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ABSTRACT

Residential energy demand dynamics at household level can be studied through demographic, behavioral
and physical characteristics of the household. In this paper, we develop an agent-based model using a
bottom-up approach to build disaggregated energy demand estimates at the household level at an hourly
interval. A household level analysis is made possible via the use of synthetic populations for the urban and
rural areas of Virginia, USA. The energy consumption estimate is based on householders’ demographics,
their behaviors and activities, ratings of appliances used in energy-related activities, space conditioning
fuels, physical characteristics of the home, and weather conditions. Results from the simulation are then
validated with actual demand curves from Rappahannock county in Virginia using dynamic time warping.
The simulation results show that the model produces realistic energy demand profiles.

1 INTRODUCTION

Approximately 22% of the total energy consumption in the U.S. is attributable to the residential sector
(Energy Data Facts 2016). Consequently, residential sector energy usage has been studied widely and
is a focus for energy conservation efforts. When the energy requirements of households are assessed
it is complex to develop granular level demand profiles due to the sheer number of parameters. This
leads to the challenge of scalability of such models when dealing with big data. Ignoring some of the
parameters can lead to underestimation of energy consumption for certain activities. Due to these reasons,
most prior research work for the generation of demand curves is concentrated at the regional level, city
level, and building-stock level. Literature has demonstrated a general lack of availability of real-world
energy consumption data. This makes it difficult to understand the underlying changes that affect energy
consumption in the residential sector. Hence, validation of such demand profiles becomes challenging.
It is also difficult to find 100% match to the demand curve because no two households exhibit identical
behavior. National Academies of Sciences, Engineering, and Medicine (2016) have also emphasized that
generation of synthetic energy datasets will be key for the future grid in the planning regime, customer
feedback, and designing of incentives. Due to lack of availability of realistic data for testing advanced
energy models for the smart grid, it is essential to develop this synthetic data. These models should be
vigorously validated so that these datasets can be made available to the research community.
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1.1 Related Work

Several studies like Wallis et al. (2016), Nguyen and Aiello (2013), Heiple and Sailor (2008) have illustrated
that attributes such as climate, dwelling characteristics, demographics, activity schedules, and occupancy
patterns are crucial parameters for estimating energy consumption. Swan and Ugursal (2009) present an
exhaustive review of modeling techniques used for residential sector energy consumption. Two distinct
approaches have been described: top-down and bottom-up. Here, we use a bottom-up methodology to
build energy demand profiles at an individual and household level to generate energy demand profiles for
a given day. A brief overview of relevant bottom-up models is provided below.

Significant research has been conducted in the European Union for developing energy usage calibration
models at household and building stock level. A wide variety of models, including probabilistic-empirical
load models, simulations, Markov chain models, and multiple linear regression models, have been developed
to explore energy demand at building stock level in urban-rural settings by using a range of attributes such
as the year of construction, the heating volume of buildings, the average height of the floor, appliances,
weather, national events, and family types (Fonseca and Schlueter 2015; Marszal et al. 2016; Sandels
et al. 2014; McLoughlin et al. 2012; Heinonen and Junnila 2014). These studies have been conducted
in Switzerland, Ireland, Italy, Denmark, and Sweden. These models generate demand at various scales
such as hourly, monthly, or yearly for different seasons. Some models have analyzed annual effects of
activities such as cooking, dishwashing, laundry, and cleaning on Dutch households (Bedir and Kara 2017).
Studies conducted in China have attempted to explain urban and rural energy consumption profiles by
adopting bottom-up modeling techniques (Yang et al. 2015; Zhang et al. 2016; Yu et al. 2018). Fuel type,
floor area, climate and effects of demographic transitions on energy consumption are some of the major
parameters that were considered in these models. There are only a few agent-based models for energy
demand generation (Bustos-Turu et al. 2016; Subbiah et al. 2017). These models show the potential for
granular level analysis of energy usage by activities, and conducting impact assessment of low carbon
technologies, such as plug-in electric vehicles.

1.2 Our Contribution

1. Major contributions to energy demand generation via agent-based models: (a) finer details such as
dwelling type, fuel mixes, equipment efficiencies, urban vs. rural households, and adult occupancy
and their energy related activities during the time spent at home are accounted for; (b) improved
matching methodology for assigning survey households to synthetic households and survey individual
energy activity schedule to synthetic individuals; (c) a shared activity is chosen from individual
activities based on appropriate time duration and whether the synthetic individual is home at that
time; (d) a workflow is devised for cooking activity by considering three meals corresponding to
household members availability, appliances used for these meals and appropriate timings during
the day; (e) a model to measure heat-losses in multi-unit dwellings.

2. Our findings indicate that urban areas consume less energy than rural areas in summer and vice
versa in winter. Rural areas consume more active energy than urban areas. The heat loss model
indicates that single-family detached type of residence consumes the most energy irrespective of
the season and area type.

3. The generated synthetic demand curves are validated with real-time data from Rappahannock County
in Virginia at the household level using dynamic time warping technique. Findings indicate that
88.5% of the synthetic curves lie within 10% error rate. As far as we know, our paper is the first
to perform such rigorous model validation using real-world data.

2 DATASETS

Different datasets are employed to create a comprehensive and integrated energy demand generation model.
Table 1 shows a summary of these datasets. The synthetic population provides detailed demographics about
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individuals and their households, as described in Section 3. The American Time Use Survey (ATUS 2015)
provides information on energy-related activities. U.S. Energy Information Administration (EIA) Residential
Energy Consumption Survey (RECS) (EIA RECS 2015) provides housing unit-specific information (e.g.,
floor area, fuel equipment, presence of dishwasher, washer, dryer, electric bulbs, refrigerator). The hourly
temperature data are obtained from the North American Land Data Assimilation System (NLDAS 2016).
Using the U.S. Census Bureau’s urban and rural classification (US-Census 2010), two types of urban
groupings are developed : (a) urbanized area and (b) urban cluster.

Table 1: List of data sources.

Dataset Description
Synthetic population Statistical representation of individuals and households in VA.
ATUS Contains 24 hour period activity diaries for 13,260 respondents.
EIA-RECS Structural characteristics of 5686 households in the US.
U.S. Census Rules for classifying urban and rural areas in the US in 2010.
NLDAS Hourly climate data from NOAA for North America.
Hourly Load Data Actual load profiles from Rappahannock county for 100 households.

3 HOUSEHOLD MODELING

The process of constructing synthetic households is described in prior work (Beckman et al. 1996). We
briefly recapitulate the process here. The process uses the American Community Survey (ACS) (Mather
et al. 0053). ACS is available at various geographical levels, of which the highest resolution is a block
group. A block group consists of 600 to 3,000 people. The ACS provides marginal information about
variables (e.g. household size, household income) at household level for each block group. The ACS also
provides a Public Use Microdata Sample (PUMS), which is a 5% representative sample for a larger region
than block group, called a Public Use Microdata Area (PUMA). PUMAs are described by the Census
Bureau as “a collection of counties or tracts within counties with more than 100,000 people”. Block groups
are properly nested within PUMAs, i.e., each block group is present in exactly one PUMA and PUMAs
have complete coverage, i.e., there is a PUMA for each block group. These statistical areas are defined for
the circulation of PUMS data. Personally identifying information is stripped from PUMS records, such as
names and addresses, but they are otherwise complete. In particular, they provide several household-level
variables, such as the type of fuel used for heating, which is useful for energy demand modeling.

The synthetic population generation procedure (Beckman et al. 1996; Swarup and Marathe 2017)
creates a synthetic representation of each household and the individuals within the household in a region
(in our case, Virginia, USA) using ACS data. Marginal distributions about different demographic variables
at household level are combined into a joint distribution for each block group using Iterative Proportional
Fitting (IPF) (Deming and Stephan 1940; Beckman et al. 1996). The sample data from the corresponding
PUMA are used to seed the joint distribution in order to create the correct correlation structure. Next,
random draws from the joint distribution are generated and matching records from the sample data are
copied into a synthetic population. The number of households so generated match the total number of
households in the region under consideration.

Assuming that PUMS data are a representative sample of the true population for each block group,
the procedure generates synthetic households that are statistically similar to the original population. See
(Beckman et al. 1996; Swarup and Marathe 2017) for a discussion on validation of the synthetic populations.
The basic technique is now well accepted and widely used in various application areas; see, e.g. Wheaton
et al. (2009).
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4 ENERGY DEMAND MODELING

An agent-based approach is employed to generate hourly energy demand for a synthetic household. Energy
usage by each household is divided into two broad categories, passive energy and active energy. Figure 1
shows the workflow of the model. We introduce the following notation for the model (asterisks are used
to designate survey entities):

H j : synthetic household, R j∗ : RECS survey household, Wk∗ : ATUS survey household
Pi : synthetic individual, Ai∗ : ATUS survey individual

Figure 1: Workflow of the energy demand model.

4.1 Passive Energy Model

The passive energy demand for a synthetic household is modeled as a function of its demographic attributes
and its structural characteristics, obtained from the EIA RECS (2015) survey and the synthetic population.
The energy consumed by lighting, refrigerator, and space conditioning form the passive energy component.
The model used for building the demand profiles for passive energy is enumerated below.

Match RECS household R j∗ to synthetic household H j: We first use Recursive Feature Elimination
(RFE), which is a backward feature elimination technique that is employed to get the m most important
features, to analyze the RECS data. RFE uses a model (e.g., linear regression, SVM or random forest)
to select a set of best or worst performing features. The model estimates the importance of a variable
by looking at how much prediction error increases when a variable is omitted while all others are left
unchanged.

For our setting, the RFE method uses a random forest model. We apply this technique on the RECS
data with target variables as urban, rural class labels. Residence type, income, whether house is owned or
rented, year the house was built, total number of rooms in the house, number of adults and children, and
representative weight of the household as given by RECS survey were considered as input features to RFE.
The results showed that residence type, income and representative weight of the household are sufficient to
distinguish urban and rural households in the RECS dataset. Based on these features, a best match R j∗ is
found for every H j. Once the best match is found, energy-related information like square footage, indoor
temperature, and water heating equipment are overlaid on the synthetic household.
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Assemble the data required for calculating the heat loss: Heating fuel and residence type are taken
from H j whereas square footage, heating and cooling equipment, water heater details and indoor daytime
and night time temperatures are taken from R j∗. The wall area and ceiling area are derived from the square
footage. Standard insulation values for Virginia state for walls and ceiling is used from Insulation Institute
(2009). It is assumed that the house is cooled using an air conditioner operating on air source heat pump.
This assumption is based on data present in RECS and Heat Pump Systems (). The efficiency values for
equipments related to heating and cooling fuels are obtained from the Heating Fuel Comparison Calculator
(2016). We assume a simple building model for detached, attached and apartment dwelling types in our
passive energy model. For single-family detached units, we assume that all walls of the house are exposed to
the external environment. For all other dwelling units like single-family attached and multi-family dwelling
units, we consider that only two walls are exposed to heat loss. Apartments are modeled as 4 units on every
level. For example, 3 levels are assumed to be present for 12-unit apartment building. Further, each house
is modeled as a rectangular box with the ratio 2:3 and the wall area is based on this ratio and the square
footage. Ceiling area for a detached unit is same as that of the square footage or floor area whereas the
ceiling area for each of the apartments is calculated as 1/4 of the ceiling area. Finally, heat loss calculation
for all dwelling types is performed using the Fourier Law. We assume that a constant amount of energy is
consumed by the refrigerator and lights for a given day.

4.2 Active Energy Model

Active energy demand for a household is modeled as a function of household members’ behavior for a
normative day. The active energy demand is simulated with respect to each household members’ energy
activities, time spent at home, the types of appliances used for the activities, and the duration for which
the appliances are used. Active energy demand is simulated only for adults (age 18+) in the household,
since the ATUS survey does not include activities for children. We further categorize active energy into
7 activities: personal grooming (showering), cleaning (vacuuming), cooking (breakfast, lunch, dinner),
dish-washing, laundry, leisure (watching TV, playing games, watching videos) and computer use. The
amount of energy required to heat water for activities like personal grooming, cooking, dish-washing and
laundry is also accounted for in the active energy consumption. We do not record any seasonal change
in activities since the ATUS survey offers schedules for each respondent for only one day in a year. The
detailed procedure for building active demand profiles for households is described below.

Find matching ATUS person Ai∗ for every synthetic person Pi: Every Pi is matched to a best Ai∗
using the fitted values approach described by Lum et al. (2016). The method works by fitting regression
models to predict time spent by an individual at locations such as home, work, school, shopping and other
locations. Then, a two-step approach is used to match each synthetic individual to a survey individual.
Every synthetic and survey person is treated as a record having attributes such as predicted values of time
spent at each location, individual demographics and household demographics. Let DA,P be the Euclidean
distance between every Pi, j and Ai∗,k∗. First, person-person distance is calculated to find the closest match
Ai∗, for every Pi in each survey household. Then, the best Wk∗ is chosen for H j. This between-household
distance metric is a minimax over a pairwise, between-individual distance metric, DA,P. It is the Hausdorff
distance as shown below –

DV,W (H j,Wk∗) = maxPi, j∈H j{DP,W (Pi, j,Wk∗)}.

DP,W (Pi, j,Wk∗) = minAi∗,k∗∈Wk∗{DA,P(Pi, j,Ai∗,k∗)}.

Each synthetic individual is assigned the activity schedule of the survey individual that is closest in
the chosen survey household. For more details refer to Lum et al. (2016).

Build active energy profile for each synthetic household H j: Personal grooming, computer use and
leisure activities are considered as independent activities. Cleaning, cooking, dish-washing and laundry
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activities are considered to be shared activities within a household (U.S. Bureau of Labor Statistics:American
Time Use Survey 2015). First, an activity sequence of energy-consuming activities for every matched Ai∗
is generated and assigned to the synthetic individual Pi. While building the energy activity sequence for
a household, the model picks one of each activity–cleaning, dish-washing and laundry–from individual
household members’ schedules with the longest duration. See Algorithm 1 for details about calculating
active energy for a household. Cooking timings and appliance information are captured from Larson (2002).
Information on appliances’ wattage ratings is obtained from Silicon Valley Power (). Information on hot
water usage for activities is obtained from The USGS Water Science School ().

Algorithm 1 Generating active energy profile for a synthetic household
1: Input : H j and its household members {P1, j,..,Pi, j}
2: Out put : (Ea

1 ... Ea
86400) for H j household active energy profile in WattSeconds, where Ea

s is the active energy use in the
sth second of the day.

3: procedure GENERATEACTIVEENERGYPROFILE
4: Let Activities j be the generated household energy activity sequence
5: Actindependent ← {PersonalGrooming, Leisure, ComputerUse}
6: Actshared ← {Cleaning, Cooking, DishWashing, Laundry}
7: Let ApplianceWattage be the list of appliance wattages, indexed by activity type
8: for each member Pi, j in H j do
9: Activei← list of energy activities for Pi

10: for each activity Activei,k do
11: if RESOLVECONSTRAINTS(Activei,k, Activities j) then
12: Activities j←{Activity type, start time, duration, activity name}
13: end if
14: end for
15: end for
16: for each activity Gk in Activities j do
17: energy← Gk,duration × ApplianceWattage[Gk,type]
18: for each second s from Gk,start to Gk,stop do
19: Ea

s ← Ea
s + energy

20: end for
21: end for
22: return (Ea

1 , ... , Ea
86400)

23: end procedure

Algorithm 2 Resolve constraints for adding activity to a household activity sequence

1: Input : Activities j for household j, kth activity Activek of individual Pi, j
2: Out put : True/False
3: procedure RESOLVECONSTRAINTS
4: Actindependent ← {PersonalGrooming, Leisure, ComputerUse}
5: Actshared ← {Cleaning, Cooking, DishWashing, Laundry}
6: addActivityToHousehold← False
7: if Activek,type ∈ Actshared AND Activek,type /∈ Activities j then
8: addActivityToHousehold← True
9: else if Activek,type ∈ Actshared AND Activek,type ∈ Activities j then

10: if Activek has the longest duration for the activity type then
11: addActivityToHousehold← True
12: end if
13: else if Activek,type ∈ Actindependent then
14: addActivityToHousehold← True
15: end if
16: return addActivityToHousehold
17: end procedure
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5 RESULTS

Our findings indicate that rural areas consume higher active energy than urban areas (Figure 2). Figure 3
compares the demand profiles of the top five counties/cities in Virginia consuming the highest and lowest
active energy. The counties consuming higher energy are all rural areas.

Figure 2: Active energy usage per household
(KWH) in urban and rural areas of Virginia.
NOVA, Virginia Beach, Richmond, and other
urban regions use less active energy than rural
areas.

Figure 3: Top five areas consuming highest and lowest active
energy per household (KWH) are shown for a normative
day. Two distinct groups of energy consumption can be
identified. The ones with higher energy consumption are
rural areas (Amelia, Culpeper, Caroline, Prince George, and
Surry counties).

We observe that overall, rural area households consume more energy in summer than urban areas. For
example, the passive energy consumption in cities like Radford, Waynesboro, Harrisonburg, etc., is much
less than in rural counties. In winter, however, urban areas cover the full range of energy consumption
(highest and lowest). Fairfax city and county are among the highest consumers of passive energy, and
cities like Norfolk, Alexandria, and Radford consume the least passive energy in winter (Figure 4). This
observation can be attributed to the distribution of fuel mixes, equipment efficiencies of furnaces, air source
heat pumps, geothermal heat-pumps, and square footage area to heat and cool the house. The larger the
house, the more the energy that is required. Certain areas, especially to the south side of Virginia, consume
higher energy than the other counties. This is due to the higher temperatures in those counties. Refer to
Table 2 and 3 for further details.

Different residence types are modeled to understand their energy consumption behavior. The single-
family detached dwellings consume the most energy, and apartment dwellings consume the least energy
(especially ones having more than 20 units), irrespective of weather conditions and whether the house lies
in an urban area or rural area. See Figure 5 for demand details. This is largely due to the fact that detached

Figure 4: Average household energy consumption (KWH) by variation in seasons. The energy usage is
shown for a day in July and February, 2015, representing summer and winter seasons respectively.
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Figure 5: The total energy consumption per household (KWH) in different dwelling types shows that single
family detached households consume the most energy in urban and rural areas.

residence types have a higher square footage as compared to other residence types. Also, single-family
households have all walls exposed as opposed to multi-unit dwellings. Hence, more energy is required
to heat and cool the space. Detached dwellings also have a larger family size as compared to household
sizes in apartments. Since urban area detached dwellings have larger square footage, we see that detached
houses in urban areas consume more energy than their counterparts in rural areas in the winter season. The
information is presented in Table 2.

Table 2: Average values of square footage, household size, household income and heat-cool energy in
different seasons in KWH (per household) for a given day.

Residence Type Sq.ft Household Size Income Heat Cool Winter Heat Cool Summer
OneFamilyDetached 2974.7 2.68 100180.8 12.4 6.0
OneFamilyAttached 2010.7 2.564 94058.8 6.9 4.5
2-4Apts 1024.0 2.01 42329.3 4.3 2.5
5-10Apts 1042.2 2.07 49024.8 3.6 2.7
11-20Apts 1101.9 2.13 54386.3 3.3 2.3
MoreThan20Apts 1130.5 1.59 73700.8 3.1 1.9

Table 3: Average values of demographic variables and energy usage by areatype. Energy is measured in
KWH per household for a given day. Energy usage is specified for four categories, namely, energy used
for performing activities, heating water, heating or cooling the house in different seasons.

Area Type No.Houses Household Size Sq.ft Income Activities HotWater HeatCoolWinter HeatCoolSummer
U 2090566 2.5 2498.7 95210.0 7.7 8.9 9.7 4.7
R 832820 2.4 2085.9 71703.9 8.6 9.1 9.4 5.2
C 139397 2.3 2196.7 58196.9 8.2 9.6 9.6 4.8

6 VALIDATION

We obtained hourly load profiles of 100 sample households from Rappahannock county, VA, for all days
of the year 2016. The sample of 100 load curves were used to validate the 3273 synthetic demand profiles
of all the synthetic households generated for Rappahannock county. For each synthetic household hourly
load profile, s, we find the closest matching Rappahannock real load profile, r, using dynamic time warping
(DTW) (Berndt and Clifford 1994).

Dynamic time warping is a distance measure specifically designed for comparing time series data.
Intuitively, it allows stretching and squeezing the time series to find the best corresponding points between
them. The DTW algorithm finds an optimal match between two given time series, subject to some constraints,

555



Thorve, Swarup, Marathe, Chungbaek, Nordberg, and Marathe

using dynamic programming. The constraints are that every point in each series must be matched to a point
in the other series. Further, if a point at time t on one series is matched to a point at time t +k on the other,
then any point t ′ > t on the first series can only be matched to a point at time t + k+m, for m≥ 0 on the
other time series. The appropriateness of DTW for our problem can be explained by a simple example.
Consider a real household that has a cooking activity at 4 pm and a TV-watching activity at 7 pm, causing
two peaks in the active demand profile. Correspondingly, we might have a synthetic household that has
the same two activities, but at 4:30 pm and 6 pm, respectively. Intuitively, these two load profiles are a
good match since they will have similarly sized peaks in a small time window (radius). However, standard
methods of comparison, such as taking the Euclidean distance between the two time series or calculating
Pearson’s correlation will not give a good match between the two series. DTW, however, can line up the
peaks because it is allowed to compress the part of the time series between the two peaks.

For each synthetic load profile, s, we find the closest Rappahannock load profile, r using DTW with
a radius of 3 hours (other radii give similar results, refer to Figure 8). Our results show that 88.5%
of the synthetic households had daily energy usage within 10% of the closest matching household from
Rappahannock for summer as well as winter profiles generated by the model. We show error rate for
summer profiles in Figure 9. Figures 6 and 7 show two matching households’ demand curves for a 2016
winter and summer day.

Figure 6: Best real curve match for a sample syn-
thetic curve for winter using DTW and radius 3.

Figure 7: Best real curve match for a sample syn-
thetic curve for summer using DTW and radius 3.

Figure 8: An elbow plot representing the number
of synthetic households in Rappahannock county
that fall within 10% error rate for different window
sizes (radius or w) of DTW matching process. We
choose w=3.

Figure 9: 88.5% of the synthetic households’ energy
usage in Rappahannock county falls within 10% of
the closest matching household from the Rappahan-
nock sample for summer profiles generated by the
model.
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7 CONCLUSION AND FUTURE WORK

We present a detailed individual-based methodology for generating energy demand profiles for households
in urban and rural regions of Virginia, based on a variety of complex drivers, including local climate,
household demographics, behavior, occupancy patterns, building stock, fuels, and appliances. Detached
households consume the most energy in urban and rural areas. Active energy consumption is higher in
rural areas than in urban areas. Urban and rural area passive energy consumption changes by season. A
novel approach to validation of the model is presented. The generated synthetic curves show that 88.5%
of the synthetic curves lie within 10% error rate, thus presenting good matches to real-time data from real
households in Virginia.

The present work can be extended in multiple directions. The availability of detailed energy-use
surveys like EIA-RECS, complete hourly temperature data through NASA products like NLDAS, and
synthetic populations now make it possible to estimate energy demand at highly resolved levels and scale.
Rappahannock is a rural county in VA; we plan to validate the load profiles for more counties and urban areas.
This comprehensive study reveals spatiotemporal regularities and patterns that will enable better energy
management and efficiency. The model can be useful for a range of stakeholders, including households
trying to understand the potential implications of different appliance or energy choices, utilities looking
to better forecast the impact of different possible residential trends, and policymakers seeking to assist
households in improving their energy efficiency through targeted policies and programs. The model can be
extended to study scenarios such as effects of penetration of electric vehicles on electric load (Bustos-Turu
et al. 2016), effects of roof-top solar adoption on household consumption, use of energy star appliances,
and shifting demand from peak hours to off-peak hours (Subbiah et al. 2017).
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