УДК 629.7

МЕТОДОЛОГИЯ СТРУКТУРНО-ФУНКЦИОНАЛЬНОГО СИНТЕЗА ВЫЧИСЛЕНИЙ В ИНТЕЛЛЕКТУАЛЬНЫХ АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ МОНИТОРИНГА СОСТОЯНИЙ СЛОЖНЫХ ОБЪЕКТОВ

А.В. Кулешов (Москва), М.Ю. Охтилев, П.А. Охтилев, О.П. Ничипорович (Санкт-Петербург)

Введение

В настоящее время, когда наблюдается существенное усложнение процессов принятия управленческих решений, связанных с применением различных классов сложных объектов (СлО) в условиях неопределенности, в критических отраслях промышленности, сельского хозяйства, продовольственной безопасности, обороноспособности государства и пр., особую актуальность приобретают вопросы цифровизации и интеллектуализации указанных процессов на основе методологии и технологий искусственного интеллекта.

При этом значительное усложнение создаваемых человеком все новых и новых агробиотехнических СлО (организационно-технических систем, объектов, социально-экономических пр.), прежде экологических, систем и всего, информационной сфере (корпоративные информационные системы, локальные и глобальные телекоммуникационные системы) приводит к необходимости дальнейшего совершенствования автоматизированных систем мониторинга 13 состояния (АС МС) как одной из определяющих систем поддержки принятия решений. Проектируемые в настоящее время адаптивные и самоуправляемые вычислительные системы по замыслам создателей будущем должны В самостоятельно организовывать функционирование с учетом требований, сформулированных их администраторами и ориентированных на обеспечение эффективной реализации соответствующих бизнеспроцессов. Решение рассмотренных выше проблемных вопросов может быть осуществлено с помощью аппарата бурно развивающейся в последнее время теории искусственного интеллекта и смежных с ней научных дисциплин – на основе использования интеллектуальных информационных технологий (ИИТ) [2, 3].

Все сказанное выше позволяет говорить о важности рассмотрения, изучения, развития и обоснования методологических принципов построения алгоритмического и программного обеспечения одного из этапов обработки (в широком смысле) измерительной информации (ИИ) — ее анализу, производимому в АС МС СлО — с целью поддержки принятия решений при оценивании состояний (технических состояний) объектов анализа (ОА) и управления ими — на основе применения принципов построения интеллектуальных систем. При этом постановка задачи МС СлО может быть сформулирована в терминах теории распознавания образов.

¹³ Мониторинг – (англ. monitoring – слежение, контроль), специальная форма наблюдения (слежения) за текущим изменением тех или иных процессов или объектов в пространстве и во времени, осуществляемая на постоянной основе. На базе мониторинга устанавливаются отклонения наблюдаемых эмпирических показателей от их теоретических или обычных значений, а в порядке профилактики принимаются меры по минимизации таких отклонений. Конечная цель любого мониторинга − предвидение (прогноз) будущего состояния происходящих явлений и событий с целью снижения степени неопределённости, риска при принятии решений [1].

1. Задача оценивания состояний сложных объектов как задача распознавания образов

Теория распознавания образов с момента своего зарождения еще на рубеже 50, 60-ых годов прошлого века накопила обширный и достаточно богатый инструментальный аппарат, позволяющий решать задачи, которые ставит практика перед исследователями. За счет расширения спектра применения методов распознавания образов в последние десятилетия эта теория получила бурное развитие и сформировалась в отдельное научное направление информатики и прикладной математики. Это объясняется рядом причин. С одной стороны, многие задачи обработки и анализа информации могут быть сведены к задаче распознавания. С другой, наличие большого количества плохо формализуемых реальных систем, для которых стоит актуальная задача их изучения и моделирования поведения. При этом для таких систем не удается, как правило, синтезировать математические модели традиционными в математике средствами — из-за невозможности точного описания модели изучаемых явлений (процессов) или неспособности реализовать необходимые вычисления по синтезированной модели с помощью существующих или появляющихся в обозримом будущем вычислительных средств.

Важно иметь ввиду, что, несмотря на длительный этап своего развития, именно последние годы стали наиболее плодотворными в достижении как теоретических, так и прикладных результатов. Это произошло из-за осознания того, что сбор, обработка и анализ информации сами по себе не дают понимания функционирования рассматриваемых СлО в целом, каким бы большим не был поток обрабатываемой информации (прежде всего, измерительной – ИИ) и насколько точным не были бы результаты измерений. Между получаемыми от исследуемого объекта значениями ИИ и возможностью разумно их использовать существует большой разрыв. Для того, чтобы его преодолеть, нужно выполнить большой объем преобразований с данными. Эти преобразования и методы их осуществления составляют предмет теории распознавания образов.

Благодаря усилиям многих научных школ и направлений, теория распознавания образов обогатилась большим количеством методов, эффективно действующих в различных сферах своего применения. Практически все они решают задачу «черного ящика», суть которой состоит в следующем. Опираясь на некоторую ограниченную, неполную, намеренно или ненамеренно искаженную, стохастическую информацию об изменении наблюдаемых параметров, необходимо сформулировать достаточно четкое суждение о наиболее существенных свойствах явления (или процесса) – источника информации, получить прогноз его динамики. Другими словами, построить практически полезную математическую модель. В рамках теории распознавания образов эта задача принимает множество приложений: обнаружение закономерностей, восстановление зависимостей по эмпирическим данным, выявление регулярностей, эмпирическое предсказание, анализ данных, принятие решений на основе прецедентов и т.д.

В настоящее время для решения подобных задач, характеризующихся сложно формализуемыми данными, информацией и знаний, бурное развитие получили методы систем искусственного интеллекта (СИИ). В частности, методы, применяющие нейросетевое моделирование. Однако и они не всегда применимы для решения задач МС СлО, особенно в критических приложениях. Авторы этого материала также солидарны с мнением директора Института проблем управления РАН академика Д.А. Новикова, выражающего мнение целого направления исследований нейросетевых моделей: «Почему искусственные нейронные сети не используются в системах управления критически важными объектами? Потому что никто не может

гарантировать, что система управления не выведет этот объект за границы допустимой области. Именно поэтому нейронных сетей нет в авиации, на атомных станциях, во многих производственных системах. Проблема доверенного (объяснимого) искусственного интеллекта — это интересная научная задача с точки зрения математики и много кто ею занимается, но над ее решением еще работать и работать» [4,5].

Кроме того, практически ни один из существующих методов не решают свою задачу, акцентируя внимание на свойствах механизма ее реализации (т.е. процесса непосредственно распознавания), фиксируя при этом качество окончательного результата.

А между тем, целый слой задач распознавания образов имеет смысл применять лишь тогда, когда, в первую очередь, удовлетворяются требования по показателям процесса непосредственно решения задач обработки данных. Так, например, обстоит дело в достаточно широкой прикладной области наблюдения за СлО, управляемыми в РВ. Причем, требования по получению результата решения задачи наблюдения по времени очень жесткие и зачастую составляют секунды или даже доли секунд – при условии необходимости переработки достаточно большого по объему потока информации. Более того, такое наблюдение должно производиться непрерывно в течение длительного времени – возможно, в течение всего жизненного цикла объекта наблюдения. Т.е. в условиях потоковости не только исходной ИИ, но и результатов наблюдения за объектом.

Все эти соображения заставляют пересмотреть принципы построения и методы реализации традиционных прикладных систем распознавания для наделения их необходимыми свойствами. В связи с этим, необходимо, для начала, соответствующим образом переформулировать традиционную задачу распознавания образов, модифицировав ее таким образом, чтобы она позволяла учитывать названные выше параметры. А затем разработать для ее решения такой методологический аппарат, который позволял бы достигать нужных свойств процесса распознавания.

Не останавливаясь на полном перечне формализмов и использующих их задач, решаемых при функционировании прикладных систем распознавания, рассмотрим лишь те, которые должны быть подвергнуты существенному переосмыслению и соответствующей доработке.

2. Модель представления знаний предметной области

Ключевым элементом рассматриваемой AC MC СлО является модель представления знаний (МПЗ) о предметной области, которая в данном исследовании может быть построена с использованием вычислительных моделей, исторически первыми предложенными в концептуальном программировании и обобщенных вычислительных моделях в рамках «недоопределенных вычислений», а также их дальнейшее совершенствование в виде G-моделей [6-9].

Следуя основным принципам построения МПЗ в ИИТ, декларативная модель знаний (или спецификация некоторого множества задач) в рамках активно развивающейся в настоящее время инженерии знаний [10] может быть представлена как семантическая сеть, вершинам которой сопоставляются денотаты предметной области, а дугам — отношения между ними. В связи с этим, можно на множестве параметров состояния, характеризующих состояния конкретного объекта анализа (ОА), определить G-модель как кортеж $M_G = \langle X, R_M, P_M, \Delta_M \rangle$, включающий:

 $X = \{x_i | i = 1,...,n\}$ — конечное множество переменных (параметров) состояния, характеризующих явления (процессы) из предметной области. Природа каждого из параметров, входящих в X, может иметь произвольную природу, поддающуюся

наблюдению (и вычислению): это может быть и конечное символьное множество – алфавит, и множество целых чисел (как конечное, так и бесконечное), и континуальное множество действительных чисел, и т.п. Это множество, по сути, есть ни что иное, как множество признаков, используемое при распознавании состояний СлО (см. предыдущий раздел);

 $R_{\scriptscriptstyle M}$ – конечное множество отношений на множестве параметров из X;

 ${\it P}_{\scriptscriptstyle M}$ — конечное множество предикатов, предметными переменными в которых являются элементы из X;

 $\Delta_{_{M}}$ — отображение $R_{_{M}} o P_{_{M}}$, ставящее в соответствие каждому отношению из $R_{_{M}}$ элемент из $P_{_{M}}$.

Очевидно, что одной из главных функциональных возможностей МПЗ в ИИТ является возможность на их основе определить процесс вычислений некоторого множества целевых параметров (переменных), характеризующих результаты распознавания состояний. Для G-моделей такими целевыми переменными являются параметры цели анализа, значения которых необходимо определить в ходе сеанса анализа.

В качестве цели/задачи МС СлО можно считать получение обобщенных оценок совокупности параметров состояний, значения которых в явном виде указывают либо степень работоспособности рассматриваемого ОА, либо вид и место возникшей на ОА нештатной ситуации, либо являются оценками прогнозируемых процессов и явлений с заданной точностью и интервалом прогноза и т.п. — с учетом конкретных целей и условий эксплуатации ОА на различных этапах его функционирования. В связи с этим под МС будет пониматься процесс получения оценок значений параметров состояния X_g из множества X (от слова «goal» — цель), являющихся элементами цели анализа.

Состояние ОА с учетом вычисленных значений параметров цели можно интерпретировать как класс состояний, которому может соответствовать некоторая реакция системы управления.

3. Схема программы вычислений при распознавании состояний сложного объекта и ее синтез

При переходе от начального (методологического) этапа моделирования в ИИТ МС СлО – извлечения знаний у эксперта и построения МПЗ в виде G-моделей – к следующему – автоматической генерации программы вычислений и непосредственно организации вычислений при распознавании состояний, актуальной является задача представления заданной программы в виде своей модели. Важность этого представления объясняется рядом причин, среди которых можно отметить следующие. В рамках используемой ИИТ осуществляется переход от императивного подхода к созданию информационных систем к модельному, когда основной акцент деятельности конечного пользователя (КП) ставится на создании модели предметной области, а информационная система, погрузив введенные данные в свою операционную среду, самостоятельно генерирует программу целевых вычислений и далее организует непосредственно сами вычисления с выдачей нужных результатов. Такая технология предъявляет повышенные требования к качеству операционной среды, которая должна функционировать без воздействия непосредственно на нее КП. А это, в свою очередь, предъявляет требования по дополнительному и более глубокому математическому исследованию и моделированию лежащих в основе таких информационных систем инструментальных средств.

Программа вычислений, генерируемая в рассматриваемой AC MC СлО, исследуется на основе ее модели в виде схемы программы в рамках раздела

«Схематология» развивающейся в настоящее время науки о программах, имеющей целый ряд синонимичных названий: «Теория программирования», «Теоретическое программирование», «Computer science», «Mathematical theory of computations» и т.п. [6, 9, 11, 12, 13, 14, 15, 16, 17, 18].

Программа, будучи посредником между задачей и компьютером, задает некоторую механическую процедуру решения задачи, являясь одним из способов задания алгоритма. В связи с этим, любая программа обладает всеми общими свойствами алгоритмов: она является конструктивным объектом, работает конечное время для тех наборов исходных данных, на которых определена реализуемая вычисляемая функция, для программы характерна массовость и однозначность.

В основе схематологии лежит стремление отказаться от изучения самих программ в пользу их формальных моделей – схем программ. Такие схемы с различной степенью детализации описывают структурные свойства программ, например, тот факт, что программа состоит из операторов, которые, в свою очередь, построены из операций и используют переменные и т.д. Но схемы отвлекаются от конкретного смысла переменных, операций и функций. Схема программы сохраняет ее структуру, но, в отличие от самой программы, не является записью алгоритма. Однако, если зафиксировать интерпретацию, т.е. связать с символами переменных области их возможных значений и начальные значения, а с функциональными и предикатными символами – конкретные функции и предикаты, то схема задает программу.

Задавая различные интерпретации, можно получать совершенно разные программы, однако эти программы будут иметь одну и ту же структуру. Таким образом, схема позволит моделировать целый класс программ с одинаковыми структурными свойствами.

Идея схематизации принадлежит выдающемуся советскому математику А.А. Ляпунову. В 1953 г., исходя из общей концепции необходимости и возможности формализации процесса программирования, он ввел понятие схемы программы, под которой понималось представление программы, обеспечивающее некоторую специальную символику, облегчающую символику, облегчающую анализ и автоматическое преобразование программ. В классической работе, указанной выше, формализовал понятие схем программ, определил Ю.И. Янов эквивалентности схем и исследовал проблему эквивалентности для класса схем, получивших впоследствии название схем Янова. А.П. Ершов исследовал проблему алгоритмической полноты (или универсальности) систем операций в операторных алгоритмах, предложив полную систему операций: алгоритмически полными являются системы, порождаемые подклассом стандартных схем с базисом, содержащим константу, одноместный функциональный символ, двухместный предикатный символ, и множеством интерпретаций, содержащим единственную функцию прибавления и один предикат проверки равенства.

Процесс анализа ИИ по заданной цели анализа как процесс доопределения состояний СлО может быть полностью и однозначно задан схемой программы анализа, под которой можно понимать пару S = < M, C >, в которой под M понимается ее информационная или статическая составляющая (все операторы и величины, участвующие в вычислении), а под C — управляющая или динамическая структура (все возможные слова в языке на множестве имен операторов). Как указывалось выше, схема программы анализа ИИ должна сочетать в себе обе составляющие названной пары. Такой моделью является вводимая здесь G-сеть, для синтеза которой необходимо проведение нескольких этапов построения промежуточных формальных конструкций. Первой такой конструкцией является атрибутная p-грамматика, с использованием

которой доказывается разрешимость задачи существования программы вычислений параметров заданной цели анализа [6, 9].

В теоретическом программировании часто рассматривается подход к синтезу схем программ, который предполагает, что сущность программы можно выразить отношением, связывающим исходные данные с результатами вычислений [6, 8, 9, 19, 20]. При этом условия задачи являются той информацией, которую необходимо задать, чтобы получить готовую программу. При успешном решении проблемы синтеза отпадает необходимость не только писать программу, но и отлаживать ее.

Получение программы путем ее синтеза может быть произведено за три этапа:

- 1. описание условий задачи в виде отношения $R(X^+,X^-)$, связывающего исходные данные X^+ с результатами решения X^- ;
- 2. построение конструктивного доказательства теоремы существования решения задачи, заданной в виде формулы логического исчисления, декларирующей существование результатов вычислений как элементов упомянутых выше параметров (переменных) цели анализа

$$\forall (X^{+} \subseteq X) \exists (X^{-} \in \mathscr{X}_{g}) R[X^{+}, X^{-}].$$

3. перевод полученного доказательства в форму программы или схемы программы, с которой работает операционная среда (решатель интеллектуальной системы).

На основании проведенного анализа можно утверждать, что основные трудности при практическом применении синтеза схем программ состоят в реализации первых двух этапов — в описании условий задачи и в построении доказательства.

Необходимо отметить, что осуществление первого этапа для формализации знаний об анализируемом объекте для оценивания его состояний может быть осуществлено с использованием G-моделей, рассмотренных выше, которые позволяют в наиболее полном виде задать модель представления знаний, описав при этом все возможные связи и соотношения между параметрами задачи.

Для осуществления второго этапа — автоматического доказательства теорем в логической системе — известно большое количество методов. Известные подходы не позволяют обеспечить эффективное вычисление параметров цели анализа [6, 9].

В связи с этим предлагается процессы построения программ, которые имеют место в АС МС СлО, описывать на основе G-моделей, автоматическом синтезе формальных атрибутных грамматик специального вида (р-грамматик) и управлении процессом анализа ИИ на базе G-сетей [6, 9].

Не опускаясь до детального изложения упомянутых выше математических конструкций и рассматриваемого подхода в целом (в силу ограниченности объема статьи), дадим лишь его концептуальное описание.

4. Синтез схемы программы мониторинга состояний сложных объектов

Программа вычислений, реализующая некоторый алгоритм АА ИИ, может быть задана вводимой ниже G-сетью, которая определяется на основе понятий G-модели и потоковых схем программ (в частности, сети Петри) и сочетает в себе необходимые положительные свойства, присущие как одним, так и другим. Кроме того, G-сеть адекватно объединяет в себе управляющую и информационную структуру, свойственные схемам программ вычислений.

G-сетью
$$S_G$$
 назовем конструкцию, представляющую собой шестерку $S_G = < A_S, X_S, V_S, R_S, F_S, \mu_S>_,$ где

 $A_S = \{m{a}_i | m{i} \in m{I}_A \}$ — конечное непустое множество позиций G-сети. Множество позиций A_S разбивается на два непересекающихся подмножества: $A_S = A_S^0 \cup A_S^P$, среди которых A_S^0 — множество основных позиций и A_S^P — множество р-позиций;

 $X_s = \{x_i | \pmb{i} \in \pmb{I}_X\}$ — конечное непустое множество атрибутов G-сети. Причем такое, что отображение $A_s \to X_s$ является биекцией;

 $V_S = \{v_i | i \in I_V\}$ — конечное непустое множество переходов G-сети. Множество переходов V_S разбивается на два непересекающихся подмножества: $V_S = V_S^0 \cup V_S^P$, среди которых V_S^0 — множество основных переходов и V_S^P — множество р-переходов;

 $R_s = R_s^+ \cup R_s^-$ — множество инцидентности, причем $R_s^+ \subseteq X_s imes V_s$, $R_s^- \subseteq V_s imes X_s$.

 $F_{_S} = \{ \pmb{\varphi}_i \big| \pmb{i} \in \pmb{I}_{_F} \} \\ \quad - \text{ конечное множество операторов таких, что отображение } \\ V_{_S} \to \pmb{F}_{_S} \quad \text{является биекцией;}$

 $\mu_{s}:A_{s} o \mathbf{N}^{+}$ — функция разметки G-сети, сопоставляющая каждому $a_{i}\in A_{s}$ целое неотрицательное число.

Введенная G-сеть в целом отличается от стандартной сети Петри наличием множества атрибутов X_s и множества операторов F_s . Эта модификация превращает обычную СП в специальную раскрашенную СП.

G-сеть может быть получена в результате реализации отображений в соответствии со схемой, представленной на рисунке 1.

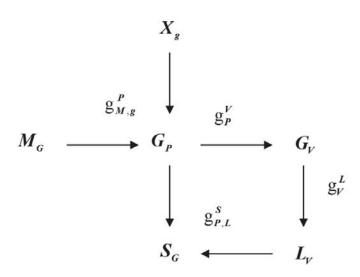


Рис. 1. Схема формирования G-сети $S_{\it G}$

Как видно из рисунка, в процессе преобразований используются следующие гомоморфные отображения:

1).
$$g_{M,g}^{P}: M_{G} \times X_{g} \to G_{P};$$

2). $g_{P}^{V}: G_{P} \to G_{V};$
3). $g_{V}^{L}: G_{V} \to L_{V};$
4). $g_{P,L}^{S}: G_{P} \times L_{V} \to S_{G}.$

Если справедливость отображений (1) - (3) не вызывает сомнений, то справедливость отображения (4) продемонстрируем ниже [6, 9].

Отображение (4) представляет собой кортеж отображений:

$$g_{P,L}^{s} = \langle g_{V}, g_{A}, g_{X}, g_{R}^{+}, g_{R}^{-}, g_{F} \rangle$$

причем, каждый элемент этого кортежа – есть отображение:

$$g_V: \mathbf{R}_G \times \mathbf{L}_V \to V_S;$$

$$g_A: in(V_S) \times out(V_S) \rightarrow A_S^+ \cup A_S^-, A_S^+ \cap A_S^- \neq \emptyset;$$

$$g_{v}: A_{s} \to X_{s};$$

$$g_R^+: A_S^+ \times V_S \to R_S^+;$$

$$g_R^-: V_S \times A_S^- \times \to R_S^-;$$

$$g_F: R_G \to F_S$$
.

Перечисленные отображения при формировании G-сети должны быть применены именно в том порядке, в каком они указаны.

Базируясь на ранее проведенных рассуждениях, можно утверждать, что G-сеть S_{g} как схема программы вычислений заданной цели анализа есть гомоморфный образ \mathbf{p} -грамматики G_{p} и полного и минимального множества слов вывода \mathbf{L}_{v} .

Это означает, что синтезировав G-сеть S_G по известной G-модели M_G и заданной цели анализа, можно получить схему (операторное описание) программы МС СлО.

5. Программа мониторинга состояний сложного объекта как аналитико-имитационная модель его поведения

Синтезировав вышеописанным способом модель программы МС СлО в виде G-сети, необходимо для получения заданных значений параметров цели анализа/мониторинга организовать вычисления по этой программе — на основе поступающей ИИ (АА ИИ).

Содержательно полученная модель вычислений есть не что иное, как *аналитико-имитационная модель* функционирования физического СлО, вычисляющая параметры его состояния (технического состояния), являясь при этом его цифровым двойником.

Для конструктивного соотнесения объектов-оригиналов и моделей в 2011 г. профессором Мичиганского университета Майклом Гривсом был введен термин цифровой двойник (ЦД) изделия (объекта), под которым понимается система, состоящая из цифровой модели (ЦМ) изделия (объекта), а также двусторонних информационных связей с изделием (объектом) и/или его составными частями [21].

Наличие постоянных двухсторонних информационных связей между объектоморигиналом (в нашем случае физическим СлО) и его моделью (в общем случае,

моделями, полимодельными комплексами) позволяет в динамике оценивать степень адекватности ЦМ.

Одним из общесистемных подходов к конструированию ЦМ и, соответственно, ЦД, является задача обоснования достаточного и адекватного описания оценивания состояний СлО и его ЦМ на основе принципов построения топологического пространства параметров состояния – технического состояния (ТС) рассматриваемого СлО и состояния ЦМ – и их инвариантности с использованием МПЗ этого СлО. Основой построения такого пространства явилось понятие «топологических комплексов», введенных академиком А.Н. Колмогоровым еще в 1953 г. [22].

Если говорить о системе поддержи принятии решений для решения задач мониторинга и проактивного управления СлО, речь должна идти о моделях оценивания и манипуляции состояниями (TC), например, для выбора оптимального (сатисфакционного) управления для достижения этим объектом управления (ОУ) заданной цели.

Такое описание выходит за рамки данной статьи, чему может быть посвящено отдельное исследование.

Заключение

Подводя итог сказанному выше, можно отметить, что изложенная в данной статье технология синтеза АС МС СлО, ориентированная на МПЗ в виде G-моделей и схемы программы вычислений целевых параметров состояния на основе G-сетей как комплекса аналитико-имитационных моделей СлО, позволяет обеспечить сквозное моделирование на всех этапах применения названных конструкций за счет единого комплекса максимально декларативных моделей и комплексно реализовать процедуры МС СлО в ходе выполнения следующих этапов:

- организационный этап: подбор, назначение и организация взаимодействия группы экспертов для заданной предметной области и группы специалистов по знаниям:
- извлечение знаний у экспертов специалистов в рассматриваемой конкретной предметной области, их систематизация, реализация процедур обучения используемых моделей;
- автоматическая генерация программы вычислений для заданной цели мониторинга/анализа;
- непосредственно организация вычислений по сгенерированной потоковой программе с выдачей/доопределением целевых параметров мониторинга.

Поддержка исследований

Исследования проводились за счет госбюджетной НИР FFZF-2025-0020.

Литература

- 1. **Симчера Я.В.** Мониторинг // Большая российская энциклопедия. Том 21. Москва, 2012, с. 24-25.
- 2. **Охтилев М.Ю., Соколов Б.В., Юсупов Р.М.** Методология и технологии автоматизации и интеллектуализации проактивного управления сложными объектами. М.: Наука, 2025. 610 с. (принято к опубликованию).
- 3. **Черняк Л.Т.** От адаптивной инфраструктуры к адаптивному предприятию // Открытые системы. 2003. № 10. С. 32-39.
- 4. Новиков Д.А. Кибернетика 2.0. //Проблемы управления. № 1. 2016. С. 73-81.
- 5. **Новиков** Д.А. Вокруг искусственного интеллекта складывается очень тревожная структура знаний и компетенций [https://new.ras.ru/mir-nauky/news/vokrug-

- iskusstvennogo-intellekta-skladyvaetsya-ochen-trevozhnaya-struktura-znaniy-i-kompetentsiy-aka/]. Дата обращения 16.07.2022.
- 6. **Охтилев М.Ю.** Системы искусственного интеллекта и их применение в автоматизированных системах мониторинга состояния сложных организационно-технических объектов. СПб.: ГУАП, 2018.— 261с.
- 7. **Харалик Р.М.** Структурное распознавание образов, гомоморфизмы и размещения //Кибернетичекий сборник. Новая серия / Сборник переводов под ред. О.Б. Лупанова. Вып. 19. М.: Мир, 1983. С. 170-199.
- 8. **Тыугу Э.Х.** Концептуальное программирование. М.: Наука, 1984, 255 с. (Проблемы искусственного интеллекта).
- 9. **Охтилев М.Ю., Соколов Б.В., Юсупов Р.М.** Интеллектуальные технологии мониторинга и управления структурной динамикой сложных технических объектов. М.: Наука, 2006. 410 с.
- 10. **Гаврилова Т.А.** Инженерия знаний. Модели и методы: учебник / Т. А. Гаврилова, Д. В. Кудрявцев, Д. И. Муромцев. Санкт-Петербург: Лань, 2016. 323 с.
- 11. **Глушков В.М.** Теория автоматов и формальные преобразования микропрограмм // Кибернетика. 1965. № 5. С. 1-9.
- 12. **Ершов А.П.** Современное состояние теории схем программ // Проблемы кибернетики: Сб. статей. Вып. 27. М.: Наука, 1973. С. 87-110.
- 13. **Котов В.Е.** Теория параллельного программирования: прикладные аспекты //Кибернетика. -1974. № 1. С. 1-16.
- 14. **Криницкий Н.А.** Равносильные преобразования алгоритмов и программирование. М.: Сов. радио, 1970. 304 с.
- 15. **Ляпунов А.А.** О логических схемах программ // Проблемы кибернетики: Сб. статей. Вып. 1. М.: Физматгиз, 1958. С. 46-74.
- 16. **Марков А.А., Нагорный Н.М.** Теория алгорифмов. М.: Наука, 1984. 432 с.
- 17. **Трахтенброт Б.А.** Алгоритмы и вычислительные автоматы. М.: Сов. радио, 1974. 200 с.
- 18. **Янов Ю.И.** О логических схемах алгоритмов //Проблемы кибернетики: Сб. статей. Вып. 1. М.: Физматгиз, 1958. С. 75-127.
- 19. **Тыугу Э.Х.** Вычислительные фреймы и структурный синтез программ //Известия АН СССР. Техническая кибернетика. 1982. № 6. С. 176-182.
- 20. **Тыугу** Э.**Х., Харф М.Я.** Алгоритмы структурного синтеза программ // Программирование. 1980. № 4. С. 3-13.
- 21. **Grieves M.** Digital Twin: Manufacturing Excellence through Virtual Factory Replication; White Paper; Michael Grieves, LLC, 2014.
- 22. **Колмогоров А.Н.** О понятии алгоритма //Успехи математических наук. Т. VIII. Вып. 4 (56). 1953. С. 175-176.