Название пакета (системы)

Комплекс программных библиотек DVCompute++ Simulator.

Авторы

Сорокин Давид Эрнестович, Йошкар-Ола, Россия.

Контактная информация

E-mail: davsor@mail.ru

Официальный сайт продукта

https://gitflic.ru/project/dsorokin/dvcomputexx

Область применения системы

Комплекс программных библиотек на языке С++ для дискретно-событийного моделирования.

Поддерживаемые виды моделирования

Поддерживаемые парадигмы: процесс-ориентированное, событийно-ориентированное моделирование. Существуют аналоги блоков GPSS, включая приборы, которые могут вытеснять транзакты, а также включая ассамблеи транзактов.

Поддерживаемые режимы запуска имитации: (обычное) последовательное моделирование, вложенное моделирование (для оценки оптимальной стратегии), оптимистичное и/или консервативное распределенное моделирование (многопроцессорные системы и суперкомпьютеры).

Научно-техническое описание

В основе идее лежит представление имитационной модели как композиции вычислений. Это имеет корни в функциональном программировании.

Более подробную информацию можно почерпнуть в статье автора:

Сорокин Д.Э. DVCompute++ Simulator для отечественных компьютеров Эльбрус // Десятая всероссийская научно-практическая конференция по имитационному моделированию и его применению в науке и промышленности «Имитационное моделирование. Теория и практика» (ИММОД-2021). Труды конференции (электронное издание), 20–22 октября 2021 г., Санкт-Петербург: АО «ЦТСС», 2021. – 694 с. – ISBN 978-5-905526-05-3. С. 606-609.

Архитектура

Имитационные модели задаются на языке программирования С++. Для режимов последовательной и вложенной имитации полностью доступны исходные коды. Для каждого из режимов распределенного моделирования потребуется дополнительно статическая библиотека для выбранного компилятора С++. Само моделирующее ядро симулятора зависит только от стандартной библиотеки С++, и оно не имеет никаких внешних зависимостей, тем более, загружаемых из интернета.

Другими словами, симулятор имеет минимальные технологические риски — он *санкиионно* устойчив.

Стадия разработки (реализации) системы

Моделирующее ядро и сами моделирующие вычисления, через которые описываются модели, во многом завершены. Также есть модуль, через который можно получать и обрабатывать результаты имитации. Есть базовая поддержка вычислительных экспериментов на основе метода Монте-Карло, что позволяет уже сейчас запускать десятки

тысяч имитаций в рамках одного эксперимента. Есть вывод результатов в виде графика отклонения для тренда и доверительного интервала по правилу «3-х сигм» для такого эксперимента.

Для поддержки таких массивных экспериментов добавлена узкоспециализированная сборка мусора, которая почти не отражается на эффективности самой имитации. При соблюдении несложных правил сама имитация не создает мусора в памяти в ходе своего выполнения, но после ее окончания могут сохраняться незавершенные циклические ссылки, которые локализуются специальными структурами данных, которые как раз и умеют полностью очищать память, занятую до этого имитацией.

Вычислительные эксперименты поддерживаются для всех заявленных режимов имитации, включая режимы распределенной имитации.

Статус системы

Проект является исследовательским. Он является результатом увлечения автором этой темой как хобби в свободное время.

Тем не менее, в дистрибутиве симулятора содержится пример одной замкнутой модели очередей. Этот пример использует GPSS-подобный язык. Важно, что симулятор выдает одинаковые воспроизводимые результаты, как для обычного моделирования, так и поддерживаемых обоих режимов распределенного моделирования. Независимо от того, какие задержки происходят при параллельной работе логических процессов, результаты имитации всегда воспроизводимы.

Программно-аппаратные требования

Поддерживаются операционные системы Linux, Windows и macOS. Симулятор был проверен на компьютерах с архитектурой процессоров x86_64, но сам программный код симулятора полностью успешно компилируется для отечественных процессоров «Эльбрус» с архитектурой команд «e2k». На «Эльбрусах» были проверены некоторые примеры.

Дополнительно, для режимов распределенного моделирования нужна некоторая реализация протокола межсетевого обмена MPI. Код протестирован на следующих реализациях MPI: OpenMPI, MPICH и MS MPI.

Компилятор C++ должен поддерживать стандарт C++17 с некоторыми элементами C++20. Так, была проверена работа симулятора со следующими компиляторами: GCC, Clang, Visual C++ для архитектуры Intel x86_64 и LCC для архитектуры «Эльбрус e2k».

Организация-разработчик продукта

Проект разрабатывается независимым исследователем, частным лицом, который имеет Российское гражданство.

Учебные версии системы

Для учебы и некоммерческих проектов лицензия позволяет использовать DVCompute++ Simulator бесплатно.

Техническая поддержка и обучение

Техническая поддержка и помощь в обучении возможны при обращении к автору. Ведется работа над документацией.

Стоимость системы

Для некоммерческих проектов и оценки самого симулятора можно использовать DVCompute++ Simulator бесплатно. Для определения цены коммерческой лицензии необходимо обратиться к автору.

Правовая защищенность объекта интеллектуальной собственности

DVCompute++ Simulator зарегистрирован автором, гражданином России, в Роспатенте как «Программа для ЭВМ» за номером свидетельства 2021660726.

Обзор рынка (внедрения)

Прямой информации по внедрению нет.

Документация

Краткое введение входит в состав дистрибутива симулятора. Документацию по API можно автоматически получить с помощью Doxygen.

Полезные ссылки

DVCompute++ Simulator является представителем семейства симуляторов, разработанных автором, хотя и совершенно разных и независимых, но объединенных одной общей идеей, одним и тем же математическим формализмом. Чтобы больше узнать о симуляторе для C++, можно также изучить документацию по симуляторам для языков Haskell, Rust и F#. Эту информацию можно найти на страницах следующих проектов автора:

https://www.aivikasoft.com/

https://hackage.haskell.org/package/aivika

https://crates.io/crates/dvcompute

https://github.com/dsorokin/aivika-fsharp-ce

Литература

Сорокин Д.Э. DVCompute++ Simulator для отечественных компьютеров Эльбрус // Десятая всероссийская научно-практическая конференция по имитационному моделированию и его применению в науке и промышленности «Имитационное моделирование. Теория и практика» (ИММОД-2021). Труды конференции (электронное издание), 20–22 октября 2021 г., Санкт-Петербург: АО «ЦТСС», 2021. – 694 с. – ISBN 978-5-905526-05-3. С. 606-609.

Сорокин Д.Э. DVCompute Simulator для дискретно-событийного моделирования // Журнал «Прикладная информатика». 2021. Т. 16. No 3. C. 93–108. DOI: 10.37791/2687-0649-2021-16-3-93-108

Сорокин Давид Эрнестович. Распределенное имитационное моделирование с Aivika // Журнал «Прикладная информатика». 2019. Т. 14. №4(82). С. 73-89. DOI: 10.24411/1993-8314-2019-10028.

Сорокин Д.Э. Айвика: имитационное моделирование в терминах вычислений // Седьмая всероссийская научно-практическая конференция «Имитационное моделирование. Теория и практика» (ИММОД-2015): Труды конф., 21-23 окт. 2015 г., Москва: в 2 т. / Ин-т проблем упр. им. В.А. Трапезникова Рос. Акад. наук; под общ. ред. С.Н. Васильева, Р.М. Юсупова. – Т. 1. – М.: ИПУ РАН, 2015. ISBN 978-5-91450-172-0. С.262-266.

Публикация на сайте 25.01.2022.

Откорректировано на сайте 17.05.2022.