
 

 

ИКМ  МТМТС-2017 – SCM MEMTS-2017 137 

MULTIPLE-MODEL DESCRIPTION AND ALGORITHMS OF SHIP-BUILDING 
MANUFACTORY SCHEDULING  

Boris Sokolov, Semyon Potryasaev (St. Petersburg), Yuri A. Merkuryev (Riga, Latvia) 

Introduction 
We present the new scheduling multiple-model description of complex technical-

organizational system (CTOS) [1-2]. We implemented our results (dynamic models and algo-
rithms of scheduling) for ship-building manufactory which is interpreted as a networked con-
trolled system that is described through differential equations based on a dynamic description 
of the job execution. The job execution is characterized by (1) execution results (e.g., volume, 
time, etc.), (2) capacity consumption of the resources, and (3) CTOS flows resulting from the 
delivery to the customer.  

We propose to use a two stage scheduling procedure in line with [3]. A job control 
model (M1) is first used to assign jobs to suppliers, and then a flow control model (M2) is 
used to schedule the processing of assigned orders subject to capacity restrictions of the pro-
duction and transportation resources. The basic interaction of these two models is that after 
the solving the job control model, the found control variables are used in the constraints of the 
flow control model. In additional models of resource and channel control, the material supply 
to resources and its consumption as well as setup times are represented. 

Multiple-model description 

1 A Dynamic Model of Job Control (model M1) 
We consider the mathematical model of job control. We denote the job state variable 

)(o
ix , where )(o  – indicates the relation to jobs (orders). The execution dynamics of the job 

)(iD  can be expressed as (1). 
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where )(tij  is an element of the preset matrix time function of time-spatial constraints, 

)()( tu o
ji  is a 0–1 assignment control variable. 

Let us introduce equation (2) to assess the total resource availability time: 
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Equation (2) represents resource utilization in job execution dynamics. The variable 
)(o

jx  characterizes the total employment time of the j-supplier. The control actions are con-
strained as follows: 
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where 

1i , 
2i  are the sets of job numbers which immediately precede the job )(iD  subject 

to accomplishing of all the predecessor jobs or at least one of the jobs correspondingly, and 
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)()( , o
i

o
i aa  are the planned lot-sizes. Constraint (3) refers to the allocation problem constraint 

according to the problem statement (i.e., only a single order can be processed at any time by 
the manufacturer). Constraint (4) determines the precedence relations, more over this con-
straint implies the blocking of operation )(iD  until the previous operations )()( , ii DD  have 

been executed. If 1)()( tu o
ji , all the predecessor jobs of the operation )(iD  have been execut-

ed. Note that these constraints are identical to those in MP models. 
Corollary 1.  The analysis of constraints (4) shows that control )(u t is switching on on-

ly when the necessary predecessor operations have been executed. 
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According to equation (5), controls contain the values of the Boolean variables. In or-
der to assess the results of job execution, we define the following initial and end conditions at 
the moments 0Tt , fTt : 
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Conditions (6) reflect the desired end state. The right parts of equations are predeter-

mined at the planning stage subject to the lot-sizes of each job.  
According to the problem statement, let us introduce the following performance indi-

cators (7)–(9): 
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The performance indicator (7) characterizes the accuracy of the end conditions’ ac-
complishment, i.e. the service level of ship-building manufactory. The goal function (8) refers 
to the estimation of an job’s execution time with regard to the planned supply terms and re-
flects the delivery reliability, i.e., the accomplishing the delivery to the fixed due dates. The 
functions )()(o

i  is assumed to be known characterizes the fulfilment of time conditions for 
different jobs and time points of the penalties increase due to breaking supply terms respec-
tively. The indicator (10) estimates the equal resource utilization in the ship-building manu-
factory. 

2 A Dynamic Model of Flow Control (model M2) 
We consider the mathematical model of flow control in the form of equation (10): 
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We denote the flow state variable )( f
jix , where )( f  indicates the relation of the variable 

x to flows.  
The control actions are constrained by maximal capacities and intensities as follows: 
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where )(
~~ f

jR1  is the total potential intensity of the resource )( jC , )(
~~ f

jR1  is the maximal potential 
channel intensity to deliver products to the customer )(B of results of ship-building manufac-
tory, )( f

jic  is the maximal potential capacity of the resource )( jC  for the job )(iD , and )( f
jic  is 

the total potential capacity of the channel delivering the product flow ),(
,

j
si

P  of the job )(iD to 
the customer )(B  of results of ship-building manufactory.  

The end conditions are similar to those in (6) and subject to the units of processing 
time. The goal functional of the flow control model are defined in the form of equations (13) 
and (14): 
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The economic meaning of these performance indicators correspond to equations (7) 
and (8). With the help of the weighting performance indicators, a general performance vector 
can be denoted as (15): 
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The partial indicators may be weighted depended on the planning goals and SC strate-
gies. Original methods [1,2] have been used to transform the vector J  to a scalar form GJ .  

The job shop scheduling problem can be formulated as the following problem of OPC: 
this is necessary to find an allowable control )(u t , ],( fTTt 0  that ensures for the model (1)–
(2), and (10) meeting the vector constraint functions 01 u,xq )( , 02 u,xq )(  (3)–(5) and 
(10–11), and guides the dynamic system (i.e., job shop schedule) )u,x,(x t  from the initial 
state to the specified final state. If there are several allowable controls (schedules), then the 
best one (optimal) should be selected in order to maximize (minimize) GJ . In terms of opti-
mal program control (OPC), the program control of job execution is at the same time the job 
shop schedule. We will refer to this problem of OPC as PS. 

The formulated model is a linear non-stationary finite-dimensional controlled differen-
tial system with the convex area of admissible control. Note that the boundary problem PS is 
a standard OPC problem; see [4-6]. In fact, this model is linear in the state and control varia-
bles, and the objective is linear. The transfer of non-linearity to the constraint ensures convex-
ity and allows to use interval constraints. 

Algorithm of ship-building manufactory 
Necessary optimality conditions can be derived from maximum principle [4, 5]. Con-

sider control system (16). 
)),(u),(x,()(x tttft ,fttt0  ,x)(x 00t ,)(u Ut   min))(x( ftFJ  (16) 

Let us introduce a scalar Hamiltonian function H  and conjunctive vector system nR in 
Eq. (17). 
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Conjunctive vector system plays the role of dual models in linear programming. Coefficients 
of the conjunctive systems can be interpreted as Lagrange multipliers. Under assumptions that 

)(u t  is optimal control and )(x t  and )(t  are the trajectory and conjunctive system satisfying 
(17) and (18), the function ))(ψ),(u),(x,( ttttH  reaches its maximum for )(x t  at the point 

)(u t . Then Eq. (19) holds: 
))(ψ),(x,(uu ttt  (19) 

Subsequently, Eq. (19) is brought into correspondence with (17) and (18). In the re-
sult, a two-point boundary problem for a system of ordinary differential equations in regard to 

)(x t  and )(t  is formed. The optimal solution is now bounded by this differential system. 
Note that Eq. (17)-(19) in general case provide only necessary conditions for optimal solution 
existence whereas for linear control systems these maximum principles provide both optimali-
ty and necessary conditions. 

The basic peculiarity of the boundary problem considered is that the initial conditions 
for the conjunctive variables ( 0t ) are not given. At the same time, an optimal program con-
trol should be calculated subject to the boundary conditions (we omit their presentation and 
refer to paper [2,7]. To obtain the conjunctive system vector, the Krylov–Chernousko method 
of successive approximations for an optimal program control problem with a free right end 
which is based on the joint use of a modified successive approximation method [7] has been 
used.  

Step 1 An initial solution ],(),(u ftttt 0  (a feasible control, in other words, a feasi-

ble schedule) is selected and 0r . 
Step 2 As a result of the dynamic model run, )(x )( tr  is received. Besides, if ftt  then 

the record value )(r
GG JJ  can be calculated. Then, the transversality conditions (18) are 

evaluated. 
Step 3 The conjugate system (17) is integrated subject to )(u)(u tt  and over the in-

terval from ftt  to 0tt . For the time 0tt , the first approximation )()(
0t

r
i  is obtained as 

a result. Here, the iteration number 0r  is completed. 
Step 4 From the time point 0tt  onwards, the control )(u )( tr 1  is determined  

( ,...,, 210r denotes the number of the iteration). In parallel with the maximization of the 
Hamiltonian, the main system of equations and the conjugate one are integrated. The maximi-
zation involves the solution of several mathematical programming problems at each time 
point. 

The advantage of method of successive approximations is that it allows to implement 
needle control variations subject to the whole area of feasible control actions subject to the 
given constraint system, i.e., the area of feasible schedules [8]. Another method of successive 
approximations advantage is that the search for an optimal control in each iteration is per-
formed in the class of boundary (e.g., pointwise or relay) functions which correspond to the 
discrete nature of decision making in scheduling. Note that the method of successive approx-
imations in its initial form has not guaranteed the convergence. 
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Conclusions 
Problems of ship-building manufactory scheduling may be challenged by high com-

plexity, combination of continuous and discrete processes, integrated production and transpor-
tation operations as well as dynamics and resulting requirements for adaptability. A possibil-
ity to address these issues opens the embedding of OPC into ship-building manufactory 
scheduling and using its advantages in combination with advantages of mathematical pro-
gramming (MP). Under the assumption that the introduction of the dynamic aspect of job ar-
rival can have a significant impact on the solution procedure, this study presented a new orig-
inal model for ship-building manufactory scheduling as OPC of job execution dynamics 
blended with combinatorial optimization and based on a natural dynamic decomposition of 
the scheduling problem and its solution with maximum principle in combination with MP.  

The proposed substitution lets use fundamental scientific results of the OPC theory in 
ship-building manufactory scheduling.  
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