ПРОГРАММНЫЙ КОМПЛЕКС АНАЛИТИЧЕСКОГО И ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ СЕТЕЙ ПЕРЕДАЧИ ДАННЫХ

Т. И. Алиев, Нгуен Дык Тай (Санкт-Петербург)

Проектирование сети передачи данных (СПД), как и любой сложной системы, начинается с этапа системного проектирования и предполагает создание математической модели сети и исследование этой модели на компьютере. Одной из задач проектирования сети является определение пропускных способностей каналов связи на основе заданных структурно-функциональных и нагрузочных параметров, таких как внешние интенсивности поступления сообщений от пользователей в сеть, алгоритм маршрутизации, вариант размещения прикладных программ и наборов данных по узлам сети, способ взаимодействия пользователей сети и т. д. Задача оптимизации пропускных способностей каналов связи СПД решается с использованием в качестве моделей СПД сетей массового обслуживания (СеМО), в которых узлы, представляющие собой системы массового обслуживания (СМО), отображают задержки при передаче пакетов по каналам связи. При этом точные аналитические результаты могут быть получены в том случае, если СеМО является экспоненциальной, то есть узлы представляют собой СМО типа М/М/1 в символике Кендалла [1]. Задача оценки пропускных способностей каналов связи в СПД с использованием модели в виде разомкнутой экспоненциальной Се-МО (РЭСеМО) с однородным потоком заявок решена аналитически на основе метода множителей Лагранжа в [1].

Ниже представлен программный комплекс аналитического и имитационного моделирования СПД с неоднородным потоком сообщений. Аналитическая модель СПД строится в виде РЭСеМО для любой топологии сети, задаваемой аналитически или графически. На основе аналитической модели решается задача определения пропускных способностей каналов связи в распределенных СПД при ограничениях на время доставки пакетов или на стоимость сети, с учетом таких особенностей СПД, как топология сети, алгоритм маршрутизации пакетов, вариант размещения прикладных программ и наборов данных по узлам сети, типы каналов связи, способ взаимодействия пользователей сети и т. д. Программа позволяет рассчитать характеристики СПД, такие, как пропускные способности каналов связи, время задержки пакетов при передаче по каждому каналу и в сети в целом, а также загрузку каждого канала. Кроме того, рассчитываются интенсивности потоков пакетов в каналах связи и вероятности передачи пакетов от пользователей в сеть, между каналами и из сети к пользователям. На основе рассчитанных вероятностей передачи пакетов и характеристик каналов программа генерирует соответствующую имитационную модель СПД на языке GPSS World [2]. Это позволяет исследовать влияние характера случайных процессов трафика в СПД и длительности передачи пакетов в каналах связи на характеристики функционирования спроектированной СПД путем варьирования законов распределения времени: передачи (длительностей обслуживания) пакетов в каждом из каналов связи и интервалов между поступающими в сеть пакетами.

Постановка задачи

Для описания исследуемой СПД используются:

1) структурные параметры, определяющие топологию СПД, количество узлов n и каналов связи m в СПД, тип каналов связи (дуплексный, полудуплексный), стоимостные коэффициенты каналов связи, длины каналов связи;

- 2) функциональные параметры, задающие способ взаимодействия пользователей сети и способ маршрутизации для каждого узла СПД в виде маршрутной таблицы, содержащей основной и альтернативный маршруты;
 - 3) нагрузочные параметры:
 - а) интенсивности потоков сообщений разных типов от пользователей, подключенных к узлам СПД;
 - б) длины сообщений разных типов;
 - в) средняя длина одного пакета l_{II}^1 и длина обрамления l_{O} .

Эти параметры используются для решения задачи параметризации модели СПД, представляемой в виде РЭСеМО, в результате которой задача оценки пропускных способностей каналов связи может быть сведена к задаче оптимизации РЭСеМО методом неопределенных множителей Лагранжа.

Аналитическое моделирование сети передачи данных

В [1] задача оптимизации пропускных способностей каналов связи решается на основе заданных интенсивностей сообщений (или пакетов) в каналах связи. В реальности известны только внешние интенсивности сообщений от узлов пользователей к узлам сети, что приводит к необходимости пересчета интенсивностей потоков пакетов в каналах связи. При этом расчет интенсивностей потоков пакетов в каналах связи реализуется программно на основе заданных внешних интенсивностей потоков сообщений, формируемых пользователями сети, известной топологии и маршрутизации, способов взаимодействия пользователей, а также нагрузочных параметров.

В качестве модели распределенной СПД будем использовать разомкнутую Се-МО, состоящую из m СМО, каждая из которых соответствует определенному каналу связи СПД. Принимается традиционное допущение, что поток пакетов, поступающих в каналы СПД, простейший, и время передачи пакетов в каждом из каналов, определяемое как отношение длины передаваемого пакета $l_{\it II}$ к пропускной способности канала C, распределено по экспоненциальному закону.

Метод расчета характеристик РЭСеМО можно найти в [1]. При этом среднее время доставки пакетов в сети, состоящей из m каналов связи, определяется следующим образом:

$$T_{cp} = \sum_{i=1}^{m} \frac{\alpha_{i} l_{II}}{C_{i} - \lambda_{i} l_{II}},$$

где C_i — пропускная способность канала связи i; α_i — среднее число «обращений» к каналу связи i в процессе передачи пакетов; λ_i — интенсивность пакетов в канале связи i; $l_{II}=l_{II}^1+l_O$ — длина пакета в целом (с учетом длины обрамления).

Стоимость Ѕ СПД определяется как:

$$S = \sum_{i=1}^{m} \beta_i C_i D_i,$$

где β_i — стоимостной коэффициент пропорциональности, отражающий стоимость единицы пропускной способности канала связи i; D_i — длина канала связи i.

Задача оптимизации пропускных способностей каналов связи с использованием модели РЭСеМО может решаться в одной из двух постановок.

1. Минимизировать среднее время задержки пакетов в сети T_{cp} при ограничении на стоимость сети $S < S^*$. В этом случае, с учетом введенных обозначений, пропускная способность канала связи i вычисляется следующим образом:

$$C_{i} = \frac{S^{*} - \sum_{i=1}^{m} \beta_{i} \lambda_{i} l_{\Pi} D_{i}}{\beta_{i} D_{i}} \frac{\sqrt{\beta_{i} \lambda_{i} l_{\Pi} D_{i}}}{\sum_{i=1}^{m} \sqrt{\beta_{i} \lambda_{i} l_{\Pi} D_{i}}} + \lambda_{i} l_{\Pi}.$$

2. Минимизировать стоимость СПД S при ограничении на среднее время задержки пакетов в сети $T < T_{cp}^*$. В этом случае пропускная способность канала связи i вычисляется по формуле:

$$C_{i} = \frac{1}{T_{cp}^{*}} \sum_{i=1}^{m} \sqrt{\beta_{i} \alpha_{i} l_{\Pi} D_{i}} \sqrt{\frac{\alpha_{i} l_{\Pi}}{\beta_{i} D_{i}}} + \lambda_{i} l_{\Pi}.$$

На основе полученных значений пропускных способностей каналов связи можно рассчитать время задержки пакетов в каналах, загрузки каналов и характеристики СПД в целом – минимальное время доставки пакетов (при ограничении на стоимость), либо минимальную стоимость сети (при ограничении на среднее время доставки пакетов).

Имитационное моделирование сети передачи данных

Имитационная модель СПД на языке GPSS World генерируется автоматически на основе расчета характеристик аналитической модели в виде экспоненциальной РСеМО. Полученные характеристики аналитической модели используются в качестве параметров имитационной модели СПД, представляющей собой РСеМО, узлы которой соответствуют каналам связи, а заявки в модели соответствуют пакетам в СПД. Число источников заявок в имитационной модели соответствует числу узлов связи в СПД, при этом интенсивности заявок источников в модель определяются как внешние интенсивности пакетов от пользователей к узлам связи соответственно. Аналитическая модель, реализованная в программе, позволяет рассчитать следующие параметры для имитационной модели.

- 1. Вероятность передачи пакетов от пользователя j к каналу k: $P_{(j,k)}^{II} = \lambda_{(k,j)} / \lambda_j^{II}$, где $\lambda_{(k,j)}$ интенсивность пакетов, поступивших в канал k от пользователя j; λ_j^{II} интенсивность пакетов от пользователя j в сети.
- 2. Вероятность передачи пакетов от канала k к каналу h: $P_{(k,h)}^K = \lambda_{(k|h)}/\lambda_k^K$, где $\lambda_{(k|h)}$ интенсивность пакетов в канале h, прошедших через канал k; λ_k^K полная интенсивность пакетов в канале k.
- 3. Вероятность передачи пакетов от канала k к пользователю j: $P_{(k,j)}^{O} = 1 \sum_{h \in N} P_{(k,h)}^{K}$, где N множество каналов связи, непосредственно связанных с каналом k.
- 4. Средний интервал времени между моментами поступления пакетов от пользователя j в СПД: $\bar{\tau}_j = 1/\lambda_j^n$.
 - 5. Среднее время передачи пакетов в каналах связи k: $\overline{b_k} = l_{II}/C_k$.

ИММОД-2007 13

Кроме рассчитанных параметров для имитационной модели СПД дополнительно необходимо задать следующие параметры:

- а) законы распределений интервалов между моментами поступления пакетов от пользователей в СПД;
 - б) законы распределений времени передачи пакетов в каналах связи.
 - В качестве законов распределений могут использоваться:
 - а) экспоненциальный;
 - б) детерминированный;
 - в) равномерный;
 - г) эрланговский разного порядка;
 - д) экспоненциальный с ненулевыми смещениями;
 - е) гиперэкспоненциальный.

Отметим, что имитационная модель СПД предназначена для детального анализа характеристик функционирования сети, спроектированной в процессе аналитического моделирования. При этом, в случае отличия реального характера процессов поступления пакетов в сеть или передачи пакетов по каналам связи от экспоненциального, в имитационной модели предусмотрена возможность варьирования законов распределений времени передачи пакетов в каждом из каналов связи и законов распределения интервалов времени между поступающими в сеть пакетами.

Оценка корректности имитационной модели проводится путем сравнения результатов имитационного моделирования с результатами аналитического моделирования, полученными на экспоненциальной сетевой модели, для которой разработаны точные аналитические методы расчета характеристик обслуживания заявок.

Программный комплекс

Аналитический метод оценки пропускных способностей каналов связи СПД, использующий в качестве модели сети РЭСеМО, и соответствующая имитационная модель на языке GPPS World реализованы в виде программного комплекса, написанного на языке Visual C++ с использованием библиотеки базовых классов МFC с архитектурой Doc/View для удобства разработки и реализации приложений под Windows. Программа работает под ОС Windows 2000/XP с требованием памяти не более 64 Мбайт. Программа имеет наглядный графический интерфейс, элементы которого показаны на рис. 1 и 2, позволяющий достаточно просто задавать структурно-функциональные и нагрузочные параметры исследуемой СПД.

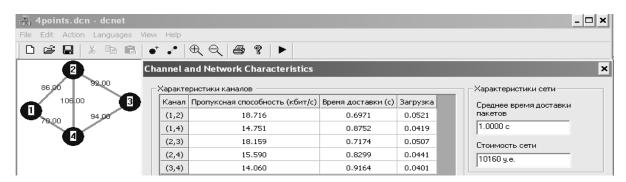


Рис. 1

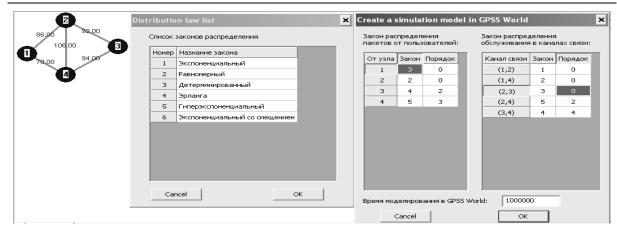


Рис. 2

Программа имеет следующие возможности:

- 1) задать топологию исследуемой СПД одним из способов:
 - графически путем указания мышкой на экране компьютера местоположения узлов и соответствующих каналов связи;
 - аналитически путем указания декартовых координат узлов СПД или расстояний между ними с возможностью автоматического построения топологии путем выбора из перечня типовых топологий («звезда», «кольцо», «дерево», «полносвязная») или построения произвольной топологии путем задания соответствующей матрицы связей;
- 2) добавлять или удалять узлы СПД и любое изменение топологии;
- 3) выбирать варианты распределения прикладных программ и наборов данных по узлам СПД;
- 4) автоматически создавать все таблицы маршрутизации в узлах по критерию «количество хостов» или «взвешенного графа» с возможностью изменения таблиц маршрутизации и вероятности передачи пакетов по основному пути;
- 5) рассчитывать потоки пакетов в каналах связи и параметризация модели СПД;
- 6) рассчитывать вероятности передачи пакетов от пользователей к каналам связи, между соседними каналами и от каналов к пользователям сети;
- 7) рассчитывать пропускные способности, времени передачи и загрузок каналов связи методом множителей Лагранжа с использованием модели РЭСеМО (рис. 1);
- 8) исследовать характеристики СПД путем варьирования структурнофункциональных и нагрузочных параметров;
- 9) автоматически создавать имитационную модель СПД на языке GPSS World, соответствующую аналитической модели с возможностью варьирования законов распределения интервалов между моментами поступления в сеть пакетов и законов распределения времени передачи пакетов в каждом из каналов связи (рис. 2).

Заключение

Разработанный программный комплекс предназначен для проектирования и исследования сетей передачи данных с любой топологией на основе совместного применения аналитического и имитационного моделирования в среде GPSS World. При этом предоставляется возможность решения задачи выбора топологии и распределения пропускных способностей каналов связи при различных алгоритмах маршрутизации и вариантах распределения прикладных программ и наборов данных по узлам сети, а также

ИММОД-2007 15

способах взаимодействия пользователей сети с учетом ограничений на время доставки пакетов в сети или на ее стоимость. Имитационная модель генерируется автоматически в среде GPSS World и позволяет проводить детальное исследование характеристик функционирования спроектированной СПД при снятии предположений и допущений, использованных в аналитической модели для достижения конечного результата.

Литература

- 1. Клейнрок Л. Вычислительные системы с очередями. М.: Мир, 1979. 598 с.
- 2. **Боев В. Д.** Моделирование систем. Инструментальные средства GPSS World: Учебное пособие. СПб.: БХВ-Петербург, 2004. 368 с.