
Chapter 4
Simulation Software

Banks, Carson, Nelson & Nicol
Discrete-Event System Simulation

Outline and PurposeOutline and Purpose

Discuss the history of simulation software.
Discuss features and attributes of simulation software,
organized into three categories:

General-purpose programming languagesGeneral purpose programming languages,
Flexible and familiar.
Well suited for learning DES principles and techniques
e.g., C, C++, and Java.

Simulation programming language,
e.g., GPSS/HTM, SIMAN V® and SLAM II®.

Simulation environment
Good for building models quickly
Provide built-in features (e.g., queue structures)
Graphics and animation provided
E g : Arena Automod

2

E.g.: Arena, Automod,…

History of Simulation SoftwareHistory of Simulation Software

3

History of Simulation SoftwareHistory of Simulation Software

1995 - 60 The Period of Search
Search for unifying concepts and the development of reusable
routines to facilitate simulation.
Mostly conducted in FORTRAN

1961 - 75 The Advent
Appearance of the forerunners of simulation programming
languages (SPLs)languages (SPLs.)
The first process interaction SPL, GPSS was developed at IBM

1966 - 70 The Formative Period
Concepts were reviewed and refined to promote a more
consistent representation of each language’s worldview

4

Sources: Nance (1995) and panel discussion at the
1992 Winter Simulation conference (Wilson, 1992).

History of Simulation SoftwareHistory of Simulation Software

1971 - 78 The Expansion Period
Major advances in GPSS came from outside IBMMajor advances in GPSS came from outside IBM
GPSS/NORDEN, a pioneering effort that offered an interactive, visual
online environment (in Norden Systems.)
GASP added support for the activity-scanning worldview and event-
scheduling worldview (at Purdue.)scheduling worldview (at Purdue.)

1979 - 86 The Period of Consolidation and Regeneration
Beginnings of PSLs written for, or adapted to, desktop computers and
microcomputers.
Two major descendants of GASP appeared: SLAM II and SIMANTwo major descendants of GASP appeared: SLAM II and SIMAN
(provide multiple modeling perspectives and combined modeling
capabilities).

1987 – Now The Period of Integrated Environments
G th f SPL th l t d th fGrowth of SPLs on the personal computer and the emergence of
simulation environments with graphical user interfaces, animation and
other visualization tools.
Recent advancements have been made in web-based simulation.

5
Sources: Nance (1995) and panel discussion at the
1992 Winter Simulation conference (Wilson, 1992).

Selection of Simulation SoftwareSelection of Simulation Software

Advice when evaluating and selecting simulation
ftsoftware:
Consider the accuracy and level of detail obtainable, ease of
learning, vendor support, and applicability to your applications.
Execution speed is important.
Beware of advertising claims and demonstrations.
Ask the vendor to solve a small version of your problem.Ask the vendor to solve a small version of your problem.

6

Selection simulation SoftwareSelection simulation Software

Model building feature
Runtime environment
Animation of layout featuresy
Output features
Vendor support and product pp p
documentation

7

Model building featureModel building feature

Modeling world-view
I t d t l i bilitInput data analysis capability
Graphical model building
Conditional routing
Simulation programming
Syntax
Input flexibilityInput flexibility
Modeling conciseness
Randomness
S i li d t d t l tSpecialized components and templates
User-built objects
Interface with general programming language

8

Runtime environmentRuntime environment

Execution Speed
Model size; number of variables and
attributes
Interactive debugger
Model status and statistics

9

Animation of layout featuresAnimation of layout features

Type of animation
I t d i d bj t filImport drawing and objects file
Dimension
Movement
Quality of motion
Libraries of common objects
NavigationNavigation
Views
Display step
S l t bl bj tSelectable objects
Hardware requirments

10

Output featuresOutput features

Optimizationp
Standardized Report
Statistical AnalysisStatistical Analysis
Business Graphic
File Export

Database

11

Vendor support and product documentationVendor support and product documentation

Training
Documentation
Help systemy
Tutorials
Supportpp
Upgrades, maintenance
Track reportTrack report

12

Selection of Simulation SoftwareSelection of Simulation Software

Advice when evaluating and selecting simulation
ftsoftware:
Beware of “checklists” with “yes” and “no” as the entries, e.g.
many packages claim to have a conveyor entity, however,
implementations have considerable variation and level of fidelity.
Determine whether the simulation package and language are
sufficiently powerful to avoid having to write logic in any external
language.
Beware of “no programming required,” unless either the package
is a near-perfect fit to your problem domain, or programming is
possible with the supplied blocks, nodes, or process-flow
diagram.

13

An Example SimulationAn Example Simulation

The checkout counter: a typical single-server queue
The simulation will run until 1000 customers have been served.
Interarrival times of customers ~ Exp(4.5 min).
Service times are (approx.) ~ Normal(3.2 min, 0.6 min).(pp) ()
When the cashier is busy, a queue forms with no customers
turned away.
Manual simulation in Examples 3.3 and 3.4.Manual simulation in Examples 3.3 and 3.4.
Two events: the arrival and departure events (logic illustrated in
Figures 3.5 and 3.6.)

This example is used to illustrate simulations in Java,
GPSS/H and SSF in the following slides.

14

Global ViewGlobal View

Customer being served
 (in server) Arriving customer

 Server

Departing customer Customers are waiting
to be served (in queue) System

15

Event-scheduling/time-advance algorithmEvent scheduling/time advance algorithm

16

Simulation in JavaSimulation in Java

Java is widely used programming language that has
b d t i l i i l tibeen used extensively in simulation.
It does not provide any facilities directly aimed at aiding
the simulation analyst.the simulation analyst.
The runtime library provides a random-number generator.
It supports modular construction of large models.
Simulation libraries such as SSG alleviate the
development burden.

Provides access to standardized simulation functionality and hideProvides access to standardized simulation functionality and hide
low-level scheduling minutiae.

17

Simulation in JavaSimulation in Java

Discrete-event simulation model written in Java contains the
following :following :

Basic components:
System state
Entities and attributes
Sets
Events
Activities
Delaysy

Common components (when organizing model in a modular fashion by
using methods):

Clock
Initialization methodInitialization method
Min-time event method
Event methods
Random-variate generators

18

Main program
Report generator.

Simulation
in Java:in Java:

The overall
structure of
Java
simulation is:simulation is:

19

Single-Server Queue
Example :

[Si l ti i J][Simulation in Java]

The overall
structure of Javastructure of Java
simulation
structure of the
grocery checkout

t lcounter example:

20

Single-Server Queue Example
[Simulation in Java]

The main program:

21

The Checkout Counter: VariablesThe Checkout Counter: Variables
System state QueueLength ,NumberInService

Entity attributes and
set

Customers FCFS queue of customers

Future event List FutureEventList

Activity durations MeanInterArrivalTime, MeanServiceTime

Input parameters MeanInterArrivalTime, MeanServiceTime, SIGMA standard
deviation, TotalCustomers (The stopping criterion)

Simulation variables Clock

Statistical
accumulators

LastEventTime ,TotalBusy, Max QueueLength,
SumResponseTime, NumberOfDepartures ,LongService who
spends 4 or more minutes

22

p
Summary statistics RHO=BusyTime/Clock Proportion of time server is busy

AVGR average response time ,PC4 proportion of customers
who spent 4 or more minutes

The Checkout Counter: Functions and
M th dMethods

exponential (mu)
Functions normal (mu,SIGMA)

Initialization

Methods
ProcessArrival

ProcessDepartureProcessDeparture

ReportGeneration

23

p

Single-Server Queue Example
[Simulation in Java]

Structure of the main program:
class Sim {

// Class Sim variables
public static double Clock, MeanInterArrivalTime, MeanServiceTime, SIGMA,
LastEventTimeLastEventTime,

TotalBusy, MaxQueueLength, SumResponseTime;
public static long NumberOfCustomers, QueueLength, NumberInService,

TotalCustomers, NumberOfDepartures, LongService;

bl f l lpublic final static int arrival = 1;
public final static int departure = 2;

public static EventList FutureEventList;
public static Queue Customers;public static Queue Customers;
public static Random stream;

… continued on next slide …

24

Single-Server Queue Example
[Simulation in Java]

Structure of the main program (continued):
continued from last slide… continued from last slide …

public static void main(String argv[]) {

MeanInterArrivalTime = 4.5; MeanServiceTime = 3.2;
SIGMA = 0.6; TotalCustomers = 1000;
long seed =1000; //Long.parseLong(argv[0]);

stream = new Random(seed); // initialize rng stream
FutureEventList = new EventList();FutureEventList = new EventList();
Customers = new Queue();

Initialization();
// Loop until first "TotalCustomers" have departed
while(NumberOfDepartures < TotalCustomers) {
Event evt = (Event)FutureEventList.getMin(); // get imminent event
FutureEventList.dequeue(); // be rid of it
Clock = evt.get_time(); // advance simulation time
if(evt.get type() == arrival) ProcessArrival(evt);

25

if(evt.get_type() arrival) ProcessArrival(evt);
else ProcessDeparture(evt);
}

ReportGeneration();
}

Single-Server Queue Example
[Simulation in Java]

The initialization method:

26

Single-Server Queue Example
[Simulation in Java]

Structure of the initialization method:

// seed the event list with TotalCustomers arrivals
public static void Initialization() {
Clock = 0.0;
QueueLength = 0;Q g ;
NumberInService = 0;
LastEventTime = 0.0;
TotalBusy = 0 ;
MaxQueueLength = 0;
SumResponseTime = 0;SumResponseTime = 0;
NumberOfDepartures = 0;
LongService = 0;
// create first arrival event
Event evt = new Event(arrival, exponential(stream,

MeanInterArrivalTime));
FutureEventList.enqueue(evt);
}

27

Single-Server Queue Example
[Simulation in Java]

The arrival event method:

28

Single-Server Queue Example
[Simulation in Java]

Structure of the arrival event method:
U d t t tUpdate server status
Collect statistics
Schedule next arrival

public static void ProcessArrival(Event evt) {
Customers.enqueue(evt);
QueueLength++;
// if the server is idle, fetch the event, do statistics
// and put into service// and put into service
if(NumberInService == 0) ScheduleDeparture();
else TotalBusy += (Clock - LastEventTime); // server is busy
// adjust max queue length statistics
if (MaxQueueLength < QueueLength) MaxQueueLength =

QueueLength;
// schedule the next arrival
Event next_arrival = new Event(arrival,

Clock+exponential(stream, MeanInterArrivalTime));
FutureEventList.enqueue(next arrival);

29

FutureEventList.enqueue(next_arrival);
LastEventTime = Clock;
}

Single-Server Queue Example
[Simulation in Java]

The departure event method:

30

Single-Server Queue Example
[Simulation in Java]

Structure of the departure event method:
Ob i h j b h h d f hObtain the job at the head of the queue

public static void ScheduleDeparture() {

double ServiceTime;
// get the job at the head of the queue

while ((ServiceTime = normal(stream, MeanServiceTime, SIGMA)) < 0);
Event depart = new Event(departure,Clock+ServiceTime);
FutureEventList.enqueue(depart);
NumberInService = 1;
QueueLength--;
}}

… continued on next slide …

31

Single-Server Queue Example
[Simulation in Java]

Structure of the departure event method (continued):
G h d i i f fi i hiGet the description of finishing customer
Schedule departure of the next customer if queue is not emptied
Collect statistics

… continued from last slide …

public static void ProcessDeparture(Event e) {
// get the customer description

f h d () C d ()Event finished = (Event) Customers.dequeue();
// if there are customers in the queue then schedule
// the departure of the next one
if(QueueLength > 0) ScheduleDeparture();
else NumberInService = 0;else NumberInService 0;
// measure the response time and add to the sum
double response = (Clock - finished.get_time());
SumResponseTime += response;
if(response > 4.0) LongService++; // record long service
TotalBusy + (Clock LastEventTime);

32

TotalBusy += (Clock - LastEventTime);
NumberOfDepartures++;
LastEventTime = Clock;
}

Single-Server Queue Example
[Simulation in Java]

Report generator:

33

Single-Server Queue Example
[Simulation in Java]

Structure of the report generator:

public static void ReportGeneration() {
double RHO = TotalBusy/Clock;
double AVGR = SumResponseTime/TotalCustomers;
double PC4 = ((double)LongService)/TotalCustomers;double PC4 = ((double)LongService)/TotalCustomers;

System.out.println("SINGLE SERVER QUEUE SIMULATION -
GROCERY STORE CHECKOUT COUNTER ");
S l ("\ "System.out.println("\tMEAN INTERARRIVAL TIME "
+ MeanInterArrivalTime);
System.out.println("\tMEAN SERVICE TIME "
+ MeanServiceTime);
System.out.println("\tSTANDARD DEVIATION OF SERVICE TIMES System.out.println(\tSTANDARD DEVIATION OF SERVICE TIMES
“
+ SIGMA);

… continued on next slide …

34

Single-Server Queue Example
[Simulation in Java]

Structure of the report generator (continued):
… continued from last slide …

System.out.println("\tNUMBER OF CUSTOMERS SERVED
"
+ T t lC t)+ TotalCustomers);
System.out.println();
System.out.println("\tSERVER UTILIZATION
“ + RHO);
S t t i tl ("\tMAXIMUM LINE LENGTH System.out.println("\tMAXIMUM LINE LENGTH
" + MaxQueueLength);
System.out.println("\tAVERAGE RESPONSE TIME
" + AVGR + " MINUTES");
S t t i tl ("\tPROPORTION WHO SPEND FOUR ")System.out.println("\tPROPORTION WHO SPEND FOUR ");
System.out.println("\t MINUTES OR MORE IN SYSTEM
" + PC4);
System.out.println("\tSIMULATION RUNLENGTH
" + Cl k + " MINUTES")

35

" + Clock + " MINUTES");
System.out.println("\tNUMBER OF DEPARTURES
" + TotalCustomers);

}

Single-Server Queue Example
[Simulation in Java]

Sim class methods to generate exponential and normal random
variates:variates: public static double exponential(Random rng, double mean) {

return -mean*Math.log(rng.nextDouble());
}
public static double SaveNormal;
public static int NumNormals = 0;public static int NumNormals = 0;
public static final double PI = 3.1415927 ;

public static double normal(Random rng, double mean, double sigma) {
double ReturnNormal; // should we generate two normals?
if(N N l 0) {if(NumNormals == 0) {
double r1 = rng.nextDouble();
double r2 = rng.nextDouble();
ReturnNormal = Math.sqrt(-2*Math.log(r1))*Math.cos(2*PI*r2);
SaveNormal = Math.sqrt(-2*Math.log(r1))*Math.sin(2*PI*r2);SaveNormal Math.sqrt(2 Math.log(r1)) Math.sin(2 PI r2);
NumNormals = 1;

} else {
NumNormals = 0;
ReturnNormal = SaveNormal;

}

36

}
return ReturnNormal*sigma + mean ;

}

Single-Server Queue Example
[Simulation in Java]

The output:

SINGLE SERVER QUEUE SIMULATION - GROCERY STORE CHECKOUT
COUNTER
MEAN INTERARRIVAL TIME 4.5
MEAN SERVICE TIME 3 2MEAN SERVICE TIME 3.2
STANDARD DEVIATION OF SERVICE TIMES 0.6
NUMBER OF CUSTOMERS SERVED 1000
SERVER UTILIZATION 0.7175
MAXIMUM LINE LENGTH 7.0
AVERAGE RESPONSE TIME 6.7358 MINUTES
PROPORTION WHO SPEND FOUR
MINUTES OR MORE IN SYSTEM 0.675
SIMULATION RUNLENGTH 4455.02 MINUTES
NUMBER OF DEPARTURES 1000

Note: Most of the output statistics are estimates that contain
d

NUMBER OF DEPARTURES 1000

37

random error.

Simulation in GPSSSimulation in GPSS

GPSS is a highly structured, special-purpose simulation
programming languageprogramming language.

Based on the process-interaction approach.
Oriented toward queueing systems.

Use of block diagram:
Provides a convenient way to describe the system.
With over 40 standard blocksWith over 40 standard blocks.
Blocks represents events, delays and other actions that affect
transaction flow.

Block diagram is converted to block statements controlBlock diagram is converted to block statements, control
statements are added, and result in a GPSS model.

38

Simulation in GPSSSimulation in GPSS

The 1st version was released by IBM in 1961.
GPSS/H is the most widely used version today.

Released in 1977
Flexible yet powerful.y p
The animator is Proof AnimationTM.

39

Single-Server Queue Example
[Simulation in GPSS/H]

B i i fRandom
variable,

exponentially
distributed

Customer

Beginning of
data

collection

Customer
captures cashier

resource

Random
variable,
normally

distributed

Customer gives up
the use of the

f ilitdistributed facility

40

Single-Server Queue Example
[Simulation in GPSS/H]

First, define ampervariables.

SIMULATE
**
* Define Ampervariables
*

INTEGER &LIMIT
REAL &IAT &MEAN &STDEV &COUNTREAL &IAT,&MEAN,&STDEV,&COUNT
LET &IAT=4.5
LET &MEAN=3.2
LET &STDEV=.6
LET &LIMIT 1000LET &LIMIT=1000

41

Single-Server Queue Example
[Simulation in GPSS/H]

Write input data to file and provide formatting information.

* Write Input Data to File Write Input Data to File
*

PUTPIC FILE=OUT,LINES=5,(&IAT,&MEAN,&STDEV,&LIMIT)
Mean interarrival time **.** minutes
Mean service time ** ** minutesMean service time . minutes
Standard deviation of service time **.** minutes
Number of customers to be served *****

42

Single-Server Queue Example
[Simulation in GPSS/H]

GPSS/H block section description and inputs.
START control statement controls simulation execution.

* GPSS/H Block Section GPSS/H Block Section
*

GENERATE RVEXPO(1,&IAT) Exponential arrivals
QUEUE SYSTIME Begin response time data collection
QUEUE LINE Customer joins waiting line
SEIZE CHECKOUT B i h k t t h i tSEIZE CHECKOUT Begin checkout at cash register
DEPART LINE Customer starting service leaves queue
ADVANCE RVNORM(1,&MEAN,&STDEV) Customer's service time
RELEASE CHECKOUT Customer leaves checkout area
DEPART SYSTIME End response time data collectionp
TEST GE M1,4,TER Is response time GE 4 minutes?
BLET &COUNT=&COUNT+1 If so, add 1 to counter
TER TERMINATE 1

*
START &LIMIT Simulate for required number

43

START &LIMIT Simulate for required number

Single-Server Queue Example
[Simulation in GPSS/H]

Write desired output data to file OUT.

* Write Customized Output Data to File
*

PUTPIC FILE=OUT,LINES=7,(FR(CHECKOUT)/1000,QM(LINE),_
QT(SYSTIME),&COUNT/N(TER),AC1,N(TER))
Server utilization .***
Maximum line length **g
Average response time **.** minutes
Proportion who spend four minutes .***

or more in the system
Simulation runlength ****.** minutesg
Number of departures ****

*
END

44

Single-Server Queue Example
[Simulation in GPSS/H]

Sample output report:

Mean interarrival time 4.50 minutes
Mean service time 3.20 minutes
Standard deviation of service time 0.60 minutes
Number of customers to be served 1000

Server utilization 0.676
Maximum line length 7
Average response time 6.33 minutes
Proportion who spend four minutes 0.646

or more in the system
SSimulation runlength 4767.27 minutes
Number of departures 1000

45

Simulation in SSFSimulation in SSF

The Scalable Simulation Framework (SSF) is an Application
Program Interface (API)Program Interface (API)

Describes a set of capabilities for object-oriented, process-view
simulation.
The API is sparse and allows implementations to achieve high
performance, e.g. on parallel computers.
A widely used base, particularly in network simulation by using the
add-on framework SSFNet.

SSF API defines 5 base classes:
Processes: implements threads of control (where the action p (
method contains the execution body of the thread.)
Entity: describes simulation objects.
inChannel and outChannel: communication endpoints

46

inChannel and outChannel: communication endpoints.
Event: defines messages sent between entities.

Single-Server Queue Example
[Simulation in SSF]

SSQueue is a class that contains the whole simulation
experiment:experiment: class SSQueue extends Entity {

private static Random rng;
public static final double MeanServiceTime = 3.2;

bli t ti fi l d bl SIGMA 0 6

Defines experimental
constants.

public static final double SIGMA = 0.6;
public static final double MeanInterarrivalTime = 4.5;
public static final long ticksPerUnitTime = 1000000000;
public long generated=0;
public Queue Waiting;

Contains SSF
communication
endpoints.
Defines an inner p g;

outChannel out;
inChannel in;

public static long TotalCustomers=0, MaxQueueLength=0,
TotalServiceTime=0;

Defines an inner
class, arrival.

TotalServiceTime=0;
public static long LongResponse=0, umResponseTime=0,

jobStart;

class arrival {

47

long id, arrival_time;
public arrival(long num, long a) { id=num; arrival_time = a; }

}
… continued on next slide…

Single-Server Queue Example
[Simulation in SSF]

Arrival is an SSF process:
… continued from last slide…

class Arrivals extends process {
private Random rng;
private SSQueue owner;

Stores the identity
of entity
Creates a
random number private SSQueue owner;

public Arrivals (SSQueue _owner, long seed) {
super(_owner); owner = _owner;
rng = new Random(seed);

}
S () { }

random-number
generator,
Generates and
enqueues a new public boolean isSimple() { return true; }

public void action() {
if (generated++ > 0) {
// put a new Customer on the queue with the present arrival time
int Size = owner.Waiting.numElements();

enqueues a new
arrival, then
blocks for an inter-
arrival time.

int Size owner.Waiting.numElements();
owner.Waiting.enqueue(new arrival(generated, now()));
if(Size == 0) owner.out.write(new Event()); // signal start of burst

}
waitFor(owner.d2t(owner.exponential(rng,

owner MeanInterarrivalTime)));

48

owner.MeanInterarrivalTime)));
}

}
}

Single-Server Queue Example
[Simulation in SSF]

Server process:
Thi i ll d h j b h l t d i b i lThis process is called when a job has completed service or by a signal
from the arrival process.
Update statistics.
Customer is dequeued from the waiting list or the process suspends if noCustomer is dequeued from the waiting list or the process suspends if no
customer was waiting.

class Server extends process {
private Random rng;
private SSQueue owner ;
private arrival in_service;
private long service_time;

public Server(SSQueue _owner, long seed) {
super(_owner);
owner = _owner;
rng = new Random(seed);

}

49

}
public boolean isSimple() { return true; }

… continued on next slide…

Single-Server Queue Example
[Simulation in SSF]

Server process (continued):
continued from last slide… continued from last slide…

public void action() {
// if in_service is not null, we entered because of a job completion

if(in_service != null) {
owner.TotalServiceTime += service_time;
long in_system = (now() -in_service.arrival_time);
owner.SumResponseTime += in_system;
if(owner.t2d(in_system) > 4.0) owner.LongResponse++;
in_service = null;
if(owner.MaxQueueLength < owner.Waiting.numElements() + 1)if(owner.MaxQueueLength owner.Waiting.numElements() 1)

owner.MaxQueueLength = owner.Waiting.numElements() + 1;
owner.TotalCustomers++;

}
if(owner.Waiting.numElements() > 0) {

i i (i l) W iti d ()in_service = (arrival)owner.Waiting.dequeue();
service_time = -1;
while (service_time < 0.0)
service_time = owner.d2t(owner.normal(rng, owner.MeanServiceTime, owner.SIGMA));

waitFor(service_time);

50

(_)
} else {

waitOn(owner.in); // we await a wake-up call
}

} }

Simulation in SSFSimulation in SSF

SSF bridges the gap between models developed in pure Java
and models developed in languages specifically designed forand models developed in languages specifically designed for
simulation.
It also provides the flexibility offered by a general-programming
language, yet has essential support for simulation.

51

Simulation SoftwareSimulation Software

All the simulation packages described in later subsections run on a PC
under Microsoft Windows 2000 or XPunder Microsoft Windows 2000 or XP.
Common characteristics:

Graphical user interface, animation
A t ti ll ll t d t tAutomatically collected outputs.
Most provide statistical analyses, e.g., confidence intervals.

All packages considered in this chapter take the process-interaction
ld i f l ll t h d li d l d i dworldview, a few also allow event-scheduling models and mixed

discrete-continuous models.
For animation, some emphasize scale drawings in 2-D or 3-D; others

h i i i t i tiemphasize iconic-type animation.
Almost all offer dynamic business graphing, e.g., time lines, bar charts
and pie charts.

52

Trends in Simulation PackagesTrends in Simulation Packages

High-fidelity simulation
High-accuracy simulation of complex systems

Data exchange standards
Si l ti i t/ t t b i t f d t th kSimulation input/output can be interfaced to other packages

Distributed (client/server) computing support
Large organization/wide-area collaboration (e g across LAN Internet)Large organization/wide-area collaboration (e.g., across LAN, Internet)

General purpose simulations vs. specialized
simulationssimulations

Do it once, make it reusable

Richer object libraries/reusable block sets
Multiple computer simulations to accelerate
simulations 53

Implementation DirectionsImplementation Directions

Top Down
f f fDefine high level structure first, fill in details

Nothing is working until the details are done

Bottom Up
Define the details first, stitch them together
Interfaces will change as more details are defined

Straight through
Start at system input, progress through to final output (or vice versa)

Outside In
Front and back interfaces are defined first, interior details later, meet in middle, ,
Pieces may not join at the center properly

Inside Out
Inner connections are completed outer pieces are addedInner connections are completed, outer pieces are added
There is something to test from the beginning

54

Simulation Software (Not discussed in the book)Simulation Software (Not discussed in the book)

OpNet Modeler/IT Guru
graphical modeling of complex networks

Matlab/SIMULINK
block diagram focus
focus on scientific/technical applications
i h t f Bl k t /T lbrich set of Blocksets/Toolboxes

MathCAD
ti b d k h tequation-based worksheets

includes symbolic programming (e.g.,
simplification/expansion of equations)s p cat o /e pa s o o equat o s)

55

Simulation Software cntd.Simulation Software cntd.

Software package discussed:
AArena
AutoMod
Delmia/QUEST
Extend
Flexsim
Micro SaintMicro Saint
ProModel
Simul8
WITNESSWITNESS

56

Arena [Simulation Software]Arena [Simulation Software]

Arena can be used for simulating discrete and continuous systems.
At th h t f A i th SIMAN i l ti lAt the heart of Arena is the SIMAN simulation language.
The Arena Basic Edition:

For modeling business processes and other systems in support of high-
l l l i dlevel analysis needs.

The Arena Standard Edition:
For modeling more detailed discrete and continuous systems.
Models are built from graphical objects called modules to define system
logic and physical components.
Includes modules focused on specific aspects of manufacturing and
material handling systemsmaterial-handling systems.

The Arena Professional Edition:
With capability to craft custom simulation objects that mirror components
of real system including terminology process logic data etc

57

of real system, including terminology, process logic, data, etc.

Arena [Simulation Software]Arena [Simulation Software]

The Arena family includes:
OptQuest: an optimization software package.
Arena Contact Center and Arena Packaging: designed specifically
to model call centers and high-speed production lines.

Arena’s Input Analyzer automates the process of selecting the
proper distribution and its inputs.
The Output Analyzer and Process Analyzer automateThe Output Analyzer and Process Analyzer automate
comparison of different design alternatives.

58

AutoMod [Simulation Software]AutoMod [Simulation Software]

AutoMod Product Suite includes:
AutoMod simulation package, AutoStat for experimentation and analysis, andAutoMod simulation package, AutoStat for experimentation and analysis, and
AutoView for making AVI moves of the built-in 3-D animation.

Main focus: manufacturing and material-handling systems (has built in
templates.)
Also contains a full simulation programming languageAlso contains a full simulation programming language.
Strength: detailed, large models used for planning, operational decision
support, and control-system testing.
An AutoMod model consists of one or more systems.y

A system can be either a process system or a movement system.
A model may contain any number of systems, which can be saved and reused as
objects in other models.

AutoStat provides a complete environment for the user to define scenariosAutoStat provides a complete environment for the user to define scenarios,
conduct experimentation and perform analysis.
Optimization is based on an evolutionary strategies algorithm.

59

Extend [Simulation Software]Extend [Simulation Software]

Extend OR, Industry, and Suite are used for simulating discrete and
mixed discrete-continuous systemsmixed discrete continuous systems.
Extend CP is for continuous modeling only.
Extend combines a block diagram approach to model-building with a
development environment for creating new blocks.p g

Models are built by placing and connecting blocks, and entering the
parameters on the block’s dialog window.
For creating new blocks, Extend comes with a compiled C-like
programming environmentprogramming environment.

Input parameters can be changed interactively during a model run and
can come from external sources.
Provides iconic process-flow animation of the block diagramProvides iconic process-flow animation of the block diagram.
Has an open architecture and also supports linking to and using code
written in external languages.

60

Flexsim [Simulation Software]Flexsim [Simulation Software]

Flexsim is a discrete-event, object-oriented simulator developed in
C++ using Open GL technologyC , using Open GL technology.
Flexsim is commonly used to

To build models that behave like the actual physical or conceptual
systems they represent.
To improve production efficiencies and reduce operating costs through
simulation, experimentation, and optimization of dynamic flow systems.
Engineers and managers use Flexsim to evaluate plant capacity, balance
packaging and manufacturing lines manage bottleneckspackaging and manufacturing lines, manage bottlenecks.

The results of each simulation can be analyzed:
Graphically through 3D animation, and
Through statistical reports and graphs.Through statistical reports and graphs.

61

Micro Saint [Simulation Software]Micro Saint [Simulation Software]

Micro Saint is a general-purpose, discrete-event, network simulation-
software package for building models that simulate real-life processessoftware package for building models that simulate real life processes.
It does not use the terminology or graphic representations of a specific
industry.
Model can be built for any process that can be represented by a y p p y
flowchart diagram.
It provides two views of the simulation model:

Network diagram view: the process flowchart in action.
Actionview provides a realistic 2-D picture of the process.

OptQuest optimization is included:
Automatically search for and find optimal or near-optimal solutions.

62

ProModel [Simulation Software]ProModel [Simulation Software]

A simulation and animation tool designed to model manufacturing
systemssystems.

Has manufacturing-oriented modeling elements and rule-based decision
logic.
The modeling elements in ProModel are parts (entities), locations,

th t k ti d i l i d i lresources, path networks, routing and processing logic, and arrivals.
Includes logic for automatically generating cost data associated with a
process.
Also comes with an output viewerAlso comes with an output viewer.
Its runtime interface allows a user to define multiple scenarios for
experiments.
It offers 2-D animation with an optional 3-D like perspective viewIt offers 2-D animation with an optional 3-D like perspective view.
The company also offers MedModel for healthcare systems and
ServiceModel for service systems.

63

Delmia/QUEST [Simulation Software]Delmia/QUEST [Simulation Software]

Delmia/QUEST is a manufacturing-oriented simulation package.
Combines an object-based true 3-D simulation environment with a graphical userCombines an object-based, true 3-D simulation environment with a graphical user
interface for material-flow modules.
Incorporates 2-D and 3-D CAD geometry to create a virtual factory environment.

The company also offers a number of workcell simulators:
IGRIP® for robotic simulation and programming.
ERGOTM for ergonomic analyses.
PROCESS ENGINEERTM for process-planning.

S C (SC) fSimulation Control Language (SCL): allows expert users to define customer
behavior and to gain control over simulation.
Batch Control Language (SCL): open architecture allows the advanced user to
perform batch simulation runs to automatically collect and tabulate dataperform batch simulation runs to automatically collect and tabulate data.
Output is available both numerically and visually.

64

B45

 Slide 64

 B45 Delmia/QUEST
(Check this throughout for consistency)
 Brian; 2005/03/11

SIMUL8 [Simulation Software]SIMUL8 [Simulation Software]

SIMUL8 models are created by drawing the flow of work with the computer
mouse using a series of icons and arrows to represent the resources andmouse, using a series of icons and arrows to represent the resources and
queues in the system.
Main focus is service industries where people are processing transactions.
The company’s goal is to spread simulation very widely across businesses.p y g p y y

Have very different pricing and support policies.
Contains features that watch how the product is being used.

Simulation models and data are saved in SML format.
SIMUL8 has a VBA interface and supports ActiveX/COM so that external
applications can build and control SIMUL8 simulations.
The product is available at two levels: Standard and Professional.

65

WITNESS [Simulation Software]WITNESS [Simulation Software]

WITNESS has separate versions for manufacturing and service
industriesindustries.
WITNESS models are based on template elements.

Elements may be customized and combined into module elements and
templates for reusetemplates for reuse.
Displayed in a 2-D layout animation with multiple windows and display
layers.

WITNESS has object-model and ActiveX control for simulationWITNESS has object-model and ActiveX control for simulation
embedding and includes direct data links to Microsoft Excel, MINITAB
and any OLEDB database source.

66

Experimentation and Statistical-Analysis Toolsp y

Virtually all simulation packages offer support for statistical analysis of
simulation outputsimulation output.
In recent years, many packages have added optimization as one of
the analysis tools.

Optimization is used to find a “near optimal” solutionOptimization is used to find a “near-optimal” solution.
User must define an objective or fitness function, e.g. cost.
Recent advances in the field of metaheuristics has offered new
approaches to simulation optimizationapproaches to simulation optimization.

Products discussed:
Arena’s Output and Process Analyzer
AutoStatAutoStat
OptQuest
SimRunner

67

Arena’s Output and Process Analyzer
[Experimental and Analysis Tools]

Output Analyzer
Provides confidence intervals comparison of multiple systems and warmProvides confidence intervals, comparison of multiple systems, and warm-
up determination to reduce initial condition bias.

Process Analyzer
Adds sophisticated scenario management capabilities to Arena forAdds sophisticated scenario-management capabilities to Arena for
comprehensive design of experiments.
Allows a user to define scenarios, make the desired runs, and analyze the
results.results.

OptQuest is used for optimization.

68

OptQuest [Experimental and Analysis Tools]OptQuest [Experimental and Analysis Tools]

An optimization tool.
OptQuest is based on a combination of methods: scatter
search, tabu search, linear-integer programming, and neural
networks.

The combination of methods allows the search process to escape
local optimality in the quest for the best solution.

Scatter search: Population_based approach-
Creates new solutions with combining existing solutions

Tabu search: is then superimposed to prohibit the search from
reinvestigating previous solutions
N l N k S l i lik l bNeural Network: Screens out solutions likely to be poor

69

AutoStat [Experimental and Analysis Tools]AutoStat [Experimental and Analysis Tools]

AutoStat is the run manager and statistical-analysis product in the
AutoMod product familyAutoMod product family.
It provides a number of analyses

Including warm-up determination, absolute and comparison confidence
intervals design of experiments sensitivity analysisintervals, design of experiments, sensitivity analysis.

The evolutionary-strategies algorithm used is well suited to find a
near-optimal solution without getting trapped at a local optimum.
An end ser can define an n mber of scenarios b defining factorsAn end user can define any number of scenarios by defining factors
and their range or values.
AutoStat supports correlated sampling using common random
numbersnumbers.
AutoStat is capable of distributing simulation runs across a local area
network and pulling back all results to the user’s computer.

70

SimRunner [Experimental and Analysis Tools]SimRunner [Experimental and Analysis Tools]

SimRunner was developed by PROMODEL Corporation.
Available for ProModel MedModel and ServiceModelAvailable for ProModel, MedModel and ServiceModel.

Uses genetic algorithms and evolutionary strategies.
Manipulates the input factors within boundaries specified by the user

ki t ti i th bj ti f tiseeking to optimize the objective function.
Also has a utility for helping users estimate:

The end of the warm-up phase
The number of replications needed to obtain an estimate of the objective
function’s mean value to within a specified percentage error and
confidence level.

71

SummarySummary
Three types of software for simulation models
developments:developments:

General-purpose programming languages, e.g., Java, C.
Not specifically designed for use in simulation.
Simulation libraries e g SSF are sometimes available forSimulation libraries, e.g., SSF, are sometimes available for
standardized simulation functionality.
Helps to understand the basic concepts and algorithms.

Simulation programming languages, e.g., GPSS/HTM, SIMAN V®S u at o p og a g a guages, e g , G SS/ , S
and SLAM II®.

Designed specifically for simulation of certain systems, e.g. queueing
systems.

Si l i i A A M dSimulation environment, e.g., Arena, AutoMod.
Output analyzer is an important component, e.g. experimental
design, statistical analysis.
Many packages offer optimization tools as well

72

Many packages offer optimization tools as well.

