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Abstract: - Program package GRAL in MATLAB system is constructed for realization of new fast General Ray 

(GR) Method for solution of boundary value problems for Poisson type PDE with variable coefficients in 

arbitrary star domains. General Ray (GR) method consists in application of the Radon transform directly to the 

PDE and in reduction PDE to assemblage of Ordinary Differential Equations (ODE). This version of GR-

method is justified theoretically and presents the solution of the boundary value problem by explicit analytical 

formulas. We present some formulas, a scheme of GR-algorithm, description of GRAL program package and 

results of some numerical experiments that demonstrate the quality and rapidity of constructed GRAL package 

in comparison with pdemodel program of PDE toolbox of MATLAB system. GRAL package presents grand 

opportunity for fast solution of many applied problems and it serves also as computerized element in the 

educative process at courses of lectures, dedicated to PDE, in the postgraduate level at the Faculty of Physical-

Mathematical Sciences in Merited Autonomous University of Puebla, Mexico. 
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1  Introduction 
There are two main approaches for solving boundary value problems for partial differential equations in 

analytical form: the Fourier decomposition and the Green function method [1]. The Fourier decomposition is 

used, as the rule, only in theoretical investigations. The Green function method is the explicit one, but it is 

difficult to construct the Green function if the considered domain  has the complex geometry. The known 

numerical algorithms are based on the Finite Differences method, Finite Elements (Finite Volume) method and 

the Boundary Integral Equation method.  Numerical approaches lead to solving systems of linear algebraic 

equations [2] that require a lot of computer time and memory.  

We consider here elliptic partial differential equation    ,  , ( , )div x y grad u x y x y     , where 

( , )x y ,
 
 ,x y  are known functions, in arbitrary star domain  . A new approach for the solution of the 

Dirichlet boundary value problems on the base of the General Ray Principle (GRP) was proposed in [3] for the 

stationary waves field. GRP leads to General Ray (GR) method, which consists in application of the Radon 

transform [4] directly to the PDE and in reduction PDE to assemblage of Ordinary Differential Equations 

(ODE). This version of GR-method is justified theoretically in [5], [6], realized as algorithms and program 

package in MATLAB system, illustrated by numerical experiments.  GR-algorithm presents the solution of the 

Dirichlet boundary value problem for the Poisson-type equation with variable coefficients by explicit analytical 

formulas, using the fast realization of inverse Radon transform due the Fast Fourier Discrete transform. 

Here we present a scheme of GR-algorithm, some formulas, description of GRAL program package and  

some tests for the constructed programs in comparison with pdemodel program of PDE toolbox of MATLAB 

system. 

 

 

2  GR-Algorithm 
Let us consider the Dirichlet boundary problem for the equation: 
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   ,  , ( , ), ( , ) ;div x y grad u x y x y x y                                                      (1) 

 , ( , ), ( , ) ,u x y f x y x y                                                           (2) 

 

with respect to the function  yxu ,  that has two continuous derivatives on bought variables inside the plane 

domain  , bounded with a continuous curve   .  Here     ,,, , ( , )x yx y x y   and ),( yxf , 

( , )x y   are given functions. 

 

The scheme of the GR-algorithm can be explained as the consequence of the next steps:  

1) reduce the boundary value problem to homogeneous one with respect the function 
0 ( , )x yu ;  

2) reduce the equation (1) with variable coefficient to equivalent equation with constant coefficient with 

respect the function  ,v x y ; 

3) describe the distribution of the potential function  ,v x y along the general ray (a straight line l ) by its 

direct Radon transform  ˆ ,v p  ; 

4) construct the family of ODE on the variable p with respect the function  ˆ ,v p  ; 

5) resolve the constructed ODE with the zero boundary conditions; 

6) calculate the inverse Radon transform of the obtained solution reconstructing  ,v x y ; 

7) reconstruct 0 ( , )x yu , using functions  ,v x y  and  ,x y ; 

8) regress to the initial boundary conditions.  

We present bellow some formulas, which we use to realize this scheme.  

We suppose that the boundary   can be described in the polar coordinates ( , )r   by some one-valued 

positive function that we denote 0 ( )r  , [0,2 ]  . It is always possible for the simple connected star region 

  with the centre at the coordinate origin. Let us write the boundary function as  

 

  0 0( ( )cos , ( )sin )f f r r     .                                                      (3) 

 

Supposing that functions 0 ( )r   and  f   have the second derivative, we introduce functions 

 
2

0 0( ) ( ) / ( ), ( , ) .f f r x y                                                            (4) 

 

    2

0 0, , ( ).u x y u x y r f                                                                (5) 

 

To realize the first step of the scheme we can write the boundary problem with respect the function  

 0 ,u x y  as the next two equations: 

   00
, , ( , ) ;div u x y x y                                                             (6) 

 

 0 , 0, ( , ) .u x y x y       ,                                                             (7) 



 

where function 0  in polar coordinates can be written as 

0 0 0 0 0 .
'' '
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To realize the second step of the scheme, i.e. to reduce the equation (6) with variable coefficient to equivalent 

equation with constant coefficient, we make substitution: 

 

 

                                        (8)

 

 

and obtain corresponding equation: 

 

0 ,v                                                                               (9)

 

which supplement with boundary condition: 

 

 , 0, ( , ) .v x y x y                                                              (10)

 

Using the Kellogg theorem [7] we obtain equivalence of the problem (6)-(7) to the problem (9)-(10), that is the 

basic element of the theoretical justification of GR-method for considering class of equations. The next steps of 

GR-algorithm are applied to the equation (9) with constant coefficient, which are described sufficiently in works 

[5], [8] and guarantee fast calculation of function  ,v x y . In [6] there are presented formulas, based on 

relations (8), that give possibility for convex domains to reconstruct function 0 ( , )x yu  using calculated 

function  ,v x y .   

 

3   Description of the GRAL Program Package 

We have constructed the fast program realization of developed algorithms for GR-method as the GRAL program 

package in MATLAB system. The package consists of the set of programs, that includes 5 main blocks:  

1) programs R(AL),  F(AL) , EP(x,y), PSI(x,y)  that realize functions 0 ( )r   ,  f  ,    ,, , ,x y x y  and 

must be constructed by user;  

2) calculation of the direct and inverse Radon transform with programs GRAD and GIRAD that present the 

original modification of the MATLAB programs radon, iradon [6]; 

3) block that corresponds to realization of GR-algorithm for constant coefficient  ; 

4) block for variable double smooth coefficient  ; 

5) block for piecewise constant coefficient  ; 

The main programs in every block 3) -5)  realize calculation on the bi-dimensional rectangular red with NxN 

nodes in the minimal rectangle that contains the domain  . The function ( , )u x y  is calculated in such nodes 

that belong to the domain  . The main programs present also graphic illustration of the approximate solution 

using corresponding MATLAB programs. The block 5) is innovation that yet is not justified theoretically, but 

we demonstrate its validity by numerical experiments. 

The perspective development of the GRAL program package will include solution of the boundary problems 

for the Helmholtz equation, parabolic and hyperbolic equations, so as solution of inverse coefficient problems 

for PDE with spline regularization [9].  
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4   Results of Numerical Experiments  

We made tests on mathematically simulated model examples with known exact functions  yxu , , ),( yxf , 

 yx, ,  ,x y . The first example corresponds to the constant coefficient 1  , 

 , ,u x y x y  domain and results of calculation are presented at Figure 1. 
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Figure 1. 

 

Some other results for constant coefficient   are presented in [5], [8]. We present here some new examples for 

variable  .  

The second example corresponds to  
 

,
1

,
cos 2

x y
x y

 
 

  

( , ) .sin( ) 2( )u x y x y x y   
  

As domain, 

we have in this case the unit circle. This example is devoted to comparing of GR-method (GRAL package) with 

Finite Elements method (pdemodel program of PDE toolbox of MATLAB). The results are presented at Table 1 

and Figure 2. 

In Table 1 we present for corresponding N: time of calculation by pdemodel (the 2-nd column) and by GRAL 

(the 3-d column). In the two next columns we see maximum and mean errors of approximation exact  yxu , by 

GRAL. 

 

Table 1 

N pdemodel GRAL  Maximum   

error 

Mean  

error 

14 0.902346sec 0.32455sec 0.6555 0.1713 

28 0.869951sec 0.097181sec 0.4917 0.1076 

42 2.387995sec 0.197593sec 0.3985 0.0819 
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Figure 2. 

 

In Figure 2 there are shown: in the 1-st, 2-nd and 3-d columns contain results for N=14, 28 and 42 

correspondently; in the 1-st line – exact  yxu , , the 2-nd line –  yxu , reconstructed by pdemodel , the 3-d 

line –  yxu , reconstructed by GRAL. 

Analysis of Figure 2 and Table 1 demonstrates that GR-method (GRAL package) guarantees a good 

approximation and require sufficiently less time of calculations in comparing with Finite Elements method 

(pdemodel program of PDE toolbox of MATLAB).    

In the third example we have  , 0,x y  piecewise constant coefficient  : 
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and the next exact solution 

 
, ;

,
2( ), .

x y y x
u x y
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At Figure 3 , graph (a), we can see exact  yxu , and at graph (b) – solution,  reconstructed by GRAL. 



 

 

 
Figure 3. 
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