УДК:629.78

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ПРИ ОЦЕНКЕ ВОЗМОЖНОСТЕЙ ОБНАРУЖЕНИЯ МОРСКИХ ОБЪЕКТОВ КОСМИЧЕСКИМИ СИСТЕМАМИ

М.И. Калинов, В.А. Родионов (Санкт-Петербург)

Современная жизнь существенно зависит от применения космических систем (КС) различного назначения. Среди этих систем особое место занимают низкоорбитные радиолокационные КС, способные решать задачи обнаружения морских объектов искусственного и естественного происхождения. Далее в статье будут рассматриваться именно такие системы. Планирование и управление применением КС непосредственно связано с оценкой их возможностей. При этом под возможностью понимается свойство предполагаемого явления, события, действия, позволяющее им осуществиться [1].

Основным случайным событием, которое многократно появляется в процессе применения рассматриваемых КС, является «обнаружение объекта наблюдения (ОН)». Осуществимость такого события может быть оценена с помощью соответствующих методов и моделей. Близкими по смыслу к термину «оценка возможностей» являются термины «оценка эффективности», «оценка результативности», «прогнозирование результатов». Поэтому целесообразно пояснение сущности этих терминов. Поскольку основным предназначением КС является обнаружение ОН, то независимо от использования указанных терминов их сущностью является априорная оценка следующих основных временных и вероятностных характеристик:

- интервалов времени между обнаружениями ОН;
- времени, необходимого для обнаружения ОН заданное количество раз;
- вероятности обнаружения ОН заданное количество раз;
- вероятности слежения за обнаруженным OH с заданным допустимым временем устаревания данных;
 - количества обнаружений.

Следует отметить, что большой практический интерес как для органов управления, так и для пользователей информацией об обстановке в различных районах Мирового океана представляет периодичность наблюдения с помощью КС за назначенными (заданными) объектами (далее — периодичность). Существует большое количество методов и моделей, позволяющих производить оценки периодичности. Разработанные учеными, представляющими различные научные школы, эти методы и модели имеют недостатки, связанные с тем, что в них не в полной мере учитываются:

- неопределенность положения OH в заданном районе или области возможного положения объекта наблюдения (ОВПОН);
 - возможные маршруты движения ОН;
- зависимость правильного распознавания обнаруженного объекта от времени устаревания данных;
 - интервал оценки и время его начала;
 - долгота ОН;
- влияние различия в скорости прецессии восходящих узлов разновысотных орбит космических аппаратов (KA) на изменение баллистической структуры орбитальной группировки (ОГ) в различные периоды функционирования КС;
- особенности вступления мобильных комплексов в связь с KA, имеющими отклонения от расчетного положения на орбите и др.

При этом, как правило, оценивается только средняя (иногда – максимальная и

минимальная) периодичность путем нахождения среднего (максимального и минимального) значения из всей совокупности интервалов времени между пролетами КА над заданным местоположением ОН, что приводит к формированию искаженного (неполного) представления у пользователей о реальных значениях периодичности [2-4].

Поэтому целесообразна коррекция таких представлений путем разработки соответствующих методов, моделей и форм отображения получаемых результатов, которые бы позволили пользователям получить знания обо всей совокупности интервалов времени между обнаружениями ОН, находящегося в заданном районе. Очевидно, что такой формой может быть закон распределения вероятностей попадания в интервалы между обнаружениями ОН.

С целью устранения указанных недостатков и формирования искомого закона распределения был разработан сценарно-временной метод (CBM) оценки возможностей КС [5].

Основные особенности СВМ:

- имитация неопределенности исходного местоположения ОН и его последующих местоположений с помощью множества сценариев (объектов), в которых используется датчик случайных чисел; количество сценариев определяется с учетом требований к точности и надежности получаемых оценок;
- генерация сложного события «обнаружение ОН» с помощью совокупности правил (проверок), позволяющих фиксировать факты накрытия полосой обзора КА заданного района (ОВПОН), попадания объектов, действующих по различным сценариям, в полосу обзора КА, фиксации объектов бортовым специальным комплексом (БСК) КА, приема информации об обнаруженных объектах на пунктах приема информации (ППИ) и распознавания объектов в условиях фоно-целевой обстановки различной степени сложности;
- учет влияния времени устаревания данных на вероятность правильного распознавания обнаруженных объектов;
- учет вероятностей фиксации объектов БСК КА, приема информации на ППИ и распознавания объектов, рассчитываемых с помощью специальных методик.

В сочетании с комплексом имитационных моделей (моделью орбитального движения КА, моделью накрытия полосой обзора КА заданного района, моделью попадания ОН в полосу обзора КА, моделью фиксации БСК КА признаков ОН, моделью приема информации на ППИ, моделью распознавания обнаруженных объектов) СВМ трансформирован в компьютерную методику, позволяющую получать оценки возможностей КС. Имеется несколько разновидностей данной методики. Она может применяться для оценки возможностей КС в заданном районе или при наблюдении за объектами, осуществляющими переход морем.

Областью возможного положения объекта наблюдения при этом считается район, ограниченный заданными значениями широт и долгот, или малый круг заданного радиуса на поверхности Земли. Имитация перемещения объектов, действующих по различным сценариям, при ограниченных ОГ (5-10 КА) производится с учетом интервала времени между соседними пролетами КА. Для оценки возможностей КС при наблюдении за объектами, осуществляющими переход морем, задается маршрут их перемещения совокупностью координат маршрутных точек, а также средних скоростей между маршрутными точками.

При использовании CBM для оценки возможностей многоспутниковых КС (несколько десятков KA) имитация перемещения объектов производится непрерывно, независимо от интервала времени между соседними пролетами KA.

Проверка фактов попадания объектов наблюдения в полосу обзора КА является основой сценарно-временного метода оценки возможностей КС. В то же время

компьютерная визуализация, необходимая для проверки корректности (достоверности) таких фактов, при большом (десятки-сотни) количестве пролетов над заданным районом связана с большими временными затратами и необходимостью применения других форм отображения информации.

Для устранения этих недостатков CBM был разработан разностно-долготный метод (РДМ), который основан на так называемом захвате по долготе. Захват по долготе $\Delta\lambda$ является удобной характеристикой условий обзора бортовым спецкомплексом КА и представляет собой разность долгот между крайними точками отрезка параллели, попадающего в полосу обзора КА.

В РДМ при определении вероятностей попадания ОН в полосу обзора КА осуществляется переход от решения задачи на плоскости (реализованного в СВМ) к решению задачи на прямой, проходящей через среднюю широту района наблюдения ϕ_{cp} . Такой переход соответствует изменению формы мерности пространства-времени при моделировании и отображении его результатов (от широтно-долготного (СВМ) к долготно-временному). При этом производится переход от отношения «площадь полосы обзора КА S_i / площадь района наблюдения S_i (СВМ) к отношению «захват по долготе полосы обзора КА на средней широте района $\Delta\lambda$ / долготный размер района λ_2 - λ_1 » (рис. 1).

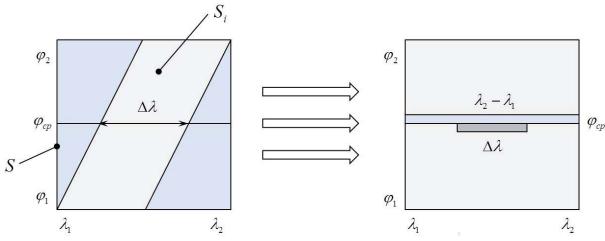


Рис. 1. Определение вероятности попадания ОН в полосу обзора КА

Разработанный способ позволяет быстро и сравнительно просто рассчитывать указанные вероятности. В случае необходимости расчеты значений захватов по долготе и вероятностей попадания ОН в полосу обзора КА могут производиться не только для средней широты, но и для всего диапазона широт района наблюдения с заданным шагом. Получаемые на основе таких расчетов оценки возможностей применения КС в дальнейшем усредняются.

Как правило, одновременно с периодичностью производится оценка временных и вероятностных характеристик KC:

- времени, необходимого для обнаружения ОН не менее одного раза;
- времени, необходимого для обнаружения ОН не менее заданного количества раз;
 - вероятности обнаружения ОН не менее одного раза;
 - вероятности обнаружения ОН не менее заданного количества раз;
 - количества обнаружений;
- вероятности слежения за OH с заданным допустимым временем устаревания данных.

Для удобства имитационного моделирования процесса функционирования КС, решающей задачу обнаружения морских объектов, предварительно отрезок параллели, соответствующей средней широте района наблюдения в заданном долготном диапазоне, делится на кванты (далее — кванты района). Шаг квантования выбирается из соображений точности получаемых оценок и времени, необходимого для моделирования.

В отличие от СВМ в РДМ периодичность оценивается следующим образом:

- по мере моделирования производится накопление данных обо всех временных интервалах между попаданиями каждого кванта района в захваты по долготе (далее временных интервалах Δ tij, где i номер кванта района, j номер пролета KA над районом);
- на основе полученных данных формируется массив временных интервалов Δ tij для всех квантов района;
 - выбираются минимальные и максимальные временные интервалы ∆tij;
 - определяется или назначается шаг по времени;
- производится суммирование всех временных интервалов Δtij из сформированного массива;
- выбираются и суммируются временные интервалы Δtij , попадающие в интервалы между значениями текущего и последующего шагов по времени;
- определяются вероятности попадания в интервалы, соответствующие каждому шагу по времени (как отношения между суммой временных интервалов Δ tij, попавших в интервал между значениями текущего и последующего шагов по времени, и суммой всех временных интервалов Δ tij);
- строятся гистограммы, соответствующие дифференциальному и интегральному законам распределения вероятностей попадания в интервалы межу обнаружениями OH.

Полученные законы распределения удобны для формирования представления о том, какие значения принимают временные интервалы Δt_{ij} между обнаружениями ОН на всем интервале оценки при моделировании процесса применения КС.

Для практических целей удобно использовать шаг по времени 0,5 часа, а периодичность оценивать 80% квантилем — максимальным значением интервала между обнаружениями ОН с вероятностью не ниже 0,8.

Вероятность обнаружения объекта наблюдения при идеальных условиях (без учета фиксации ОН БСК КА, приема информации на ППИ и распознавания объектов) может быть определена как отношение количества квантов, попавших в захват по долготе, к общему количеству квантов района. Очевидно, что по мере возрастания времени наблюдения за ОН возрастает и количество пролетов КА над заданным районом, а также и количество попаданий квантов района в захваты по долготе при каждом пролете КА.

Для большей корректности при определении вероятности обнаружения ОН могут быть также учтены влияние времени устаревания данных на вероятность правильного распознавания обнаруженных объектов, техническая вероятность их фиксации БСК при попадании в полосу обзора КА, а также другие факторы, влияющие на обнаружение ОН.

Оцениваемое в процессе имитационного моделирования время, необходимое для обнаружения ОН не менее одного раза, показывает, что каждый квант района хотя бы один раз попал в один из захватов по долготе, и объект наблюдения, априори равновероятно расположенный в заданном районе, обнаружен. Иными словами, к этому времени решена задача обнаружения ОН.

Часто определенный практический интерес для пользователей представляет

также время, необходимое для обнаружения ОН не менее заданного количества раз (например, при определении курса и скорости морского судна, осуществляющего переход через заданный район, при формировании представления о возможном предназначении ОН и т.п.). Получаемое при этом в ходе моделирования значение времени указывает на то, что каждый квант района попал в захваты по долготе не менее заданного количества раз и решена задача выявления ОН.

Количество обнаружений ОН представляет собой суммарное количество попаданий каждого кванта района в захваты по долготе на интервале оценки.

Вероятность слежения определяется как вероятность обнаружения, пролонгированная на допустимое время устаревания данных. Причем пролонгация осуществляется на основе данных по каждому кванту района.

Сочетание разработанного метода и комплекса соответствующих моделей (по аналогии с CBM) позволили сформировать компьютерную методику, используемую для оценки возможностей КС. При проведении моделирования процессов пролета КА над заданными районами земной поверхности и оценке возможностей КС производится компьютерная визуализация:

- района наблюдения на фоне цифровой морской карты;
- средней широты и диапазона долгот заданного района наблюдения;
- долгот и времен прохождения восходящих узлов каждым KA орбитальной группировки (ОГ);
- захватов по долготе на средней широте заданного района для каждого КА на интервале оценки (в двух масштабах);
- количества пролетов над каждым квантом района (принято значение кванта -1 градус);
- максимального значения интервала между обнаружениями OH с вероятностью не ниже 0,8, To;
 - вероятности обнаружения OH не менее одного раза, Wo(1);
 - времени, необходимого для обнаружения ОН не менее одного раза То(1);
- вероятности обнаружения OH не менее заданного количества (например, 5) раз, Wo(5);
- времени, необходимого для обнаружения OH не менее заданного количества (например, 5) раз, To(5);
 - количества обнаружений, Ко;
- вероятностей слежения с заданными допустимыми временами устаревания данных за объектом наблюдения, находящимся на заданной широте и в диапазоне долгот заданного района (например, W(6,9), W(2,3) и W(1,5), W(0,5) для допустимых времен устаревания данных 6,9 час, 2,3 час, 1,5 час, 0,5 час соответственно);
- дифференциального и интегрального законов распределения вероятностей попадания во временные интервалы между обнаружениями OH;
- графиков изменения вероятностей обнаружения ОН и слежения за ОН во времени.

Примеры форм отображения получаемых результатов при моделировании и оценке возможностей КС в заданном районе представлены на рис. 2-3 (1 и 48 КА соответственно). Моделировалось невозмущенное движение КА. При этом использовались следующие исходные данные: наклонение орбит КА – 97 град; высота орбит КА – 520 км; 6 плоскостей орбит по 8 КА (для ОГ из 48 КА); угол между плоскостями орбит – 60 град; долгота узла первого КА в первой плоскости орбиты – 0 град, время прохождения восходящего узла первым КА первой плоскости орбиты – 00 час 00 мин, 00 с; ширина полосы захвата – 500 км (для одного КА) и 100 км (для 48

КА); разворот КА по крену при пролете над районом учитывался. Если большая часть района накрывалась левой полосой захвата, то считалось, что БСК КА работает в левую сторону и наоборот.

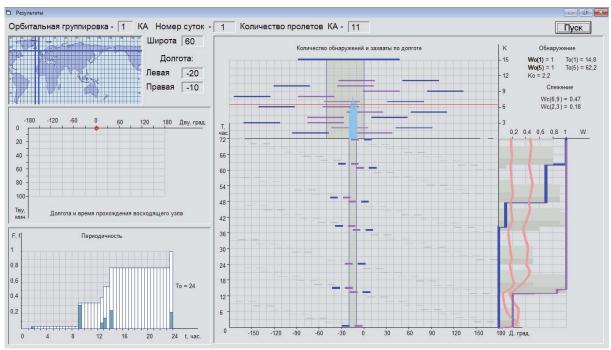


Рис. 2. Форма отображения получаемых результатов при оценке возможностей КС в заданном районе (1 KA, интервал оценки – 3 суток, вариант)

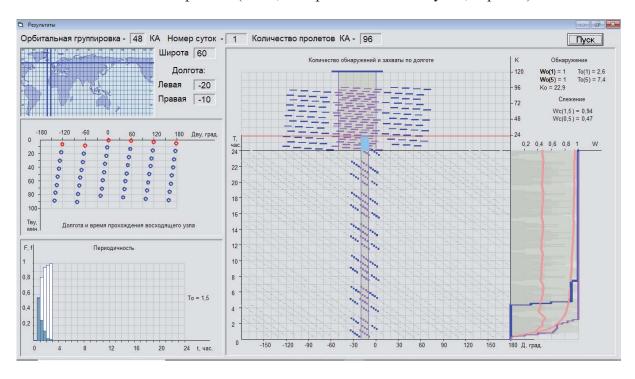


Рис. 3. Форма отображения получаемых результатов при оценке возможностей КС в заданном районе (48 КА, интервал оценки -1 сутки, вариант)

Анализ графической информации, представленной на рис. 2 (для удобства и наглядности рассмотрен 1 КА со сравнительно большой полосой захвата 500 км) позволяет пошагово (от пролета к пролету КА) проследить как однократно и пятикратно просматривается каждый квант района наблюдения и определяются соответствующие времена, необходимые для однократного (14,8 час) и пятикратного (62,2 час) обнаружения ОН, равновероятно находящегося в районе наблюдения. При этом имитируется поворот КА по крену: активная (включенная при пролете над районом) полоса захвата КА показана фиолетовым цветом, а пассивная (выключенная) – синим цветом. Кроме того, легко определяется и количество обнаружений для каждого кванта района (6-7 на трехсуточном интервале оценки и 2,2 — на суточном интервале).

Соотнесение активных полос захватов по долготе и вероятностей слежения (обозначены на рисунке розовым цветом) с различными временами устаревания, а также зависимостей вероятностей обнаружения (синий и фиолетовый цвета) от времени позволяет подтвердить корректность полученных результатов.

Аналогичный анализ получаемых результатов может быть выполнен и для варианта многоспутниковой КС (рис. 3).

Для оценки влияния разворота КА по крену (с целью обеспечения попадания района наблюдения в правую или левую относительно трассы полета КА полосу захвата) с помощью разработанной на основе РДМ методики произведены оценки возможностей многоспутниковой КС с 48 КА (параметры орбит КА и структура орбитальной группировки указаны выше), имеющими характеристики близкие к отечественным КА типа «Кондор-ФКА» с полосой захвата в обзорном режиме 100 км (табл. 1).

Получаемое в этом режиме разрешение (6-12 м) позволяет решать задачу обнаружения морских ОН и контролировать судоходство в различных района Мирового океана [2]. Для сравнения также выполнены оценки для полосы захвата 200 км (табл. 2). В каждой ячейке таблицы приведены значения оцениваемых показателей с учетом разворота КА по крену, работы КА только левой или правой полосами захвата (запись в первой ячейке для района Северо-Восточной Атлантики 1,5/2,5/2,4 обозначает, что периодичность (80% квантиль — максимальное значение интервала между обнаружениями ОН с вероятностью не ниже 0,8) будет составлять при учете разворота КА по крену 1,5 часа, при работе КА только левой полосой 2,5 часа и при работе КА только правой полосой 2,4 часа).

Таблица 1. Временные и вероятностные показатели возможностей обнаружения ОН космической системой в составе 48 КА (ширина полосы захвата 100 км)

Районы	Показатели							
	То, час	Т(1), час	Т(5), час	Ко	Wc(1,5)	Wc(0,5)		
Северо-Восточная Атлантика	1,5/2,5/2,4	2,6/2,6/4,0	7,4/10,3/11,4	22,9/11,7/11,8	0,94/0,73/0,69	0,47/0,24/0,24		
Средиземное море	4,0/4,0/4,0	6,9/19,5/19,1	22,5/30,8/26,8	14,8/8,8/8,3	0,52/0,43/0,43	0,27/0,18/0,17		
Тихий океан	4,0/4,0/4,0	11,3/11,3/10,6	22,7/23,3/18,7	16,1/8,3/9,1	0,58/0,42/0,47	0,30/0,17/0,19		

Таблица 2. Временные и вероятностные показатели возможностей обнаружения ОН космической системой в составе 48 КА (ширина полосы захвата 200 км)

Районы	Показатели							
	То, час	Т(1), час	Т(5), час	Ко	Wc(1,5)	Wc(0,5)		
Северо-Восточная Атлантика	1,5/2,5/2,5	1,1/1,1/1,6	3,8/6,4/7,8	38,5/19,4/19,5	0,97/0,8/0,75	0,60/0,31/0,30		
Средиземное море	3,0/3,5/3,5	2,7/3,3/2,7	6,7/14,5/13,9	25,8/13,0/13,2	0,66/0,52/0,54	0,40/0,26/0,26		
Тихий океан	3,0/3,5/3,5	2,6/3,4/2,8	5,8/10,4/9,8	25,8/13,5/14,0	0,69/0,55/0,57	0,41/0,26/0,27		

Анализ результатов моделирования и оценки возможностей обнаружения морских объектов КС показал следующее:

- разворот КА по крену оказывает значительное (до 70%) влияние на периодичность только в районах Северо-Восточной Атлантики, в районах Средиземного моря и Тихого океана это влияние уменьшается или отсутствует;
- время, необходимое для однократного и пятикратного обнаружения ОН, при развороте КА по крену может сократиться до полутора-трех раз, в отдельных случаях это сокращение менее значительно или отсутствует;
- количество обнаружений ОН при развороте КА по крену увеличивается в среднем в два раза;
- вероятность слежения за ОН без разворота КА уменьшается в полтора-два раза;
- увеличение полосы захвата KA до 200 км не оказывает существенного влияния на периодичность, но позволяет значительно сократить время, необходимое для обнаружения ОН (в два-четыре раза), при этом, в среднем, в полтора раза возрастает количество обнаружений ОН и на 10-15% повышается вероятность слежения за ОН.

Иными словами, разворот КА по крену и обзор заданного района левой или правой полосой захвата может оказать существенное влияние на возможности КС. В то же время, это влияние неоднозначно. Для повышения достоверности получаемых результатов необходимо провести дополнительные исследования.

Возможные направления дальнейших исследований:

- исследование различных вариантов состава и построения ОГ КА;
- исследование различных районов наблюдения;
- исследование различных характеристик БСК КА;
- оценка возможностей КС в различные периоды ее функционирования;
- совершенствование форм представления получаемых результатов.

Разработанный разностно-долготный метод в дальнейшем может быть использован для обоснования перспективных космических систем обнаружения морских объектов в различных районах Мирового океана.

Выводы

- 1. Определены основные недостатки существующих подходов к оценке периодичности наблюдения космическими системами за морскими объектами.
- 2. Показаны основные достоинства и недостатки сценарно-временного метода оценки возможностей космических систем.
- 3. Разработан разностно-долготный метод оценки возможностей космических систем.

- 4. Выполнено имитационное моделирование и произведена оценка влияния разворота КА по крену на возможности космических систем.
- 5. Целесообразно использование разработанного разностно-долготного метода в при обосновании перспективных космических систем обнаружения морских объектов в различных районах Мирового океана.

Литература

- 1. Толково-энциклопедический словарь. СПб. «Норинт». 2006.
- 2. Государственная корпорация космической деятельности ПО «Роскосмос» Акционерное общество «Военно-промышленная корпорация «НПО машиностроения». Руководство пользователя данными дистанционного зондирования Земли, получаемыми космической системой «Кондор-ФКА». 2023. URL: https://www.roscosmos.ru/media/files/2023/2023.02.17.rukovodstvo.pol.zovatela. kondor-fka.dla.saita.pdf.
- 3. **Занин К.А., Клименко Н.Н.** Возможности космических систем радиолокационного наблюдения по периодичности наблюдения объектов и районов // Воздушнокосмическая сфера. 2020. № 4. С. 88-99.
- 4. **Купряшкин И.Ф., Лихачев В.П**. Космическая радиолокационная съемка земной поверхности в условиях помех. Воронеж : Издательско-полиграфический центр «Научная книга», 2014.
- 5. Гуляков В.В., Гуляков В.Э., Калинов М.И., Родионов В.А. Сценарно-временной метод прогнозирования результатов применения космических радиолокационных систем в интересах информационного обеспечения ВВСТ. Сборник научных трудов межотраслевой НПК «ВОКОР-2018». СПб., НИИ КиВ ВМФ ВУНЦ ВМФ «Военноморская академия». 2018. С. 101-106.