile, Geant4 is the most widely used
platform for computational particle physics, embedding vast amounts of physics domain knowledge. Yet,
Geant4 relies rigidly on classic discrete time numerical methods. In this work we present a robust co-
simulation technique to apply QSS in the simulation of HEP experiments, thus leveraging the best of
both toolkits. We obtained speedups of up to three times in synthetic, yet representative scenarios, and
a competitive performance in a difficult benchmark modeled after the Compact Muon Solenoid (CMS)
particle detector at CERN.

1 INTRODUCTION AND MOTIVATION

The tracking of particle trajectories in physical systems is a well known simulation problem with application
in many domains such as fluid dynamics, crowd systems, 3D rendering and particle physics, to name a
few. Almost every well established domain of knowledge (and even every particular problem) counts with
a palette of simulation software developed throughout decades that tend to embed significant amounts of
valuable domain-specific knowledge. Innovating in such tools and algorithms can be a risky task, as legacy
code tend to be rigid and difficult to scale up.

In this work we focus on the field of High Energy Physics (HEP) applications. HEP particle simulations
deal with the tracking of particles affected by physics processes in complex detector geometries (adjacent
3D volumes of different shapes and materials). In the HEP domain the accuracy and performance of the
algorithms for particle tracking are of great interest as they can significantly impact the requirements of
computing resources and their associated cost. In this context, our motivation is twofold: to provide means
for improving on the performance of particle tracking algorithms, and to extend valuable pre-existing code
in an elegant and robust way. We achieve these goals by means of a co-simulation strategy.

HEP simulations are widely based on the Geant4 simulation toolkit (Allison et al. 2016). It uses classical
numerical methods that rely on time discretization (Cellier and Kofman 2006), in particular variations of
the Runge-Kutta family (RK) of solvers (Butcher 1987). On the other hand, Quantized State System (QSS)
methods (Cellier and Kofman 2006, Kofman and Junco 2001) discretize the state variables instead of slicing
time, and solve ordinary differential equations (ODEs) using discrete–event approximations of continuous
models. QSS is a family of hybrid numerical methods that combine continuous with discrete-event dynamics
to approximate continuous systems. A feature of QSS that stands as very attractive in the context of HEP
simulations is that these methods handle discontinuities (such as volume crossings) very efficiently (Kofman
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2004) by means of a computationally cheap procedure (solving a zero-crossing polynomial function, seen
as a discrete–event).

In previous works we verified the potential of QSS to offer speedups in particle tracking (Santi et al.
2017) comparing for this purpose Geant4 against QSS Solver (Fernández and Kofman 2014), a standalone
simulation toolkit that provides state-of-the art implementations of QSS methods. We have also prototyped
a proof-of-concept communication between Geant4 and QSS Solver that allowed connecting Geant4 to
arbitrary external integrators but focusing on the QSS family (Santi et al. 2018). In this work we extend
and improve this interface by providing a fully fledged co-simulation scheme for QSS Solver including
thorough performance optimizations. We also devote special attention to a real world HEP application:
the Compact Muon Solenoid (CMS) particle detector in the Large Hadron Collider at CERN, for which
simulation has taken approximately 85% of the total CPU time since the start-up in 2009 through May
2016, with a total of about 40% for Geant4. Assuming an estimated cost of 0.9 US dollar cents per CPU
core hour (Elvira 2017), the annual simulation cost of CMS is in the range of 3.5 to 6.2 million US dollars
(each 1% reduction in simulation times would yield savings from 50 to 80 thousand US dollars per year).

This paper is organized as follows: Section 2 briefly introduces the QSS theory and the essential
concepts of the Geant4 simulation toolkit, and then summarizes our previous contributions on the field.
Section 3 gives a detailed explanation of our co-simulation technique, starting with a contextual summary of
other related co-simulation strategies. A performance comparison in two complementary scenarios between
standard Geant4 and our approach is then shown in Section 4. Finally, Section 5 contains a summary,
conclusions and comments on our work in progress.

2 BACKGROUND INFORMATION

2.1 The Quantized State System (QSS) Numerical Integration Methods

QSS are numerical methods that apply a state quantization approach to solve systems of ordinary differential
equations (ODEs) in the form of Eq. (1), where x(t) is the state vector and u(t) is the input vector representing
independent variables for which no derivatives are present in the system.

ẋ(t) = f (x(t),u(t)) (1)

ẋ(t) = f (q(t),u(t)) (2)

Traditional ODE solvers (e.g. the widely adopted Runge-Kutta family (Butcher 1987)) make use of
time slicing: given the current and past values of state variables and their derivatives, the solver estimates
the next value of the state xk+1 one “time step” ∆t into the future (i.e., at tk+1 = tk +∆t) where ∆t applies
to all state variables and represents the means to control the approximation accuracy.

QSS solvers operate differently: they make use of state space quantization. Rather than slicing the time
axis every ∆t units, QSS discretizes the state variable axis. QSS calculates the first time instant tk+1 into
the future at which the state variable differs from its current value by one “quantum level” ∆Q, i.e., when
xk+1 = xk±∆Q. The system described by Eq. (1) is thus approximated by the quantized system shown in
Eq. (2), where q(t) is the quantized state vector resulting from the quantization of the state variables xi(t).
In the first-order QSS method (QSS1) each qi(t) follows a piecewise constant trajectory that is updated
by a (hysteretic) quantization function when the difference between qi(t) and xi(t) reaches the quantum
∆Qi = max(∆QRel · |qi|,∆QMin), derived from the precision demanded by the user by means of a relative
and a minimum quanta, ∆QRel and ∆QMin. In QSS1, q(t) follow piecewise constant trajectories, which
implies that x(t) follow piecewise linear trajectories. Along the same principle, higher-order QSS methods
generalize this behavior: in QSSn, x(t) follow piecewise n-th degree polynomial trajectories and q(t) follow
piecewise (n−1)-th degree polynomial trajectories (Kofman and Junco 2001).

QSS was thoroughly studied in different application domains, comparing these methods against discrete-
time solvers with both fixed and adaptive step size control. For instance, in (Fernández and Kofman
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2014) QSS is compared with DASSL and Runge-Kutta solvers, while (Bergero et al. 2016) studies the
performance of advection-diffusion-reaction models comparing QSS against DASSL, Radau and DOPRI
methods. In the context of HEP applications, QSS exhibits several attractive features such as inherent
asynchronicity (each state variable updates its value independently, at self clocked time instants), dense
trajectory output (supported by the piecewise polynomial approximations of the trajectory) and efficient
handling of discontinuities (they are modeled by zero-crossing functions involving the QSS polynomials,
thus being computationally cheap to solve).

Regarding practical tools, QSS Solver (Fernández and Kofman 2014) is an open-source standalone
software that provides optimized C implementations of different QSS methods as well as other traditional
algorithms (e.g., Dormand-Prince method). Equations are expressed in µ-Modelica (Bergero et al. 2012),
a subset of the more general Modelica language (Fritzson 2015).

2.2 The Geant4 Simulation Toolkit

Geant4 is the most widely used simulation toolkit in contemporary HEP experiments. A Geant4 simulation
is typically encompassed within a run, which is a sequence of events, the basic unit of simulation. At the
beginning of a run, the detector geometry (a collection of physical volumes organized in a tree structure)
is already assembled and cannot be changed. Each event is, in turn, made of one or more tracks. A track is
a snapshot of a particle, containing physical quantities through which the particle is, indeed, tracked along
the detector as its trajectory is simulated. Upon starting a new event, primary tracks are generated and
pushed into a stack. Tracks are then popped up one at a time and simulated. Physical interactions might
generate new, secondary tracks, which are also pushed into the stack and simulated serially (particles do
not interact with each other). An event finishes when the stack becomes empty. Each track can be thought
as a sequence of steps advancing the particle for a given distance. This step length can be limited by the
physics processes that model particle interactions with matter. Processes are assembled into a pyhsics list
covering all combinations of incident particle type, energy, and target material. Geant4 provides ready-to-
use reference physics list for HEP. The recommended one, FTFP BERT (Dotti et al. 2011), contains all
standard electromagnetic processes (e.g., ionisation and multiple scattering) and uses Bertini-style cascade
for hadron-nucleus interactions with an incident hadron energy below 5 GeV and the Fritiof model for high
energies. For synthetic experiments these processes can be turned off.

Stepping in Geant4 is done by the steppers, which are custom implementations of several well-known
Runge-Kutta-based solvers. The default stepper is the fourth-order accurate Runge-Kutta, RK4. A step
might end before covering its length due to reaching a volume boundary. The computation of these boundary
crossings is done through other custom, iterative algorithms that will be briefly discussed in Section 3.2
(see (Santi et al. 2017) for a more detailed and comprehensive explanation of the stepping algorithm).

2.3 Previous Work

In (Santi et al. 2017) the performance of QSS Solver was studied in the context of a minimal HEP-like
setup consisting of a charged particle under a uniform magnetic field describing a circular 2D motion.
The particle crosses equidistant parallel planes as shown in Figure 1b. We found configurations with 200
planes and a track length of 100 m where QSS Solver is 6x faster than Geant4 with better accuracy,
when the physics interactions are turned off. We continued this work by designing, implementing and
testing a proof-of-concept version of GQLink (Santi et al. 2018), conceived as an abstract interface that
allows connecting Geant4 to arbitrary external integrators, in particular the QSS family as implemented
by QSS Solver, as shown in Figure 1a. We found that GQLink (using QSS2) outperformed Geant4 in
the aforementioned setup depicted in Figure 1b, with a 35% speedup for 700 crossing planes (Figure 1c).
Also, we analyzed a realistic HEP application featuring a full CMS detector geometry. We verified the
statistical consistency of the simulations and found that GQLink was about 17% slower than Geant4. In
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this work we shall extend and improve GQLink by providing a co-simulation scheme for QSS Solver,
including performance optimizations for this strategy.
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Figure 1: Preliminary comparison between Geant4 and a proof-of-concept version of GQLink.

3 A CO-SIMULATION SCHEME BETWEEN GEANT4 AND QSS METHODS

GQLink is our proposed interface for co-simulation between Geant4 and a QSS simulation engine such as
the QSS Solver tool. GQLink orchestrates robustly and transparently the interaction between the latter and
aspects such as geometry definition and physics processes, controlled by Geant4. It is then regarded as a
co-simulation scheme where Geant4 drives the simulation and relies upon a QSS engine to drive particle
motions. A key advantage of this approach is that each tool is responsible for a well-defined subset of tasks
(namely, physics definition, evaluation and geometry navigation in Geant4, and particle transport through
ODE solving in QSS Solver). This follows the separation-of-concerns principle in software engineering
(De Win et al. 2002). GQLink then fully takes over the responsibility of particle tracking and step
computation, relieving Geant4 of those tasks.

Several co-simulation strategies exist, such as the modern Functional Mockup Interface (Blochwitz
et al. 2011). In a typical scenario, each FMI co-simulated entity solves independently a given subsystem
for a lapse of time, exchanging data later at certain communication points. This approach is not well
suited for our setting as the set of sub-models each FMI entity is responsible for are disjoint. Similarly,
the co-simulation software MpCCI (Wirth et al. 2017) provides algorithms and interfaces to couple
different tools so as to solve collaboratively the simulation of disjoint models. A technique for distributed
discrete event co-simulation with application to the automotive industry, termed Complex Control Systems
Simulation (CCSS), was presented in (Munawar et al. 2013). This approach is parallel by design and
defines an improved synchronization mechanism derived from conservative synchronization mechanisms,
which currently is beyond the scope of our problem. Another interesting co-simulation tool is the SDLPS
simulator (Fonseca 2013), which allows for co-simulation of models described by the SDL language
(http://sdl-forum.org/SDL). As we discussed, GQLink leverages the physics domain knowledge already
embedded into Geant4; it would require a significant effort to develop new, custom SDL-based models
to properly simulate e.g. the particle-matter physics interactions. Finally, a closely related concept is
simulation model interoperability, where distributed models simulate with their own clocks and exchange
messages in real time (see e.g. (Moallemi et al. 2011)). This approach appears as inadequate in our case
as our co-simulating entities must be exactly aware of their shared time advance at all instants.

3.1 High-Level Design

GQLink-enabled simulations operate in two phases: initialization, where the QSS engine is bootstrapped
following the user’s requirements, and simulation, in which particles are successively transported along
the detector until no secondaries are produced.
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Initialization Phase The initialization phase consists in choosing an appropriate model for the
problem at hand (currently, the equations of motion for charged particles in a magnetic field is the only
one available) and instantiating a GQLink model object that exposes an API for the interaction between
Geant4 and the QSS Solver engine. The engine is started by first loading into RAM the pre-compiled
shared library for the user-requested QSS method (e.g., QSS2) and later invoking the usual initialization
routines provided by QSS Solver. Once this is done, the user-requested accuracy parameters (∆QRel and
∆QMin) are applied through the GQLink API. Figure 2 illustrates the initialization stage.

   ModelGeant4 Model Builder QSS Engine

build(MODEL_ID, QSS_METHOD)

GQLink

initialize(QSS_METHOD)

create_model(MODEL_ID)

load_library(QSS_METHOD)

build_simulator()

qss_simulator
model

set_dQ(DQ_REL, DQ_MIN) set_dQ(DQ_REL, DQ_MIN)

initialize_GQLink()

Figure 2: Initialization stage of GQLink simulations.

Simulation Phase After the initialization phase GQLink is ready to run. This is done after other
Geant4 bootstrapping tasks. The core of the simulation stage is the new method GQLink ComputeStep,
which is the entry point to the QSS integration routines. The standard Geant4 method to propagate particles
in a magnetic field, ComputeStep, was adapted to call this new method instead of Geant4’s default
stepping algorithms. Before taking the first step, the QSS simulator is configured by the setting the particle
charge, its mass, and its initial position and velocity. Given the position, the initial value of the magnetic field
is also retrieved by calling back a Geant4 routine through the GQLink interface. This process, implemented
in the GQLink reset routine, is performed every time a secondary particle is about to be tracked.

The first action of GQLink’s stepping algorithm is to assemble a step data object to gather relevant
information about the step needed by both the QSS engine and Geant4. Initially, it provides the Geant4-
defined step length and other track parameters such as current momentum and traversed curve length.
Before taking the step through the main QSS integration loop, it is essential to manually reinitialize the
velocity state variables, as the underlying physics processes evaluated by Geant4 might have changed the
direction of the particle. This is done in the GQLink reinit routine, which implements an optimized
reinitialization of state variables (this is typically done in the discrete-event handlers of QSS Solver models).

The main QSS integration loop implemented in the QSS Solver engine was modified so as to take the
step data, update it accordingly as it iterates and eventually stop to handle control back to Geant4 if e.g. the
current length traversed reaches the aforementioned step length or if a volume boundary was crossed. Each
of the iterations defines a substep along which the particle position can be approximated by the QSS dense
output. A key optimization with respect to the proof-of-concept GQLink presented in Section 2.3 consisted
in packing together a (user-configurable) number n of substeps before calling back the Geant4 geometry
routines to find out if a volume boundary was crossed. In order to achieve this, after each iteration, the
new substep is saved into a data structure that holds the substep information (e.g. the coefficients of the
QSS polynomials for every state variable). The substep packing strategy is a core aspect in the efficient
intersection finding routines exposed by GQLink. This will be further developed in Section 3.2.

Once n substeps are packed, a substep block is assembled and a checkpoint is reached: the integration
procedure is temporarily suspended in order to check if a volume boundary was crossed. This is achieved by
following the same call pattern as in standard Geant4 simulations, using the GQLink interface as proxy: first,
the method LocateGlobalPointWithinVolume is called so as to notify the geometry navigator that
the particle has moved to a new position inside the current volume. Then, IntersectChord computes
an initial estimation of an intersection by means of a linear segment between the endpoints of the substep
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block, which is later refined through an iterative procedure in EstimateIntersectionPoint. This
last function was considerably improved as a consequence of the substep packing strategy; we offer a
cheaper particle transport derived by the evaluation of the substep polynomials instead of running the
iterative, adaptive stepping algorithm implemented in Geant4’s AccurateAdvance. The key routine
behind this strategy is GQLink advance constrained, which is exposed by the GQLink API with the
same signature as AccurateAdvance: given a start time t and a distance d, the goal is to compute the
position of the particle after taking a step of length d, constrained to the current substep block. This routine
might be called several times as EstimateIntersectionPoint is executed.Figure 3 summarizes the
step computation flow, focusing on the co-simulation interactions.

Figure 3: Simulation stage in GQLink with step endpoint, substep and checkpoint markers.

After the step is taken, the updated step data object is used by GQLink to update Geant4’s particle
tracking data structures. This is the last action in GQLink’s stepping algorithm before handling control
back to Geant4.

3.2 Substep Packing

The substep packing strategy in GQLink allows for an efficient computation of intersection points by
means of the dense output feature of QSS methods. Moreover, it also decreases the overhead introduced
by subsequent calls of Geant4 geometry routines since there is no need to do any checks before assembling
a complete substep block. Despite this, the larger the number n of substeps packed, the longer the running
time of the GQLink routines called by Geant4 during an intersection computation –indeed, the asymptotic
running time of GQLink advance constrained is O(n). In consequence, there is a trade-off between
the overhead of the Geant4 geometry routines and that of GQLink routines. Empirically, we found that a
value of n below 5 and above 2 provides a good balance between both.
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Figure 4a illustrates how a GQLink step is sliced into several substep blocks, each one of them
finishing in a checkpoint where Geant4 will be queried for finding possible boundary crossings. For each
i = 0, . . . ,n−1, the i-th substep si in the current substep block is the tuple 〈ti,vi, li,xi〉, where ti is the start
time of the substep, vi the velocity of the particle along it, li the traversed length upon completing si and
xi : [ti, ti+1)→R3 the vector function that approximates the particle trajectory along the substep by means
of the polynomial functions provided by QSS. Clearly, we have t0 < t1 < · · ·< tn−1 and l0 < l1 < · · ·< ln−1.

When Geant4 detects a boundary crossing, it successively refines the intersection point estimation through
an iterative algorithm that starts, in the GQLink setup, with the endpoints of the substep block and an initial
estimation given by the linear segment joining them. In each iteration, EstimateIntersectionPoint
moves the particle a distance d computed as a fraction of the curve length between the endpoints. Then, it
determines the volume in which this new endpoint lies. If e.g. it lies in the new volume, a new intersection
estimation is computed by means of the linear segment joining this endpoint and the one used as starting
point. This process is repeated until the intersection accuracy constraints are met. When GQLink is enabled,
each particle movement is efficiently computed by GQLink advance constrained using the substep
information, as depicted in Figure 4b. First, given the start time t of the particle, every substep s j such
that t ≥ t j+1 has to be skipped. Let si be the first substep such that t < ti+1. We now have to determine
whether the distance d can be completely covered inside si. If so, the endpoint is thus given by xi(t+d/vi).
Otherwise, we need to keep moving through substeps si+1,si+2, . . . , checking their lengths li+1, li+2, . . .
and stopping once we find the final substep sk that can cover length d. The endpoint is computed as
xk(tk +d′/vk), where d′ is the remaining distance after subtracting (ti+1− t) · vi, li+1, . . . , lk−1 from d.

(a) Substep blocks and checkpoints (b) Example of GQLink advance constrained

Figure 4: Sketch of the substep packing strategy with n = 5.

4 SIMULATION EXPERIMENTS

In this Section we shall present a performance comparison between GQLink (with QSS2 as the chosen
integrator) and Geant4 (with its default fourth-order Runge-Kutta stepper, RK4) in two different test
scenarios: an extension of the simplified case study described in Section 2.3 using a 3D cube mesh
geometry (Figure 6a), and the realistic HEP setup consisting in the CMS detector application (Figure 6b).

All simulations were run on a dedicated Intel Core i7-6700K CPU (clocked at 4.00 GHz) machine with
16 GB of RAM and Ubuntu 16.04.1 LTS x86 64 (4.13.0-36-generic kernel) OS. Both Geant4 versions
(i.e., with and without GQLink enabled) were compiled with gcc 5.4.0 (Ubuntu 5.4.0-6ubuntu1∼16.04.9)
in release mode (i.e., with optimization flags turned on). We used Geant4 version 10.03.p03 and the QSS
Solver engine from version 3.0 for GQLink. Each simulation was single-threaded.

4.1 Case Studies

The model in use throughout the whole experimentation is given by the usual equations of motion of
charged particles in a magnetic field (Lorentz equations). Figure 5 shows the respective ODE system along
with a snippet of the µ-Modelica model used in GQLink. There, q and m are the charge and mass of the
particle, respectively; c is the speed of light; γ is the Lorentz factor and B is the magnetic field.
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ẋ = vx v̇x =

qc2

mγ
· (vy Bz− vz By)

ẏ = vy v̇y =
qc2

mγ
· (vz Bx− vx Bz)

ż = vz v̇z =
qc2

mγ
· (vx By− vy Bx)

Figure 5: Lorentz equations of motion (left) and their µ-Modelica implementation (right).

4.1.1 Perfect 3D Helical Motion In A Cubic Lattice: A Simple Synthetic Baseline

Scenario description This scenario consists in a single electron under a uniform, static magnetic field
along the ẑ plane, i.e., ~B = (0,0,B) = Bẑ, where B = 1Tesla, and initial velocity
~v = (0.9797958971132712vx̂,0,0.2vẑ), where v = 0.999c and c = 299.792458mm/ns. The particle then
follows a helical trajectory where its position in ẑ is increasing and linear with respect to the time. We
stress that this is a tracking-only scenario where physics interactions were intentionally turned off. As for
the geometry used, we designed a 3D cube mesh with a user-controlled size for each cube in order to
simplify the experimentation for an increasing number of boundary crossings. Clearly, as the cube size
decreases, the number of boundary crossings along the trajectory of the particle increases. This extends
the scenario studied in our previous works as we now might have boundary crossings in each of the three
dimensions and in different angles. Figure 6a shows a 3D mesh of cubes with edge size of 20 mm and a
GQLink simulation for a particle trajectory. Green dots indicate the start of a new step, blue dots represent
new QSS substeps and red dots show the intersection points where the particle enters into a new cube.

(a) 3D helical motion (b) CMS application

Figure 6: Examples of GQLink simulations for each test scenario.

Verification Due to the simplicity of this model, we have a closed form analytic solution which
facilitates the error analysis and in turn provides a direct test of the algorithmic correctness of the
communication between Geant4 and QSS. We ensured that the errors in the particle position (i.e., the
difference between the simulated and the analytic position of the particle in each of the three axes)
produced by both simulators are comparable. For each cube size, the errors in x and y were between 0.3
and 0.31 mm for Geant4 and between 0.38 and 0.39 mm for GQLink. As for the error in z, it was between
0.0123 and 0.0127 mm for Geant4 and between 0.0049 and 0.007 mm for GQLink. Relative accuracy
(ε parameter for Geant4; ∆QRel for GQLink) was set to 10−6 (with ∆QMin = 10−5 mm in the case of
GQLink), and we used default values for the other Geant4 accuracy parameters. The substep block size
was set to n = 3 in GQLink. We defined a track length of 100 m for every simulation.

Performance comparison Figure 7a shows the speedup of GQLink with respect to Geant4 as a
function of the cube size (or, alternatively, as shown in the top x axis, as a function of the total number of
boundaries crossed). Each point in the graph shows the mean value of 20 equivalent simulations (with error
bars for standard deviation). We distinguish the case where both simulators achieve the same theoretical
simulation time and label it ratio 1. Ratio 1 is achieved when the mesh is made up of cubes with a 0.5 mm
edge, corresponding to a total of ∼289000 boundary crossings. From this point onwards, GQLink offers
exponentially increasing speedups, reaching a value of nearly 200% when the cube edge length is 0.05
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mm. In other words, GQLink simulates about three times faster than Geant4. This experiment provides
further evidences that reinforce a conclusion reached in previous contributions, but with simpler geometries:
frequent discontinuities favor the performance of GQLink (more precisely, of QSS integrators).

We continue with the analysis in Figure 7b, where we can see the average CPU time consumed by
EstimateIntersectionPoint per boundary crossing as a function of the cube size (i.e. number of
boundary crossings). We note that this CPU time is not only essentially constant for every cube size in the
case of GQLink but also, and more remarkably, between 6x and 8x lower than Geant4’s. This follows from
the substep packing strategy and its associated efficiency improvement when replacing the Geant4 adaptive-
stepping algorithm implemented in AccurateAdvance with GQLink advance constrained. Be-
ing the substep block size constant throughout the experiments, it is reasonable to expect stable computing
times for this piece of code. Surprisingly, on the other hand, the Geant4 curve exhibits a decreasing
tendency. This is possibly due to the fact that, the smaller the cube size, the smaller the distances d that
AccurateAdvance has to cover each time it is invoked. Thus, the number of iterations it must perform
to fulfill those lengths tend to decrease, resulting in smaller computing times. Although the average CPU
time per boundary crossing is at least 6x smaller in GQLink, the overall simulation time is not necessarily
smaller, as it is clearly shown in Figure 7a below the ratio 1 threshold. This can be explained by Figure
7c, which shows the average number of QSS subteps per step (dashed blue line, right y axis) along with
the average stepping time (i.e., the CPU time spent in stepping routines, not including boundary crossing
procedures) for Geant4 and GQLink (red and blue solid lines, respectively; left y axis).

QSS substeps decrease systematically as the cube size decreases. This is due to the fact that steps
tend to be shorter in scenarios with smaller cubes, since boundary crossings will occur more often, early
interrupting the step computation. We can also see that GQLink’s stepping time decreases following a
tendency very similar to that of the substeps. This is an expected behavior, as few substeps demand less
CPU instructions. On the other hand, Geant4’s stepping time is essentially constant, which can be explained
by the fact that, in general, only one iteration of the ComputeStep main loop is enough to cover the steps
in these scenarios. The ratio 1 threshold is crossed around a cube edge of 0.5 mm. There, the combination
of number of boundary crossings (∼289000) with average number of QSS substeps (∼22) start to favor
GQLink, outperforming Geant4. Another interesting remark is that, when the number of substeps is small
enough (< 15), GQLink’s stepping time is smaller than Geant4’s, allowing for eventual speedups in other
scenarios with lighter boundary crossing activity on which particle trajectories can be approximated by
QSS using a small number of substeps.

4.1.2 The Compact Muon Solenoid: A Real-World Complex System (A Very Tough Nut To Crack)

Scenario description This test scenario models the Compact Muon Solenoid (CMS) experiment, one of
the main particle detectors on the Large Hadron Collider at CERN (https://cms.cern/detector). A standalone
Geant4 application models the full CMS (Run1) geometry, volumebase magnetic field excerpted from CMS
Offline Software (https://github.com/cms-sw/cmssw) and a particle gun shooting one π− particle per event
with a kinetic energy of 10 GeV. The particle gun injects a particle into the detector with user-configurable
parameters (such as kinetic energy or momentum direction). In our experiments the direction of the primary
particle is chosen randomly within the η-φ space with pseudorapidity η ∈ [−1/2, 1/2] and azimuthal angle
φ ∈ [−π,π]. We used the reference physics list FTFP BERT recommended in (Dotti et al. 2011). Although
a single particle is initially shot per event, more than 62000 secondary particles per event are successively
generated as they interact with matter across the detector (see Figure 6b showing a zoomed-in GQLink
simulation for CMS, secondary tracks in red).

Verification Given that a closed-form analytic solution is no longer available, we resort instead to
verify the accuracy of GQLink simulations in terms of their statistical consistency against Geant4 equivalents.
This is achieved through the two-sample Kolmogorov-Smirnov test using a significance level α = 0.01.
We successfully tested the number of steps and tracks produced for all particles tracked in the application
(negative and positive pions, electrons, positrons, gamma photons and a single type for every other particle).
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We conducted a parameter sweeping for QSS accuracy in order to find a ∆QRel value good enough to
keep the statistical consistency of the simulations while keeping the computing times as low as possible.
Figure 8b shows means and standard deviations for simulation times in 30 independent simulations per
experiment. We found that ∆QRel = 7.1125×10−4 provides such a balance (with ∆QMin = 10−3 ·∆QRel
mm). For Geant4 we used ε = 1×10−5 and default values for all remaining accuracy parameters.

Performance comparison Figure 8a shows the relative speedups of GQLink and Geant4 for 100
independent runs of CMS, each consisting of 2000 particle gun events. Each run was configured using the
same set of accuracy parameters and seeds for the random number generators for both Geant4 and GQLink.
A total of 70 runs resulted favorable for GQLink, whereas the remaining 30 were favorable for Geant4. The
dashed light brown line shows an overall average speedup of 0.61% in favor of GQLink, with a maximum
of 3.5% (leftmost blue bar) and an average of 1.23% (dashed blue line), against a maximum of 3.2%
(leftmost red bar) and an average of 0.83% (dashed red line) for Geant4. The CMS application presents a
small proportion of boundary crossings, i.e., about 8% of the total number of steps. This is not enough to
leverage the substep packing improvements discussed above. Yet, the favorable speedups can be explained
by the fact that particle trajectories in these simulations tend to be computed with a small average number
of substeps per step (about 1.4). Therefore, we fall in the situation discussed in Section 4.1.1 supported by
Figure 7c. These results show considerable improvements over the proof-of-concept GQLink discussed in
Section 2.3, derived from low-level optimizations (e.g. branch mispredictions, cache misses) boosting the
overall performance of GQLink. We conclude that currently GQLink achieves a performance comparable
to the default Geant4 integrator in a realistic benchmark such as CMS, with a slight bias favoring GQLink
(supported by the 70/30 ratio of positive speedups). We assess this as a promising result considering that
this application is a tough one for GQLink (small proportion of boundary crossings).
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Figure 7: Performance comparison for the 3D helical motion setup.

5 CONCLUDING REMARKS AND NEXT STEPS

We presented a co-simulation scheme for applying the Quantized State System (QSS) numerical methods
to the problem of particle tracking in high-energy physics (HEP) experiments. The main hypothesis is that
the efficiency of QSS for handling discontinuities in ODE systems can be leveraged to obtain speedups and
better error control. We relied upon Geant4, the most widely used simulator for HEP. We then produced an
optimized version of the QSS Solver simulator, and designed a co-simulation strategy that combines both
toolkits while clearly preserving the independence of their core engines. Co-simulation mechanisms were
provided and justified after separation-of-concerns principles in software engineering. A novel QSS substep
packing strategy proved essential to leverage the QSS polynomial dense output, tackling the problem of
finding intersection points within bounded accuracy constraints. Results showed significant speedups up to
3x in a synthetic representative setup (a single electron describing a 3D helical trajectory within a lattice of
cubes). Substep packing reduced the average CPU time spent in intersection-finding routines in the order
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of 6x to 8x. For a complex realistic HEP case study we simulated a benchmark physics experiment on
the Compact Muon Solenoid (CMS) detector at CERN. CMS proved a tough scenario for GQLink, as it
features a very small proportion of volume crossings. Low-level software optimizations were decisive in
achieving a competitive performance with respect to the standard Geant4 Runge-Kutta-based integrators.
A moderate positive speedup bias (∼0.6% on average, ∼3% best case) favors GQLink. We interpret this
as a promising result: GQLink performs just slightly better (on average) in a realistic tough scenario of
lightweight discontinuity activity, while it offers large potential gains in cases of very frequent boundary
crossings. Yet, co-simulation adds a new software layer, imposing its own overhead which should be always
minimized (a side effect to pay for the sake of scalability and modularity). Our next steps include testing
other realistic HEP applications such as the ATLAS detector at CERN, comparing performance against new
default solvers available in Geant4, and experimenting with QSS methods implemented natively within
Geant4. Our work in progress includes devising methods to select automatically optimal accuracy and
subteps block sizes, and implementing geometry control within the standalone QSS Solver to perform
autonomous QSS tracking within 3D spaces with faceted polyhedrons.
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Figure 8: CMS application analysis.
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