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Аннотация. В статье рассмотрены вопросы повышения энергетической эффективности роботизированных 
технологических процессов в судостроении. Предложена методика синтеза имитационной модели 
энергопотребления промышленного робота за счет разработки нейросетевых модулей систем управления 
электрическими приводами.  
В качестве объекта исследования выбран универсальный шестиосевой промышленный робот-манипулятор 
KUKA KR10 R1100 sixx, применяемый при решении широкого круга производственных задач.  
Данные для обучения нейросетевых модулей получены в результате натурного эксперимента, в ходе которого 
осуществлялся мониторинг значений угловых скоростей и мгновенной мощности при повороте осей 
промышленного робота. На основании полученных данных рассчитан ряд дополнительных переменных, таких 
как угол положения, угловое ускорение и энергопотребление. Итоговая база данных, включающая 
экспериментальные и расчетные данные использована в качестве обучающей выборки для искусственных 
нейронных сетей типа MLP (многослойный перцептрон), лежащих в основе нейросетевых модулей 
прогнозирования угловой скорости осей и мгновенной мощности. Обучение нейронных сетей реализовано с 
использованием алгоритма Левенберга-Марквардта. 
Высокая степень соответствия сформированных функциональных зависимостей реальным переходным 
процессам подтверждена значениями рассчитанных коэффициентов детерминации, а адекватность 
синтезированной имитационной модели подтверждена малой погрешностью расчетных данных угла 
положения и энергопотребления на поворот осей. 
Полученные результаты демонстрируют возможность использования синтезированной имитационной модели 
для расчета энергозатрат и разработки алгоритмов оптимизации роботизированных процессов при 
планировании траекторий перемещения конечного эффектора промышленного робота, а также при разработке 
цифровых двойников роботизированных ячеек для отслеживания переменных состояния технологических 
процессов в реальном времени. 
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Abstract. The article considers the issues of increasing the energy efficiency of robotic technological processes in 
shipbuilding. A method for synthesizing a simulation model of energy consumption of an industrial robot by developing 
special neural network modules for electric drive control systems is proposed. 
The object of study was the universal six-axis industrial robot manipulator KUKA KR10 R1100 sixx, used to solve a 
wide range of production problems. 
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The data for training the neural network modules were obtained as a result of a full-scale experiment, during which the 
values of angular velocities and instantaneous power were monitored when turning the axes of the industrial robot. 
Based on the obtained data, a number of additional variables were calculated, such as position angle, angular 
acceleration and energy consumption. The final database, including experimental and calculated data, was used as a 
training set for artificial neural networks of the MLP (multilayer perceptron) type, which underlie the neural network 
modules for predicting the angular velocity of the axes and instantaneous power. Neural networks were trained using 
the Levenberg-Marquardt algorithm. The high degree of correspondence of the generated functional dependencies to 
real transient processes is confirmed by the values of the calculated coefficients of determination, and the adequacy 
of the synthesized simulation model is confirmed by the small error of the calculated data of the position angle and 
energy consumption for the rotation of the axes. The obtained results demonstrate the possibility of using the 
synthesized simulation model to calculate energy costs and develop algorithms for optimizing robotic processes when 
planning the trajectories of the final effector of an industrial robot, as well as when developing digital twins of robotic 
cells to track the state variables of technological processes in real time. 
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Введение 

Судостроительная отрасль Российской 
Федерации на сегодняшний день представляет 
собой особо важную и стратегически значимую 
составляющую часть экономики, способствующую 
развитию инфраструктуры и обороноспособности 
страны. Несмотря на проблемы, связанные с 
санкционным давлением и необходимостью 
импортозамещения, отечественное судостроение 
делает значительные шаги в сторону модернизации 
и повышения своей конкурентоспособности на 
мировом рынке. 

Одним из приоритетных направлений повышения 
эффективности судостроительных предприятий, 
согласно источникам [1, 2], является автоматизация 
и роботизация производственных процессов.  

Активное использование средств промышленной 
робототехники на производстве приводит к 
появлению новых технологических процессов и, как 
результат, улучшению качества узлов и агрегатов как 
военных кораблей, так и гражданских судов. Так, за 
последнее время в процессы судостроения были 
интегрированы роботизированные технологические 
процессы электро-дуговой сварки [3, 4], лазерной 
сварки [5, 6], коллаборативной сборки [7, 8] и 
роботизированной покраски [9, 10]. 

Поскольку за последние годы исследования в 
данном научном направлении демонстрируют 
значительный эффект и высокую применимость на 
производстве, то представляется актуальной задача 
разработки новых методов, моделей и алгоритмов 
повышения эффективности функционирования 
автоматизированных систем, в частности, 
технологических комплексов на основе 
промышленных роботов [1, 2]. 

Так как одну из главных статей расходов на 
обеспечение работы роботизированных систем 
составляет электрическая энергия [11], то в качестве 
основного критерия оптимизации следует 
рассмотреть минимизацию энергетических затрат на 
исполнение роботизированного технологического 
процесса [12]. При этом важно провести 
оптимизационные мероприятия так, чтобы не 

затронуть (не ухудшить) иные интегральные 
показатели качества роботизированного процесса. 

Зачастую для работы оптимизационных решений 
роботизированных технологических процессов 
необходимы имитационные модели или база знаний 
для расчета оптимальных параметров системы. 
Поскольку значительная доля энергопотребления 
расходуется на перемещение манипуляционных 
механизмов, т.е. на работу систем управления 
электроприводами (СУЭП) промышленного робота 
(ПР), то основной акцент в таких моделях должен 
быть сделан именно на СУЭП. 

Традиционно для моделирования СУЭП ПР 
используется численное интегрирование систем 
дифференциальных уравнений, однако 
использование данного метода возможно при 
условии наличия всех технических параметров 
объекта [13], что не всегда возможно на практике. 
Таким образом, существует проблема 
идентификации параметров «закрытых» 
роботизированных и мехатронных систем, 
используемых на промышленном производстве. В 
связи с чем, возникает необходимость в разработке 
новых методов, моделей и алгоритмов 
идентификации параметров ПР (в т.ч. СУЭП ПР). 

Решение подобного рода задач описано в 
работах [14, 15, 16]. При этом, согласно 
исследованию [17], наиболее часто авторы 
используют классические математические 
алгоритмы, а также эвристические и  
метаэвристические алгоритмы для решения задач 
идентификации и оптимизации, требующие полного 
набора технических данных роботизированных 
устройств.  

В данной работе для решения задачи 
идентификации параметров СУЭП ПР предлагается 
использовать системы внешней сенсорики [18], а 
параметрический синтез модели реализовать с 
помощью интеллектуальных инструментов, 
например, математического аппарата нейронных 
сетей [19, 20]. Преимуществом такого решения будет 
являться высокая скорость синтеза имитационной 
модели энергопотребления промышленного робота 
при низких затратах на синтез в условиях частичной 
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нехватки или полного отсутствия данных о 
технических характеристиках ПР. 

Таким образом, целью данного исследования 
является разработка методики синтеза 
нейросетевых имитационных моделей (НИМ) систем 
управления электроприводом (СУЭП) 
промышленного робота (ПР). 

Поставленная цель может быть достигнута за 
счет решения следующего ряда задач: 

- Разработка общей структуры расчета 
энергопотребления промышленного робота;  

- Проведение эксперимента по измерению 
угловых и энергетических характеристик СУЭП при 
повороте каждой оси ПР на фиксированный угол; 

- Формирование обучающих выборок для 
нейронных сетей, где входными данными являются 
угол поворота, угловая скорость и угловое ускорение, 
а выходными – мгновенная мощность и 
энергопотребление; 

- Обучение и проверка адекватности 
нейросетевых имитационных моделей СУЭП ПР; 

- Интеграция синтезированных нейросетевых 
имитационных моделей в общую структуру 
процедуры расчета энергопотребления ПР. 

1. Методы  

Эксперимент реализован с использованием 
шестиосевого промышленного робота-манипулятора 
средней грузоподъемности KUKA KR10 R1100 sixx, 
который часто используется в задачах 
позиционирования деталей при сборке и сварке [20]. 

Измерение угловой скорости, мгновенной 
мощности и времени реализовано с помощью 
авторского устройства - системы мониторинга 
динамических параметров и энергопотребления, 
представленной в работе [21].  

Управляющая программа для проведения 
измерений составлена на языке программирования 
промышленного робота - Kuka Robot Language (KRL). 

Согласно управляющей программе и сценарию 
эксперимента осуществляется поочередный поворот 
каждой оси ПР на целевой угол (φз) с регистрацией 
мгновенных значений угловой скорости поворота (ω) 
и мощности (P) потребляемой СУЭП. Измерения 
проведены многократно, при этом для дальнейших 
расчетов и обучения нейросетевых моделей 
использованы усредненные значения по 
результатам серии экспериментов. 

Значения угла поворота и углового ускорения 
получены в результате интегрирования и 
дифференцирования, соответственно. Данные о 
динамике процессов энергопотребления рассчитаны 
согласно формуле: 

0

t
E P dt=     (1) 

Обучение нейросетевых модулей происходило с 
помощью алгоритма Левенберга-Марквардта. 
Данный алгоритм широко используется в задачах 
прогнозирования, а также показывает высокую 
результативность при обучении сетей типа 
многослойный персептрон [22, 23]. Проектируемая 
сеть содержит 1 скрытый слой, состоящий из 10 
нейронов (Рисунок 1), такое количество позволяет 
удерживать баланс между временем расчета 
нейронной сети и качеством установленных 
функциональных зависимостей.  

 
Рис. 1 – Структура нейронной сети 

Оценка качества модели проведена путем 
сравнения ее результатов и обучающих данных по 
коэффициенту детерминации. 

2 1 ESSR
TSS

= − , (2) 

где ESS – прогнозируемая сумма квадратов 
отклонений. TSS – общая сумма квадратов 
отклонений. 

Также оценка проводилась с помощью среднего 
значения относительной погрешности результатов 
моделирования по отношению к экспериментальным 
данным. 

В качестве программного обеспечения для 
обучения нейронных сетей использована среда 
разработки MATLAB (пакет Deep learning toolbox). 
Имитационная модель энергопотребления ПР 
реализована в среде MATLAB/Simscape Multibody. 

2. Результаты 

Целесообразность разработки и автоматизации 
методики синтеза нейросетевой имитационной 
модели энергопотребления ПР обусловлена  
спецификой роботизированных процессов в 
судостроении – перемещение тяжелых грузов и 
оснащающих инструментов, траекторные 
перемещения как правило имеют большую длину, а 
используемые промышленные роботы обладают 
высокими показателями грузоподъемности и, 
следовательно, собственной массой. Таким образом, 
ключевыми этапами разрабатываемой методики 
синтеза являются: 

1) формирование обучающих выборок для 
нейронных сетей; 

2) обучение нейросетевых модулей, 
обеспечивающих расчет желаемых параметров 
СУЭП; 

3) анализ качества функционирования 
синтезированных нейросетевых имитационных 
моделей СУЭП ПР при расчете энергопотребления. 

Общая схема расчета энергопотребления 
промышленного робота представлена на рисунке 2. 
Согласно приведенной схеме, моделирование 
механической части промышленного робота 
происходит в укрупненном блоке 1. Формирование 
блока 1 произведено с учетом параметров 
кинематической схемы и массо-габаритных 
показателей звеньев манипулятора, а также 
ограничений по скорости и ускорению (линейных и 
угловых) [24]. 

В блоке 2 представлен ряд проектируемых НИМ 
СУЭП, отвечающих за поворот осей модели ПР. 

Для успешного синтеза НИМ необходима 
репрезентативная обучающая выборка, которая 
может быть получена в результате натурного 
эксперимента. Так, для каждой оси реального 
промышленного робота проведен эксперимент, в 
ходе которого осуществлялся мониторинг угловых 
скоростей перемещения осей и энергетических 
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затрат на это перемещение с помощью датчиков 
гироскопа, акселерометра, а также ваттметра [21].  

Эксперимент произведен с использованием 
следующих параметров: 

- шаг изменения угла поворота каждой оси ПР  
Δφ = 30°; 

- диапазоны измеряемых углов поворота осей 
соответствуют допустимым значениям, указанных в 

инструкции по эксплуатации промышленного робота 
[24]; 

- ограничения угловой скорости и углового 
ускорения осей составляют 50% от номинальных 
значений [24]. 

В результате сформирована база данных, 
состоящая из таблицы следующего вида (таблица 1): 

 
Рис. 2 – Общая схема расчета энергопотребления промышленного робота-манипулятора  

Таблица 1  
Результаты эксперимента для оси А1 

№ 
оси 

№ 
изм. t   φз, ° ε, °/с2 ω, °/с φ, ° P, Вт E, 

Вт·с 
A1 1 0  30 0 0 0 0 0 
A1 2 0,02  30 0,02 0.05 0.02 268 5 
… … …  … … … … … … 
A1 20 0.44  30 0,03 2 28,9 256 178 
A1 21 0.46  30 0 0 30 250 184 
… … …  … … … … … … 
A1 583 0  330 0 0 0 0 0 
A1 584 0,02  330 0,04 0.07 0.03 265 11 
… … …  … … … … … … 
A1 686 2.37  330 0,02 2 333.5 271 1128 
A1 687 2.39  330 0 0 334 252 1134 

Представленным в таблице 1 обозначениям 
соответствуют: 

φз, ° – угол задания поворота оси; 
t, с – время поворота оси на целевой угол; 
ε, °/с2 – угловое ускорение оси; 
ω, °/с – угловая скорость оси; 

φ, ° – угол положения оси (фактический); 
P, Вт – мгновенная мощность СУЭП оси; 
E, Вт∙с – энергопотребление СУЭП оси.  
Полученные в результате эксперимента данные 

(таблица 1) использованы в качестве обучающей 
выборки для нейросетевых модулей: 

- прогнозирования угловой скорости, где 
входными данными являются целевой угол и угол 
положения, а выходной величиной – угловая 
скорость; 

- прогнозирования мгновенной мощности, где 
входными данными являются целевой угол, угловая 
скорость, угловое ускорение, энергопотребление, а 
также мгновенная мощность (на предыдущем шаге 
интегрирования). Выходной величиной является 
мгновенная мощность. 

На рисунке 3 в качестве примера представлены 
результаты формирования нейросетевого модуля 
прогнозирования угловой скорости для оси A2.
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Рис. 3 – Результаты обучения нейронной сети, 

лежащей в основе модуля прогнозирования угловой 
скорости СУЭП оси А2 промышленного робота. 

Как показано на рисунке 3, массив обучающей 
выборки для нейронной сети состоит из 687x3 
элементов, в процессе обучения использовано 
случайное распределение данных, а само обучение 
реализовано с помощью алгоритма Левенберга-
Марквардта. 

Общая структура нейросетевой имитационной 
модели системы управления электрическим 
приводом оси промышленного робота представлена 
на рисунке 4. 
 
 
 
 
 
 
 
 
 
 
 

 
Рис. 4 – НИМ СУЭП ПР, имитирующая изменение угловой скорости оси и затраты энергии 

Представленная модель включает два 
нейросетевых модуля имитирующих 
функциональные зависимости ω(t) и P(t). Значения 
углового ускорения (ε) получены согласно формуле  

( )( ) d tt
dt


 = , 

а значения энергопотребления (E) - согласно 
формуле (1). С целью предотвращения влияния 
погрешностей при расчете значений 
энергопотребления на выходе нейросетевого модуля 
прогнозирования мгновенной мощности установлен 
переключатель останавливающий расчет при 
достижении угловой скоростью нулевого значения, 
т.е. в момент окончания поворота оси. 

Для оценки воспроизведения дисперсии 
зависимой переменной синтезированными 
нейросетевыми моделями проведен анализ 
коэффициентов детерминации (R2) (таблица 2) по 
формуле (2). 

Таблица 2  
Результаты оценки R2 НИМ СУЭП осей ПР 

Ось А1 А2 А3 А4 А5 А6 

R2 (по ω) 0.92 0.96 0.99 0.99 0.99 0.99 

Значения R2 для каждой модели составляют 
более 0.85, что говорит о способности объяснить 
большую часть изменчивости зависимой 
переменной, обеспечивая высокую точность 
предсказания [25]. 

С целью анализа качества функционирования 
разработанных нейросетевых моделей 
сформированы графики изменения угловой 
скорости, угла и энергопотребления (рисунки 5–7). 
На рисунке 7 также приведены относительные 
погрешности (δ) результатов моделирования 
энергопотребления. 

Как видно из графиков, модели в полной мере 
имитируют зависимости, воспроизводящие динамику 
исследуемых величин. Среднее значение 
относительной погрешности результата имитации 
переходных процессов по углу положения составила 
δφ ≈ 0.2814 %, а по энергопотреблению δE ≈ 2.351%. 

Таким образом, согласно поставленной цели, 
предложенная модель обеспечивает расчет 
суммарного значения энергопотребления на 
реализацию траекторного перемещения, а при 
подключении алгоритмов решения прямой задачи 
кинематики позволит оператору роботизированного 
комплекса не только получить точные значения 
энергетических затрат на реализацию управляющей 
программы, но и, например, решить задачу 
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минимизации энергопотребления на исполнение 
технологического процесса. 

Представленная процедура синтеза 
имитационной модели может быть адаптирована для 
промышленных роботов-манипуляторов с 

различными показателями грузоподъемности и 
радиуса рабочей сферы за счет выбора: данных для 
обучения нейросетевых модулей; структур 
нейронных сетей; алгоритмов обучения нейронных 
сетей, а также необходимых метрик качества. 

 
Рис. 5 – Графики переходных процессов по угловой скорости каждой оси ПР 

 
Рис. 6 – Графики переходных процессов по положению каждой оси ПР φ 

 
Рис. 7 – Графики переходных процессов по энергопотреблению на поворот каждой оси ПР Е(t) 
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Отличительной особенностью, разработанной 
НИМ энергопотребления, является высокая скорость 
синтеза при минимуме информации о технических 
характеристиках ПР. Как показано в работе, для 
синтеза модели достаточно кинематической цепи ПР 
и данных о параметрах звеньев манипулятора (масса 
и габаритные размеры). Такая особенность 
разработанной модели представляется 
востребованной в роботизированных 
технологических процессах судостроительной 
отрасли, поскольку ввиду широкой номенклатуры 
изготавливаемой продукции (например, различных 
узлов корпуса судна) требуется частая 
перенастройка имитационной модели под 
изменившиеся условия технологического процесса. 

Заключение 

Таким образом, в ходе проведенных 
исследований была представлена методика синтеза 
нейросетевых имитационных моделей СУЭП 
промышленного робота KUKA KR10 R1000 sixx, 
интегрированных в общую структуру расчета 
энергопотребления. 

Разработанная нейросетевая имитационная 
модель позволила обеспечить расчет значений 
угловой скорости и мгновенной мощности, на основе 
которых может быть определены ключевые 
переменные СУЭП, такие как угол положения, 
угловое ускорение и энергопотребление. 

Синтез НИМ осуществлен с использованием 
минимального набора технических данных 

промышленного робота (кинематической цепи и 
массо-габаритных параметров звеньев), в то время 
как основу модели составляют установленные 
нейросетевыми алгоритмами функциональные 
зависимости профилей угловой скорости (ω) и 
мгновенной мощности (P) от угла задания (φз) и ряда 
внутренних переменных системы. В представленном 
решении концепция «черного ящика» применима 
только к указанным нейросетевым блокам, но не к 
СУЭП в целом, поскольку существенная часть 
параметров может быть получена в результате 
математических расчетов. 

Оценка моделей прогноза угловой скорости по 
коэффициенту детерминации показала, что модели 
имитируют более 90% изменчивости зависимых 
переменных. А также статические результаты 
моделирования демонстрируют малую погрешность: 
δφ ≈ 0.2814 % по углу положения и δE ≈ 2.351% по 
энергопотреблению), что говорит о высокой точности 
прогноза данных. 

Представленное решение может быть применено 
для различных промышленных роботов в составе 
роботизированных технологических комплексов 
функционирующих на различных производствах, 
главным образом - в судостроении при оптимизации 
роботизированных процессов сборки и сварки узлов 
корпуса судна, а также в других отраслях, для 
которых характерно серийное изготовление 
продукции. 

Литература 

1. Афанасьева С. В., Черепанова Е. С. Судостроение: тенденции развития и новые технологии // Сборник 
тезисов по итогам межвузовской научно-практической конференции по результатам научно-
исследовательской и проектной работы студентов. – 2021. – с. 164. 

2. Novikov A. V. et al. State and prospects of industrial robotics in shipbuilding //Journal of Physics: Conference Series. 
– IOP Publishing, 2019.  

3. Никитин, В. А. Роботы для сварки судовых корпусных конструкций / В. А. Никитин // Судостроение. – 2014. – 
№ 2(813). – С. 59-62. 

4. Ku N. et al. Development of a mobile welding robot for double-hull structures in shipbuilding //Journal of marine 
science and technology. – 2010. С. 374-385. 

5. Бишоков Р. В. и др. Лазерные технологии для сварки в судостроении //Судостроение. – 2014. – №. 2. – С. 
55-58. 

6. Сухоруков С.И., Годяев А.И., Овсянников А.Р. Разработка структуры системы управления 
роботизированного комплекса трёхмерной печати металлических изделий // Ученые записки 
Комсомольского-на-Амуре государственного технического университета. – 2024. – № 3(75). – С. 103-111. 

7. Zacharaki N., Dimitropoulos N., Makris S. Challenges in human-robot collaborative assembly in shipbuilding and 
ship maintenance, repair and conversion (SMRC) industry //Procedia CIRP. – 2022. – С. 120-125. 

8. Xu Y. et al. Research on trajectory planning of sub-assembly and unit-assembly robot in shipbuilding industry 
//Advances in Mechanical Engineering. – 2022. 

9. Song, L., Sun, H., Xu, K., Shi, X., & Zhou, Y. (2022). Path planning under the hull bottom of painting robot based 
on heuristic multi-robot cooperation in ship manufacturing. Manufacturing Technology, 22(2), 218-230. 

10. Zeng, Q., Liu, X., Yang, Z., & Hu, X. (2021, October). Workspace analysis of spray painting robot with two working 
modes for large ship blocks in ship manufacturing. In Journal of Physics: Conference Series (Vol. 2050, No. 1, p. 
012018). IOP Publishing. 

11. Țîțu, Aurel Mihail, Vasile Gusan, Mihai Dragomir, Alina Bianca Pop, and Ștefan Țîțu. "Cost Calculation and 
Deployment Strategies for Collaborative Robots in Production Lines: An Innovative and Sustainable Perspective in 
Knowledge-Based Organizations" Sustainability. 2024 

12. Restrepo P. Automation: Theory, Evidence, and Outlook. Annual Review of Economics. 2023. № 16. 
13. Черный С. П., Савельев Д. О., Сбитнев Н. Р., Саяпина П. О. Особенности моделирования систем управления 

сложными объектами, требующими учёта геометрических параметров // Ученые записки Комсомольского-
на-Амуре государственного технического университета. – 2024. – № 1(73). – С. 4-10. 

14. Shuai Zhou, Dazhi Wang, Yongliang Ni, Keling Song, Yanming Li, Improved Particle Swarm Optimization for 
Parameter Identification of Permanent Magnet Synchronous Motor, Computers, Materials and Continua, 2024, Vol. 
79, Iss. 2, pp. 2187-2207 



Морские интеллектуальные технологии/Marine intellectual technologies    № 2 часть 1, 2025/ № 2 part 1, 2025 

324 
 

15. Danupon Kumpanya, Sattarpoom Thaiparnat, Deacha Puangdownreong, Parameter Identification of BLDC Motor 
Model Via Metaheuristic Optimization Techniques, Procedia Manufacturing, 2015, Vol. 4, pp. 322-327 

16. Антонов Н.В., Терехов В.А., Тюкин И.Ю. Адаптивное управление в технических системах Учебное пособие. 
— СПб.: Издательство Санкт-Петербургского университета, 2001. – 244 с. 

17. Vaisi, B. A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and 
beyond, Decision Analytics Journal. 2022. Vol. 2. 100031. 

18. Jin, Z., Liu, L., Gong, D., & Li, L. (2021). Target recognition of industrial robots using machine vision in 5G 
environment. Frontiers in Neurorobotics, 15. 

19. Seamans R., Raj M. AI, labor, productivity and the need for firm-level data. National Bureau of Economic Research. 
2018. № 2 

20. М. А. Горькавый, А. И. Горькавый, М. А. Мельниченко, Оптимизация роботизированного технологического 
процесса на базе нейросетевой имитационной модели энергопотребления // Известия высших учебных 
заведений. Электромеханика. – 2023. – C. 85-95. 

21. Горькавый М.А., Мельниченко М.А., Шушарин Н.С., Григорец Р.Д. Исследование процессов 
энергопотребления промышленного робота-манипулятора с помощью систем внешней сенсорики // 
Известия Тульского государственного университета. Технические науки. – 2024. – № 5. – С. 486-490. 

22. Bano, F., Serbaya, S. H., Rizwan, A., Shabaz, M., Hasan, F., & Khalifa, H. S. An artificial neural network and 
Levenberg-Marquardt training algorithm-based mathematical model for performance prediction // Applied 
Mathematics in Science and Engineering. – 2024 

23. Darshi, R., Bahreini, M. A., & Ebrahim, S. A. Prediction of short-term electricity consumption by artificial neural 
networks levenberg-marquardt algorithm in hormozgan province, Iran. In 2019 5th Iranian Conference on Signal 
Processing and Intelligent Systems (ICSPIS). – 2019. – pp. 1-4 

24. KUKA KR AGILUS sixx В вариантах исполнения W и C, Инструкция по эксплуатации, KUKA Roboter GmbH, 
2015. 

25. Chicco, Davide, Matthijs J. Warrens, and Giuseppe Jurman. "The coefficient of determination R-squared is more 
informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation." Peerj computer science 
7. 2021. 

References 

1. Afanas'eva S. V., Cherepanova E. S. Sudostroenie: tendencii razvitija i novye tehnologii [Shipbuilding: development 
trends and new technologies]. Sbornik tezisov po itogam mezhvuzovskoj nauchno-prakticheskoj konferencii po 
rezul'tatam nauchno-issledovatel'skoj i proektnoj raboty studentov. 2021. s. 164 (in Russian) 

2. Novikov A. V. et al. State and prospects of industrial robotics in shipbuilding. Journal of Physics: Conference Series. 
IOP Publishing, 2019. №. 5.  

3. Nikitin, V. A. Roboty dlja svarki sudovyh korpusnyh konstrukcij [Robots for welding ship hull structures]. V. A. Nikitin. 
Sudostroenie. 2014. s. 59-62 (in Russian) 

4. Ku N. Development of a mobile welding robot for double-hull structures in shipbuilding. Journal of marine science 
and technology. 2010. s. 374-385. 

5. Bishokov R. V. and etc. Lazernye tekhnologii dlya svarki v sudostroenii [Laser Welding Technologies in 
Shipbuilding]. Sudostroenie. 2014. №. 2. pp. 55-58. (in Russian) 

6. Suhorukov S.I., Godyaev A.I., Ovsyannikov A.R. Razrabotka struktury sistemy upravleniya robotizirovannogo 
kompleksa tryohmernoj pechati metallicheskih izdelij [Development of the structure of the control system of a robotic 
complex for three-dimensional printing of metal products]. Uchenye zapiski Komsomol'skogo-na-Amure 
gosudarstvennogo tekhnicheskogo universiteta. 2024. № 3(75). p. 103-111. (in Russian) 

7. Zacharaki N., Dimitropoulos N., Makris S. Challenges in human-robot collaborative assembly in shipbuilding and 
ship maintenance, repair and conversion (SMRC) industry. Procedia CIRP. 2022. s. 120-125 

8. Xu Y. Research on trajectory planning of sub-assembly and unit-assembly robot in shipbuilding industry. Advances 
in Mechanical Engineering. 2022. 

9. Song, L., Sun, H., Xu, K., Shi, X., & Zhou, Y. (2022). Path planning under the hull bottom of painting robot based 
on heuristic multi-robot cooperation in ship manufacturing. Manufacturing Technology, 22(2), 218-230. 

10. Zeng, Q., Liu, X., Yang, Z., & Hu, X. (2021, October). Workspace analysis of spray painting robot with two working 
modes for large ship blocks in ship manufacturing. In Journal of Physics: Conference Series (Vol. 2050, No. 1, p. 
012018). IOP Publishing. 

11. Țîțu, Aurel Mihail, Vasile Gusan, Mihai Dragomir, Alina Bianca Pop, and Ștefan Țîțu. 2024. "Cost Calculation and 
Deployment Strategies for Collaborative Robots in Production Lines: An Innovative and Sustainable Perspective in 
Knowledge-Based Organizations" Sustainability 16.  

12. Restrepo P. Automation: Theory, Evidence, and Outlook. Annual Review of Economics. 2023. № 16. 
13. Chernyj S. P., Savel'ev D. O., Sbitnev N. R., Sayapina P. O. Osobennosti modelirovaniya sistem upravleniya 

slozhnymi ob"ektami, trebuyushchimi uchyota geometricheskih parametrov [Features of modeling control systems 
for complex objects requiring consideration of geometric parameters]. Uchenye zapiski Komsomol'skogo-na-Amure 
gosudarstvennogo tekhnicheskogo universiteta. 2024. № 1(73). S. 4-10. (in Russian) 

14. Shuai Zhou, Dazhi Wang, Yongliang Ni, Keling Song, Yanming Li, Improved Particle Swarm Optimization for 
Parameter Identification of Permanent Magnet Synchronous Motor, Computers, Materials and Continua, 2024, Vol. 
79, Iss. 2, pp. 2187-2207 

15. Danupon Kumpanya, Sattarpoom Thaiparnat, Deacha Puangdownreong, Parameter Identification of BLDC Motor 
Model Via Metaheuristic Optimization Techniques, Procedia Manufacturing, 2015, Vol. 4, pp. 322-327 



Морские интеллектуальные технологии/Marine intellectual technologies    № 2 часть 1, 2025 / № 2 part 1, 2025 

325 
 

16. Antonov N.V., Terekhov V.A., Tyukin I.Y. Adaptivnoe upravlenie v tekhnicheskih sistemah [Adaptive control in 
technical systems]. Uchebnoe posobie // SPb.: Izdatel'stvo Sankt-Peterburgskogo universiteta, 2001. S. 244. (in 
Russian) 

17. Vaisi, B. A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and 
beyond, Decision Analytics Journal. 2022. Vol. 2. 100031. 

18. Jin, Z., Liu, L., Gong, D., & Li, L. 2021. Target recognition of industrial robots using machine vision in 5G 
environment. Frontiers in Neurorobotics, 15. 

19. Seamans R., Raj M. AI, labor, productivity and the need for firm-level data. National Bureau of Economic Research. 
2018. № 2 

20. Gor'kavyj M. A., Gor'kavyj A. I., Mel'nichenko M. A., Optimizacija robotizirovannogo tehnologicheskogo processa 
na baze nejrosetevoj imitacionnoj modeli jenergopotreblenija [Optimization of robotic technological process based 
on neural network simulation model of energy consumption]. Izvestija vysshih uchebnyh zavedenij. 
Elektromehanika. 2023. p. 85-95 (in Russian) 

21. Gor'kavyj M.A., Mel'nichenko M.A., Shusharin N.S., Grigorec R.D. Issledovanie processov energopotrebleniya 
promyshlennogo robota-manipulyatora s pomoshch'yu sistem vneshnej sensoriki [Study of energy consumption 
processes of an industrial robot manipulator using external sensor systems] // Izvestiya Tul'skogo 
gosudarstvennogo universiteta. Tekhnicheskie nauki. 2024. № 5. S. 486-490. (in Russian) 

22. Bano, F., Serbaya, S. H., Rizwan, A., Shabaz, M., Hasan, F., & Khalifa, H. S. An artificial neural network and 
Levenberg-Marquardt training algorithm-based mathematical model for performance prediction. Applied 
Mathematics in Science and Engineering. 2024 

23. Darshi, R., Bahreini, M. A., & Ebrahim, S. A. Prediction of short-term electricity consumption by artificial neural 
networks levenberg-marquardt algorithm in hormozgan province, Iran. In 2019 5th Iranian Conference on Signal 
Processing and Intelligent Systems (ICSPIS). 2019. pp. 1-4 

24. KUKA KR AGILUS sixx V variantah ispolneniya W i C, Instrukciya po ekspluatacii [In versions W and C, Operating 
instructions], KUKA Roboter GmbH, 2015. (in Russian) 

25. Chicco, Davide, Matthijs J. Warrens, and Giuseppe Jurman. "The coefficient of determination R-squared is more 
informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation." Peerj computer science 
7. 2021. 

Конфликт интересов 
Не указан.  

Conflict of Interest 
None declared. 

Рецензия 
Все статьи проходят рецензирование. Но рецензент 
или автор статьи предпочли не публиковать 
рецензию к этой статье в открытом доступе. 
Рецензия может быть предоставлена компетентным 
органам по запросу. 

Review 
All articles are peer-reviewed. But the reviewer or the 
author of the article chose not to publish a review of this 
article in the public domain. The review can be provided 
to the competent authorities upon request. 

ИНФОРМАЦИЯ ОБ АВТОРАХ / INFORMATION ABOUT THE AUTHORS 

Горькавый Михаил Александрович, кандидат 
технических наук, доцент, зав. кафедрой 
«Промышленная электроника и инновационные 
технологии», 681013, Комсомольск-на-Амуре, проспект 
Ленина, 27, e-mail: mixkomsa@gmail.com 

Mikhail A. Gorkavyy, Ph.D. (Eng), assistant professor, 
Head of the Department of Industrial Electronics and 
Innovative Technologies, Lenina, 27, Komsomolsk-na-
Amure State University, 681013, Russian Federation,  
e-mail: mixkomsa@gmail.com 

Мельниченко Маркел Андреевич, аспирант, ведущий 
инженер НОЦ «ПРиППТ», 681013, Комсомольск-на-
Амуре, проспект Ленина, 27, e-mail: markel.96dk@mail.ru 

Markel A. Melnichenko, graduate student, lead 
engineer SEC “IR&AIT”, Lenina, 27, Komsomolsk-na-
Amure State University, 681013, Russian Federation,  
e-mail: markel.96dk@mail.ru 

Ворощенко Василий Даннилович, аспирант, инженер-
технолог НОЦ «ПРиППТ», Комсомольский-на-Амуре 
государственный университет, 681013, Комсомольск-на-
Амуре, проспект Ленина, 27,  
e-mail: v.voroshencko@yandex.ru 

Vasilii D. Voroschenko, graduate student, engineer-
technologist SEC “IR&AIT”, Lenina, 27, Komsomolsk-
na-Amure State University, 681013, Russian 
Federation, e-mail: v.voroshencko@yandex.ru 

Статья поступила в редакцию/the article was submitted 13.11.2024. 
Одобрена после рецензирования/approved after reviewing 04.03.2025. 
Принята к публикации/accepted for publication 14.03.2025. 
 
 
  


