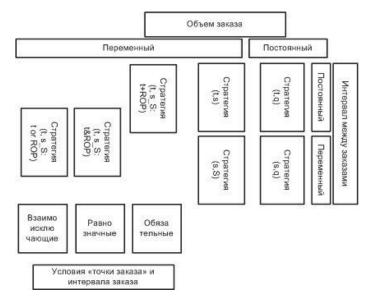
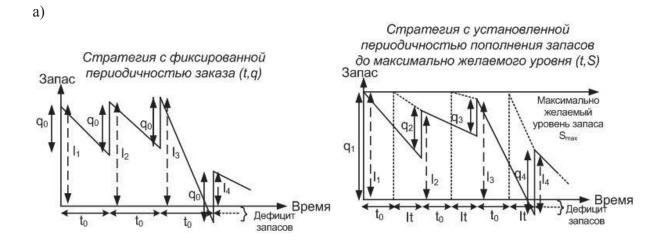
ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ СТРАТЕГИЙ УПРАВЛЕНИЯ ЗАПАСАМИ

В. С. Лукинский, Ю. Н. Панова

Ввеление

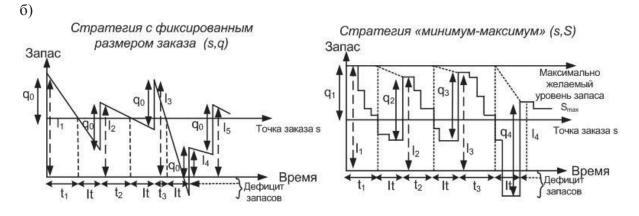
Под стратегией управления запасами понимается совокупность определённых правил и показателей, определяющих модели расчета составляющих запасов, систем контроля, учета уровня запасов на складах и организации заказа на их пополнение [1]. На рис. 1 стратегии систематизированы в зависимости от условий размещения заказа, периодичности проверки уровня запасов на складе и размера заказа на пополнение запаса.




Рис. 1. Классификация стратегий управления запасами

В зависимости от подхода к определению размера заказа на пополнение запаса (периодический и непрерывный) семь стратегий управления запасами можно разделить на три группы [2, 3]: «периодические» (а), стратегии с «точкой заказа» (б) и комбинированные стратегии (с), представленные на рис. 2.

При выборе необходимой стратегии управления запасами в зависимости от различного характера спроса, уровня запасов, условий поставки и других факторов часто используется имитационное моделирование, позволяющее применять аналитические и управленческие навыки в принятии решений. Разрабатываемые модели, которые, как правило, описывают периодические и непрерывные подходы к управлению запасами (УЗ), упрощают анализ эффективности их использования в конкретных условиях. В дополнение к рассмотренным авторами [4, 5] четырем стратегиям управления запасами проведен анализ трех комбинированных стратегий и их совместного использования в цепи поставки.


Имитационное моделирование стратегий управления запасами

В программной среде AnyLogic сначала были описаны «периодические» стратегии управления запасами и определены на основе оптимизационных экспериментов рациональные параметры периодичности проверки уровня запасов и размера заказа, максимально желательного уровня запасов, исходя из уровня минимизации затрат, связанных с хранением, дефицитом, выполнением заказа и допустимым уровнем обслуживания, принятым 95 % (рис. 3).

Периодический контроль запасов на складе

Непрерывный контроль запасов на складе

Примечание: S — Точка заказа

Рис. 2. Стратегии управления запасами («периодические», с «точкой заказа», комбинированные)

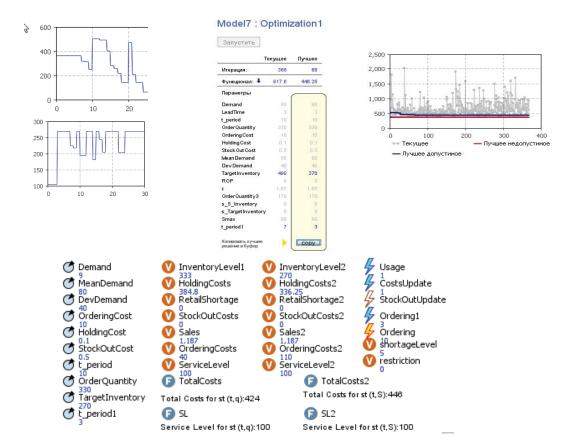


Рис. 3. Выходные данные модели управления запасами

Аналогично были смоделированы другие стратегии управления запасами (с «точкой заказа» и комбинированные), для которых по условиям оптимизации были найдены наилучшие параметры, исходя из принципа соблюдения баланса «затраты/сервис». Анализ чувствительности стратегий управления запасами, который был выполнен в системе моделирования AnyLogic с помощью элементов управления (рис. 4), сведен в табл. 1.

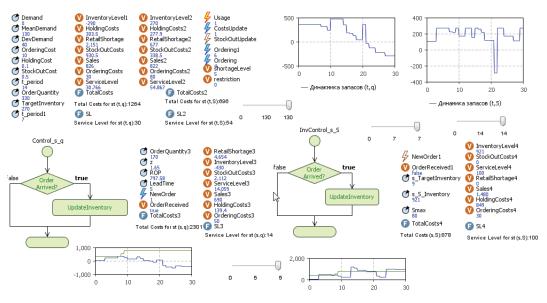


Рис. 4. Скриншот анализа чувствительности модели управления запасами

Для проверки чувствительности стратегий к изменениям внешней среды при проигрывании модели изменялись средний спрос на продукцию, период заказа и время его исполнения (табл. 1).

Таблица 1 Сравнительная характеристика стратегий управления запасами (в условиях изменения критических параметров)

Стратегии	егии Затраты		Уровень обслуживания	
управления запасами	До	После	До	После
Janacamin	<u> </u>	Изменение спроса		
s,q	357	998 (276)	100	35 (93)
s,S	497	635 (382)	100	100 (89)
t,q	424	1131 (533)	100	33 (100)
t,S	446	517 (412)	100	85 (100)
t, s_S (t + ROP)	633	751 (610)	87	84 (78)
t, s_S (t & ROP)	572	604 (522)	94	98 (97)
t, s_S (t or ROP)	632	862 (546)	96	86 (94)
	Из	вменение периода зак	аза	
s,q	357	357	100	100
s,S	497	497	100	100
t,q	424	761 (1240)	100	50 (100)
t,S	446	489 (637)	100	72 (94)
t, s_S (t + ROP)	633	711 (633)	87	86 (87)
t, s_S (t & ROP)	572	500 (500)	94	94 (94)
t, s_S (t or ROP)	632	632 (632)	96	96 (96)
	Изменен	ие времени выполнен	ия заказа	
s,q	357	918 (621)	100	31 (44)
s,S	497	758 (420)	100	100 (91)
t,q	424	424	100	100
t,S	446	446	100	100
t, s_S (t + ROP)	633	809 (568)	87	83 (83)
t, s_S (t & ROP)	572	672 (527)	94	94 (97)
t, s_S (t or ROP)	632	846 (593)	96	91 (90)

В таблице использовано полужирное начертание к выделенным цифрам, соответствующим изменению затрат и уровня обслуживания (в скобках – при уменьшении параметров рабочей нагрузки), для обозначения стратегий, которые обеспечивают сбалансированность затрат и уровня сервиса при изменении внешней среды. Поскольку увеличение затрат, связанных с управлением запасами, характерно не только для отдельных логистических систем, был рассмотрен вариант УЗ в цепи поставки, состоящей из ритейлеров с индивидуальными стратегиями и дистрибьютора. На основе экспериментов с расширенной моделью был зафиксирован «эффект хлыста» в результате увеличении спроса конечного клиента в два раза на 20 день после инициализации модели, для которой продолжительность прогона соответствует 100 дням (рис. 5).

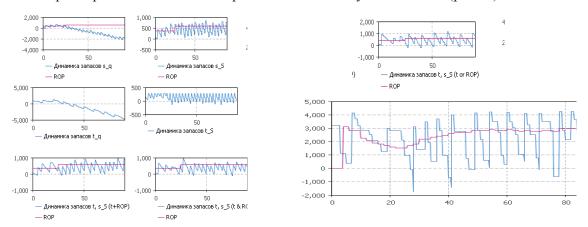


Рис. 5. Моделирование «эффект хлыста» в цепи поставки

С целью минимизации «эффекта хлыста» и, следовательно, сокращению затрат в цепи поставки был проведен эксперимент, в котором воспроизводился подход к УЗ на основе VMI. В соответствии с этим подходом объем запасов поставщика определяется не уровнем заказов, поступающих от ритейлеров, а характером спроса конечного клиента. В результате, «эффект хлыста» был минимизирован, затраты сокращены на 5% по сравнению с базовым сценарием. При использовании VMI-подхода в безрисковых условиях, то есть при отсутствии изменений внешней среды, наблюдалось наибольшее снижение затрат в цепи поставки (10%).

Литература

- 1. **Бадокин О. В., Лукинский В. В., Лукинский В. С., Малевич Ю. В., Степанова А. С., Шульженко Т. Г.** (2011). Управление запасами в цепях поставок: учебное пособие, Спб: СПбГИЭУ, 287 с.
- 2. **Лукинский В. С.**, **Лукинский В. В.**, **Плетнева Н. Г.**, **Воробьева Н. И.**, **Маевский А. Г.** (2017). Управление запасами в цепях поставок. В 2 ч. Учебник и практикум для бакалавриата и магистратуры, Ч.1. М.: Юрайт, 306 с.
- 3. **Лукинский В. С., Лукинский В. В., Плетнева Н. Г., Воробьева Н. И., Маевский А. Г.** (2017). Управление запасами в цепях поставок. В 2 ч. Учебник и практикум для бакалавриата и магистратуры. Ч.2. М.:Юрайт, 358 с.
- 4. **Ivanov D.** (2016). Operations and supply chain simulation with AnyLogic 7.2: Decision-oriented introductory notes for master students. Berlin School of Economics and Law, 97 p.
- 5. Lukinskiy V. S., Panova Y., Soletskiy R. (2016). Simulation modelling of supply chain with allowance of reliability, Russian Journal of Logistics and Transport Management, Vol.3, No.2, 49–60.