УДК 666.1.03

ОПТИМИЗАЦИЯ ПРОИЗВОДСТВА СТЕКЛОТАРЫ НА ОСНОВЕ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

А.М. Алибаев, Р.Ф. Маликов (Уфа)

Введение

В Республике Башкортостан большое количество стекольных заводов. Для данного исследования был выбран завод по производству стеклотары, который находится в городе Уфа-ООО «Русджам Стеклотара холдинг».

Стекольная промышленность играет ключевую роль в обеспечении сырьем других отраслей, что требует непрерывной оптимизации процессов, включая подготовку шихты, стекловарение и контроль качества. Автоматизация технологических этапов позволяет минимизировать человеческий фактор, повысить точность дозирования и снизить энергозатраты [1, 2].

Постановка задачи

Целью работы является внедрение цифровых двойников для моделирования процессов и модернизация оборудования для прогнозирования качества шихты, а также управлением подготовкой сырьевых компонентов [3-6].

В процессе выполнения работы были выявлены недостатки в технологических процессах, требующие модернизации:

- мониторинг уровня материала в рабочих бункерах;
- контроль влажности и температуры шихты;
- необходимость создания имитационной модели для демонстрации работы сложных систем и проведения имитационных экспериментов без ущерба производства.

Успешное выполнение данных целей приводит к решению оптимизации производственных процессов, а именно:

- использование имитационных моделей технологических процессов для определения целесообразности модернизаций;
 - возможность более точного отслеживания сырьевых запасов;
 - обеспечение однородности шихты;
 - контроль за соблюдением необходимых параметров шихты.

Экономический и технологический эффект оптимизации и внедрения системы может обеспечивать[7]:

- $_{-}$ снижение брака на 15-20% за счет точного контроля влажности, температуры и дозирования;
 - оптимизацию логистики сырья через прогнозирование запасов;
- воссоздание технологических процессов производства для выявления закономерностей в работе и выработка рекомендаций по оптимизации производственных процессов.

На рис.1 представлены технологические этапы производства стеклотары.

Материалы и методы

Для достижения поставленных целей был применен метод имитационного моделирования. Выбор конкретного программного обеспечения обусловлен многоуровневой структурой решаемых задач.

Для моделирования дискретно-событийных процессов логистики сырья (транспортировка компонентов конвейерами, работа бункеров, дробилок, смесителей) была выбрана среда AnyLogic8.9. Ее выбор обоснован факторами, изложенными ниже.

Мультипарадигмальность. AnyLogic позволяет совмещать в одной модели

дискретно-событийное, агентное и системно-динамическое моделирование. Это критически важно для комплексного отражения технологического процесса, включающего как поток материалов (DES), так и поведение оборудования (агенты) и параметры состояния (влажность, температура).

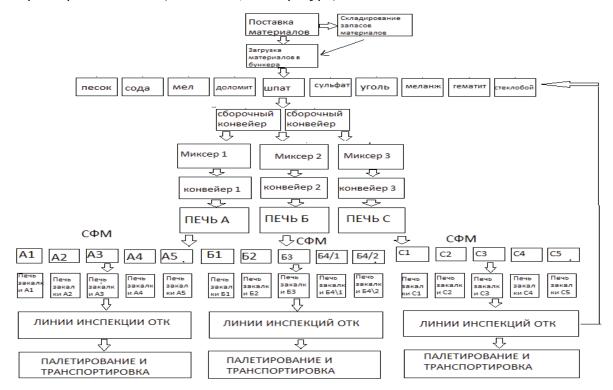


Рис. 1. Технологические этапы производства стеклотары

Визуальное конструирование и богатые библиотеки. Наличие готовых библиотеков элементов (конвейеры, лифты, ресурсные пулы) значительно ускорило процесс создания и визуализации модели конвейерной линии участка шихты, что наглядно продемонстрировано на рис. 3 и 4.

Гибкость и интеграция. Использование Java в качестве базового языка позволяет реализовывать сложную логику управления процессом, интегрироваться с внешними базами данных для калибровки модели на основе реальных производственных данных и экспортировать результаты для дальнейшего анализа.

Для детального анализа и оптимизации работы отдельных подсистем, рассматриваемых как классические системы массового обслуживания (СМО), таких как анализ загруженности дробилок, смесителей или формирования очередей стеклобоя на конвейерах, применялся специализированный продукт Alina GPSS Studio.

Высокая эффективность для задач СМО. Язык GPSS был создан специально для моделирования очередей и процессов обслуживания. Его строгий синтаксис и блочная структура минимизируют ошибки и позволяют быстро создавать компактные, эффективные и легко верифицируемые модели-прототипы ключевых узлов системы.

Эталонирование и верификация. Модели, созданные в Alina GPSS Studio, благодаря своей простоте и прозрачности, служат эталоном для проверки корректности работы соответствующих модулей в комплексной модели AnyLogic. Это позволяет обеспечить высокую достоверность результатов имитации.

Автоматический сбор статистики. Система автоматически предоставляет исчерпывающую статистику по времени ожидания в очередях, загрузке приборов и другим ключевым метрикам, что необходимо для точечного анализа "узких мест" и обоснования предлагаемых оптимизаций.

Комбинированное использование AnyLogic для создания комплексной мультипарадигмальной модели и Alina GPSS Studio для углубленного анализа и верификации отдельных подсистем позволило совместить макро- и микроподход, обеспечив высокую надежность и обоснованность выводов исследования.

Разработка имитационной модели участка шихты

Для разработки модели была выбрана среда моделирования Anylogic.

Графическая среда разработки моделей Anylogicуменьшает время создания моделей и упрощает данный процесс с помощью встроенной библиотеки.

Технологические особенности подготовки стекольной шихты.

Процесс включает дозирование компонентов (песок, сода, стеклобой и т.д.), смешивание с увлажнением, транспортировку.

Использование возвратного стеклобоя способствует безотходности, однако требует строгого соблюдения рецептуры для предотвращения расслоения шихты [7-9].

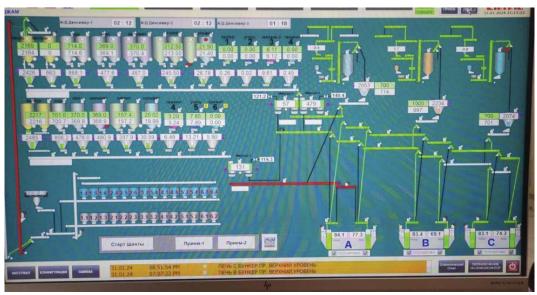


Рис. 2. Общая схема участка подготовки материала

В состав оборудования входят: бункера песка; бункера соды; бункера мела; бункера доломита; бункера шпата; бункера сульфата; бункера угля; бункера меланжа; бункера гематита; бункера стеклобоя А, Б и С печей; сборочные конвейеры; транспортировочные конвейеры; вибраторы; дробилки; миксеры 1, 2 и 3; печи А, Б, С; загрузочные конвейеры и элеваторы.

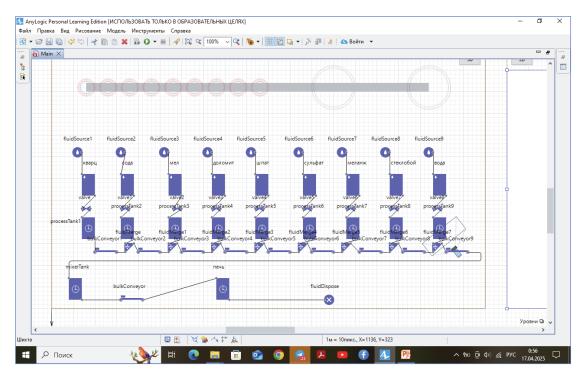


Рис. 3. Схема конвейерной линии участка шихты в Anylogic

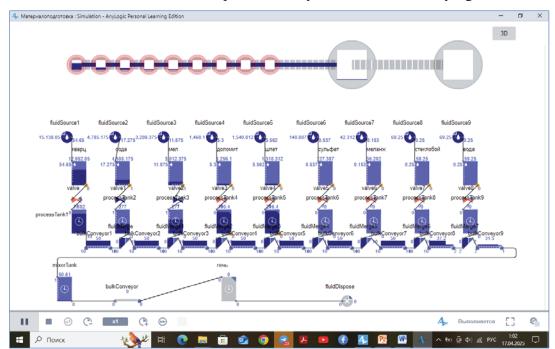


Рис. 4. Симуляция работы конвейерной линии участка шихты в Anylogic

Результаты имитационного исследования

Основным результатом исследования стала разработанная имитационная модель одной сборочной линии подготовки материала на участке шихты.

Успешное выполнение целей привело к решению недостатки в технологических процессах, а именно:

- возможность более точного отслеживания сырьевых запасов;
- контроль за соблюдением необходимых параметров шихты.

Экономический и технологический эффект оптимизации и внедрения системы может обеспечивать:

- оптимизацию логистики сырья через прогнозирование запасов;
- воссоздание технологических процессов на основе проведенных имитационных экспериментов были получены количественные оценки, подтверждающие потенциальную эффективность предлагаемых решений:
 - снижение простоев ключевого оборудования (дробилки, смесители) на 15-20% за счет оптимизации логистических потоков и графика подачи сырья, выявленного в модели;
 - сокращение времени цикла подготовки партии шихты на 8-12% благодаря перераспределению нагрузки между параллельными технологическими линиями;
 - повышение прогнозной точности планирования запасов сырья на складе на 25-30% за счет использования модели для анализа различных сценариев производства.

Разработанная модель в AnyLogic служит основой для создания цифрового двойника участка подготовки шихты, позволяющего не только проводить эксперименты, но и в режиме, близком к реальному времени, отслеживать состояние процесса и оперативно реагировать на отклонения.

Заключение

Проведенное исследование подтвердило высокую эффективность применения методов имитационного моделирования для задач оптимизации в стекольной промышленности. Комплексный подход, сочетающий использование мощной мультипарадигмальной среды AnyLogic для построения целостной модели и специализированного инструмента Alina GPSS Studio для верификации и углубленного анализа подсистем, позволил получить достоверные и обоснованные результаты.

Реализованная имитационная модель не только демонстрирует значительный потенциал для повышения эффективности и снижения издержек на конкретном производственном участке за счет оптимизации логистики, прогнозирования запасов и контроля параметров, но и является готовым инструментом для принятия управленческих решений и основой для создания полноценного цифрового двойника предприятия.

Перспективы дальнейших исследований видятся в расширении модели на другие технологические переделы (стекловарение, формование) и интеграции ее с системами IoT-мониторинга и APS (Advanced Planningand Scheduling) для создания единой цифровой экосистемы предприятия.

Литература

- 1. **Алибаев А.М., Маликов Р.Ф.** Проблемы оптимизации производства стеклотары. Вестник Башкирского государственного педагогического университета им. М. Акмуллы. Серия: Естественные науки. 2024. № 1. С. 14-24.
- 2. Автоматизация проектирования систем управления. /Под общ. ред. В.А. Трапезникова М.: Статистика, 1979. 205с.
- 3. **Андерсон А.Р., Мартынов Э.З.** Управление подготовкой производства на промышленных предприятиях и в объединениях. Приборы, средства автоматизации и системы управления. ТС-3. Автоматизированные системы управления. Вып. 4, М., 1981. 52с.
- 4. **Тычинский А.В.** Управление инновационной деятельностью компаний: современные подходы, алгоритмы, опыт [Текст] / А.В. Тычинский. Таганрог: Издво ТТИ ЮФУ, 2009. 189 с.
- 5. **Возьницкий М.** Об алгоритмах управления цехом подготовки сырьевых компонентов на заводах технического стекла. М.: Пер. ВЦПй A-7400, 1977. 23с.

- 6. **Галушкевич Р.М., Кучеров С.И., Петров Е.Л.** Управление дозировочносмесительным отделением стекольного завода с использованием средств вычислительной техники. В кн.: Автоматизация химических производств, вып. 9, Киев, Наукова думка, 1973. С. 7-14.
- 7. Методические указания по разработке норм расхода основных сырьевых материалов в производстве стекла и стеклоизделий. /Главстекло СССР, рег. номер 21-33-77. М., 1977г. 194 с.
- 8. Разработка технических требований к оборудованию и математического обеспечения АСУТП производства шихты на Саратовском заводе технического стекла / ГИС. Л., 1980. 255с.
- 9. Технология стекла: справочные материалы / Российский хим.-технологический ун-т им. Д. И. Менделеева [и др.]; [Абрашнев А. С. и др.]; под ред. П. Д. Саркисова [и др.]. М.: [Б. и.], 2012. 647 с.