
СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ № 3, 2025

59ТЕХНИЧЕСКИЕ НАУКИ (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

УДК 004.4'242
DOI 10.17513/snt.40324

КОМПЛЕКС АВТОМАТИЧЕСКОГО ПРОЕКТИРОВАНИЯ АГЕНТОВ
НА ОСНОВЕ ИЕРАРХИЧЕСКИХ КОНЕЧНЫХ АВТОМАТОВ

Чекан М.А.
ФГБУН «Институт динамики систем и теории управления имени В.М. Матросова

Сибирского отделения Российской академии наук», Иркутск, e-mail: chekoopa@mail.ru

В исследовании рассмотрены вопросы автоматизации проектирования и реализации компонентов си-
стем моделирования, основанных на мультиагентной архитектуре. Целью исследования является разработка
инструментальных средств поддержки разработки таких систем. В ходе исследования были созданы ин-
струменты, которые упрощают процесс создания агентов для платформы Java Agent DEvelopment Frame-
work™. Особенностью этих инструментов является использование схем иерархических машин состояний
для формирования каркаса агента с модулями-шаблонами, что значительно облегчает дальнейшую реали-
зацию функциональности. Такой подход позволяет эффективно и надежно планировать архитектуру агента,
учитывая поставленные задачи. В статье представлены ключевые компоненты комплекса инструментальных
средств. Главный компонент – генератор каркаса агента, работающий в двух режимах. Первый подразумева-
ет использование специально разработанных модулей для платформы Java Agent DEvelopment Framework™,
реализующих поведение агента в логике иерархических машин состояний и настраиваемых в зависимости
от схемы. Второй режим формирует самодостаточный модуль класса в парадигме расширенных иерархиче-
ских машин состояний с возможностью выполнения кода при возникновении событий. Предлагается визу-
альный редактор с интерфейсом для проектирования схем и наполнения их кодом. Результаты исследова-
ния были применены при создании мультиагентной среды для моделирования взаимодействия микросетей.
Фрагменты результатов работы комплекса для одного из агентов среды приведены в качестве примера.

Ключевые слова: иерархические машины состояний, мультиагентные среды, генерация кода

Исследование проведено при поддержке Министерства науки и высшего образования Россий-
ской Федерации, проект № FWEW‑2021‑0005 «Технологии разработки и анализа предметно-ориен-
тированных интеллектуальных систем группового управления в недетерминированных распреде-
ленных средах».

AUTOMATIC AGENT DESIGN SYSTEM BASED
ON HIERARCHICAL FINITE AUTOMATA

Chekan M.A.
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch

of the Russian Academy of Sciences, Irkutsk, e-mail: chekoopa@mail.ru

The study examines the issues of design automation and implementation of components for modeling systems
based on a multi-agent architecture. The purpose of the study is to develop tools to support the development of such
systems. During research, tools were developed that simplify the creation of agents for the Java Agent DEvelopment
Framework™ platform. These tools use hierarchical state machine diagrams to form a framework with template
modules that greatly facilitates implementation of functionality. This approach allows for efficient and reliable
planning of agent architectures, taking into consideration the tasks assigned. The article presents key components
of the toolset. The main component is an agent frame generator that operates in two modes: the first involves using
specially designed modules for Java Agent DEvelopment Framework™ that implement agent behavior according
to hierarchical state machines, and are configurable based on the schema. The second mode forms a self-sufficient
class module within the paradigm of extended hierarchical state machines, with the ability to execute code on
events occur. A visual editor with an interface for designing and filling diagrams with code is provided. The results
of the study were applied in the creation of a multi-agent environment for modeling the interaction of microgrids.
Fragments of the results of the complex’s operation for one of the agents of the environment are given as an example.

Keywords: hierarchical state machines, multi-agent environments, code generation

The study was supported by the Ministry of Science and Higher Education of the Russian Federation,
project No. FWEW 2021 0005 “Technologies for the development and analysis of domain-oriented
intelligent group control systems in non-deterministic distributed environments”.

Введение
Компьютерное моделирование играет

одну из важнейших ролей в исследовании
и проектировании сложных технологиче-
ских, социальных и экономических про-
цессов, и с ростом масштаба и сложно-
сти современных систем моделирование

и использование цифровых двойников все
чаще становятся базовыми инструментами
для контролируемого исследования и про-
ведения экспериментов для оценки послед-
ствий различных сценариев [1]. Особенно
высокая ценность такого подхода лежит
в критических инфраструктурных областях,

MODERN HIGH TECHNOLOGIES № 3, 2025

60 TECHNICAL SCIENCES (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

например в космической отрасли, энергети-
ке, транспорте и т.д.

В частности, мультиагентная парадигма
моделирования приобретает все большую
актуальность благодаря своей способности
учитывать индивидуальные характеристи-
ки и взаимодействие множества автоном-
ных агентов [2]. В отличие от традицион-
ных подходов, которые часто рассматри-
вают системы как единое целое, агентное
моделирование фокусируется на микро-
уровне, что позволяет более точно отражать
реальные процессы. Это особенно важно
в таких областях, как социальные науки
(моделирование поведения групп), эконо-
мика (рыночная динамика), экология (взаи-
модействие видов), транспортные системы
(потоки движения) и интернет вещей (коор-
динация устройств) [3]. В последнее время
растет популярность киберфизических си-
стем, представляющих собой совокупность
интегрированных вычислительных, комму-
никационных и физических компонентов,
которые взаимодействуют для управления
сложными процессами в реальном времени.
Для киберфизических систем характерны
самоорганизация и способность к адапта-
ции под изменяющиеся условия окружаю-
щей среды. Эти характеристики являются
необходимыми для систем инфраструктур-
ных отраслей, строящихся на взаимодей-
ствии участников для организации жизнен-
но необходимых процессов [4]. Это делает
киберфизическую парадигму и агентный
подход актуальными в решении современ-
ных задач моделирования.

С ростом масштаба и сложности моде-
лируемых систем традиционные подходы
к разработке моделей становятся все менее
эффективными, что создает потребность
в новых инструментах и методологиях. Со-
временные системы, такие как умные го-
рода, глобальные экономические модели
или экосистемы, включают тысячи или даже
миллионы взаимодействующих элементов,
каждый из которых обладает собственной
логикой поведения. Для управления такой
сложностью необходимы инструменты,
которые позволяют предметным специ-
алистам (например, экономистам, экологам
или социологам) сосредоточиться на содер-
жательной части модели, минимизируя за-
траты на программирование и техническую
реализацию [5]. Это достигается за счет
использования визуальных сред разработ-
ки, шаблонов проектирования и автомати-
зированных средств кодогенерации. Это
обуславливает цель исследования – раз-
работку инструментальных средств под-
держки разработки мультиагентных сред
моделирования.

Материалы и методы исследования
Мультиагентные среды обычно реали-

зуются на специализированных платформах
и фреймворках, таких как NetLogo, Repast,
AnyLogic® или MATLAB® Simulink®
[6], а также с использованием библиотек
для универсальных языков программиро-
вания, таких как Python (например, Mesa
или PyDy), Java или C++. Выбор платфор-
мы или фреймворка для разработки муль-
тиагентной среды зависит от набора факто-
ров, определяемых задачей моделирования:
поддерживаемые операционные системы,
язык описания агентов, гибкость перекон-
фигурации, наличие модулей для обмена
сообщениями и визуализации, соответствие
стандартам, поддержка параллельных вы-
числений и т.д. В частности, параллелизм
является важным аспектом для систем
с большим количеством агентов [7, 8].

Результаты исследования
и их обсуждение

В статье рассматривается платфор-
ма Java Agent DEvelopment Framework
(JADE™) [9]. Она предоставляет готовую
инфраструктуру для создания, управления
и взаимодействия агентов, что значительно
ускоряет процесс разработки и тестирова-
ния моделей. Платформа JADE™ реализует
стандарты Foundation for Intelligent Physical
Agents (FIPA), что обеспечивает совмести-
мость с другими агентными платформами
и поддерживает такие ключевые функции,
как обмен сообщениями, управление жиз-
ненным циклом агентов и распределенные
вычисления. JADE™ написана на Java,
что обеспечивает кроссплатформенность
и легкость интеграции с другими библиоте-
ками и инструментами.

Агент в платформе JADE™ реализу-
ется как объект класса, унаследованного
от базового класса jade.core.Agent (да-
лее – класс-агент). Базовый класс предо-
ставляет основные методы для управления
жизненным циклом агента, коммуникации
с другими агентами и добавления моделей
поведения – объектов классов, унаследо-
ванных от jade.core.behaviours.Behaviour
(далее – класс-поведение). Модели поведе-
ния формируют полезную нагрузку агента
и определяют логику его работы, вклю-
чая циклические, одноразовые или слож-
ные составные поведения. Данные модели
уже включены в стандартную библиотеку
фреймворка и позволяют на своей основе
создавать необходимые модели агентов.

Одной из таких моделей является маши-
на состояний (МС). Это математическая мо-
дель, используемая для описания поведения

СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ № 3, 2025

61ТЕХНИЧЕСКИЕ НАУКИ (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

системы, которая может находиться в одном
из конечного числа состояний и переходить
между ними в ответ на события. Каждое со-
стояние определяет, как система реагирует
на входные данные, а переходы между со-
стояниями задаются правилами, которые
могут зависеть от условий или триггеров.
Машины состояний широко применяют-
ся в разработке программного обеспече-
ния, робототехнике, игровых движках,
а также в мультиагентных системах, так
как они позволяют четко структурировать
поведение и упрощают управление слож-
ными процессами.

JADE™ предоставляет класс FSMBe-
haviour, реализующий составное поведение
на основе конечного автомата, где каждое
состояние представляется объектом клас-
са-поведения, а переходы между состояни-
ями определяются результатом завершения
поведения. Схема автомата формируется
во время исполнения с помощью методов
registerState() и registerTransition(), добав-
ляющих соответственно состояния и пере-
ходы. FSMBehaviour автоматически управ-
ляет выполнением текущего состояния
и переходом к следующему, что упрощает
разработку сложных сценариев поведения
агента [10].

Иерархические машины состояний
(ИМС, Hierarchical State Machines, HSM)
расширяют концепцию обычных машин
состояний, добавляя возможность вложен-
ности [11]. В ИМС состояния могут содер-
жать внутри себя подсостояния, образуя ие-
рархию. Это позволяет моделировать более
сложное поведение, разбивая его на уровни
абстракции. Например, состояние «Работа»
может включать подсостояния «Ожида-

ние», «Обработка» и «Завершение», каждое
из которых имеет свои собственные перехо-
ды и логику, но при этом переходы из состо-
яния «Работа» являются общими для всех
подсостояний. Иерархические машины
состояний особенно полезны в мультиа-
гентных системах, где агенты могут иметь
сложное поведение, требующее декомпози-
ции на более простые компоненты. Такой
подход улучшает читаемость, поддержива-
емость и масштабируемость моделей [12].

Предлагаемый программный комплекс
выполняет задачу генерации шаблона клас-
са-агента, структура и базовая логика кото-
рого определяется иерархической машиной
состояний. В рамках надстройки предла-
гается два подхода. Первый – модульный,
он предполагает генерацию каркаса из пе-
реключающихся состояний-поведений, где
логику последних разработчик далее реа-
лизует самостоятельно с помощью других
программных средств. Второй подход – рас-
ширенный, где генерация самодостаточного
класса-агента на основе расширенных ие-
рархических машин состояний, где логика
выполнения приводится непосредственно
в схеме в виде кода, используемого при ге-
нерации класса.

Прежде всего, комплекс включает в
себя набор библиотек-модулей для плат-
формы JADE™, написанных на языке Java
и обеспечивающих реализацию модульно-
го подхода. Модуль HSMBehaviour – это
класс-поведение, реализующий иерархи-
ческую машину состояний, где каждое со-
стояние является объектом класса-поведе-
ния, и переключение между состояниями
осуществляется на основе кода завершения
очередного состояния.

Рис. 1. Иерархическая машина состояний взаимодействующей микросети
Источник: составлено автором

MODERN HIGH TECHNOLOGIES № 3, 2025

62 TECHNICAL SCIENCES (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

HSMBehaviour hsm = new HSMBehaviour(this);
hsm.registerFirstState(new FallthroughBehaviour(), “Waiting”);
hsm.registerState(new AskWeather(), “AskWeather”, “Waiting”);
hsm.registerState(new CheckWeather(), “CheckWeather”, “Waiting”);
hsm.registerState(new ApplyTrade(), “ApplyTrade”, “Waiting”);
hsm.registerState(new FallthroughBehaviour(), “Trading”);
hsm.registerState(new InitTrade(), “InitTrade”, “Trading”);
hsm.registerState(new CalculateBid(), “CalculateBid”, “Trading”);
hsm.registerState(new SendBid(), “SendBid”, “Trading”);
hsm.registerDefaultTransition(“Waiting”, “AskWeather”);
hsm.registerDefaultTransition(“Trading”, “InitTrade”);
hsm.registerTransition(“AskWeather”, “CheckWeather”, S.GOT_WEATHER);
hsm.registerTransition(“Waiting”, “AskWeather”, S.DONE);
hsm.registerTransition(“Waiting”, “InitTrade”, S.NEED_TRADE);
hsm.registerTransition(“Waiting”, “CalculateBid”, S.TRADE_REQUEST);
hsm.registerTransition(“Trading”, “CalculateBid”, S.TRADE_REQUEST);
hsm.registerTransition(“CalculateBid”, “SendBid”, S.BID_CALCULATED);
hsm.registerTransition(“Trading”, “ApplyTrade”, S.TRADE_FINISHED);

Листинг 1. Создание машины состояний на основе HSMBehaviour

Таким образом, логика и интерфейс
класса максимально приближены к встро-
енному в платформу FSMBehaviour, что по-
зволяет применять модуль в сценариях од-
ноуровневых машин состояний, при этом
имея возможность описывать надсостояния
и общие переходы. Такой подход снижает
порог освоения модуля, а также позволяет
быстро адаптировать существующие нара-
ботки в виде обычных МС. С другой сторо-
ны, такой подход менее гибок, в том числе
предполагает использование изолирован-
ных состояний.

В качестве примера была рассмотрена
иерархическая машина состояний, описы-
вающая функционирование микросети, вза-
имодействующей с другими микросетями
для обмена энергоресурсами в рамках аук-
циона. Схема ИМС приведена на рис. 1. Код,
формирующий эту ИМС с помощью библи-
отеки HSMBehaviour, приведен в листинге
1. В отличие от FSMBehaviour, функция
registerState имеет вариант, позволяющий
указать надсостояние. Здесь используется
вспомогательный модуль FallthroughBehav-
iour, который представляет собой мгновен-
но завершающееся поведение и тем самым
реализует переход в начальное состояние
составного состояния с помощью перехода
по умолчанию. Стоит отметить, что модуль
реализован с нуля, так как существующая
реализация этой функциональности [13] от-
сутствовала в открытом доступе на момент
написания статьи.

Для более эффективного и доступного
составления графа состояний предлагается
использовать визуальную среду разработ-
ки Lapki IDE [14]. Этот пакет прикладных
программ с открытым исходным кодом
предоставляет редактор ИМС с визуальным

интерфейсом и возможностью описания по-
ведения технической системы в текстовом
или пиктографическом виде (в зависимости
от наличия поддержки платформы). Для хра-
нения схем Lapki IDE использует специально
разработанный формат файла CyberiadaML.
В его основе лежит язык описания графов
GraphML, расширенный для описания по-
ведения целевой системы с помощью стан-
дартизованной системы тегов. В рамках
программного комплекса Lapki IDE исполь-
зуется в полнотекстовом режиме, предо-
ставляющем возможность работы с графом
состояний и указания событий и действий
в виде непосредственного текста.

Для полноценной реализации модуль-
ного подхода используется модуль Cyberia-
daHSMBehaviour. Это класс-поведение, на-
следующий HSMBehaviour и расширяющий
его функцией загрузки CyberiadaML-файла,
на основе которого создается граф состоя-
ний агента. Название состояния определяет
класс-поведение, объект которого исполня-
ется в данном состоянии, причем одному
названию в нескольких состояниях будут
соответствовать разные экземпляры класса.
Содержимое перехода определяет название
сигнала, преобразующееся в целочислен-
ную константу типа-перечисления для ко-
дов завершения поведений. Оба вышепере-
численных фактора предполагают наличие
функций, связывающих текстовое обо-
значение с фактическим значением в коде,
для чего предусмотрены две соответству-
ющие функции – createState и identifySig-
nal. Пример кода обвязки вышеописанной
машины состояния приведен в Листинге 2.
В данном режиме не учитываются условия
и действия при переходах и событиях вну-
три состояния.

СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ № 3, 2025

63ТЕХНИЧЕСКИЕ НАУКИ (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

Рис. 2. Редактор Lapki IDE и фрагмент диаграммы состояний
Источник: составлено автором

CyberiadaMLBehaviour behaviour = new CyberiadaMLBehaviour(this) {
 private Behaviour createState(String name) {
 switch (name) {
 case “Waiting” -> return new Waiting();
 case “Trading” -> return new Trading();
 case “AskWeather” -> return new AskWeather();
 case “CheckWeather” -> return new CheckWeather();
 case “ApplyTrade” -> return new ApplyTrade();
 case “InitTrade” -> return new InitTrade();
 case “CalculateBid” -> return new CalculateBid();
 case “SendBid” -> return new SendBid(); } }
 private int identifySignal(String name) {
 switch (name) {
 case “GOT_WEATHER” -> return S.GOT_WEATHER;
 case “NEED_TRADE” -> return S.NEED_TRADE;
 case “BID_CALCULATED” -> return S.BID_CALCULATED;
 case “TRADE_REQUEST” -> return S.TRADE_REQUEST;
 case “TRADE_FINISHED” -> return S.TRADE_FINISHED;
 case “DONE” -> return S.DONE; } } }
behaviour.loadFile(“microgrid.graphml”);

Листинг 2. Инициализация машины состояний в CyberiadaMLBehaviour

Генератор каркаса агента CMLAgent-
Gen – прикладная программа, работающая
в командной строке и на основе переданно-
го CyberiadaML-файла формирует Java-код
агента. При модульном подходе код обора-
чивает CyberiadaHSMBehaviour, как указа-
но в листинге 2, и подготавливает шаблоны
классов-поведений для каждого состояния,
тем самым создавая пакет модулей, на ос-
нове которого специалист далее формирует
функциональность агента.

При расширенном подходе генератор
создает самодостаточный класс с систе-
мой сигналов и функций-состояний соглас-
но описанной структуре и их переходам.
Он также создает функции-ячейки с участ-
ками кода, указанного в действиях событий
и переходов. При этом код может разме-
щаться как комментарий (для дальнейшей
доработки специалистом) или как есть, по-
зволяя описывать функциональность агента
непосредственно в схеме.

MODERN HIGH TECHNOLOGIES № 3, 2025

64 TECHNICAL SCIENCES (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

QState G_AskWeather(QEvt e) { /* обработка сигнала в состоянии AskWeather */
 QState status_ = null;
 switch (e.sig) {
 case Q_ENTRY_SIG : /* вход в состояние */
 stateChanged = false;
 inVertex = false;
 status_ = q_handled();
 on_AskWeather_Entry(); /* вызов функции-ячейки */
 break;
 case Q_EXIT_SIG: /* выход из состояния */
 status_ = q_handled();
 on_AskWeather_Exit();
 break;
 case GOT_WEATHER_SIG:
 if (true) {
 on_AskWeather_GOT_WEATHER();
 stateChanged = true;
 status_ = q_tran(G_CheckWeather);
 } else { status_ = q_unhandled(); }
 break;
 default: /* передача сигнала в надсостояние */
 status_ = q_super(G_Waiting);
 break; }
 return status_; }
void on_AskWeather_Entry() { /* функция-ячейка, вынесена для удобства */
 App.run(“WeatherForecast”, GOT_WEATHER); }
void on_AskWeather_Exit() {
 App.cancel(“WeatherForecast”); }

Листинг 3. Фрагмент кода класса-агента в расширенном режиме

Фрагмент функций класса для состояния
«Узнать прогноз» приведен в листинге 3.

Разработанный комплекс задействован
в пакете прикладных программ для модели-
рования микросетей, взаимодействующих
с применением экономического механизма
регулирования спроса и предложений [5,
15]. Применение комплекса в сочетании
с визуальным редактором позволило сни-
зить трудозатраты при описании логики
агента. Использование визуальных средств
проектирования и кодогенерации в разра-
ботке агентных систем значительно упро-
щает и ускоряет процесс создания, тести-
рования и модификации агентов. Схемы
ИМС позволяют разработчикам наглядно
проектировать поведение агентов, не углу-
бляясь в низкоуровневый код, а также слу-
жат наглядной документацией, понятной
всем участникам разработки. Это особенно
полезно для исследователей и инженеров,
которые могут не обладать глубокими на-
выками программирования, но при этом
нуждаются в создании сложных моделей.
Среда Lapki IDE предоставляет интуи-
тивно понятный интерфейс для визуаль-
ного проектирования, что снижает порог
входа и ускоряет разработку. Кодогенера-
ция, в свою очередь, автоматизирует про-

цесс преобразования визуальных моделей
в программный код, что минимизирует ве-
роятность ошибок и экономит время. Это
особенно важно при перепроектировании
агентов, когда необходимо быстро адапти-
ровать модель к изменяющимся требова-
ниям или новым данным. В совокупности
эти подходы повышают эффективность
разработки, снижают затраты на поддерж-
ку и делают агентное моделирование более
доступным для широкого круга специали-
стов. В дальнейшем предполагается рас-
ширение средств создания более функци-
онально насыщенных МС. Планируется
реализация механизма условий и псевдо-
состояний выбора.

Заключение
В рамках исследования разработаны

новые инструментальные средства авто-
матизации разработки агентов для плат-
формы JADE™ на основе иерархических
машин состояний, включающие в себя
визуальную среду разработки. Результа-
ты исследования обеспечивают снижение
сложности и времязатрат на реализацию
агента, а также позволяют легче перепро-
ектировать его логику в зависимости от за-
дач моделирования.

СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ № 3, 2025

65ТЕХНИЧЕСКИЕ НАУКИ (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

Список литературы

1. Еделев А.В., Карамов Д.Н., Башарина О.Ю. Анализ
уязвимости автономных микросетей // Информационные
и математические технологии в науке и управлении. 2024.
№ 1 (33). С. 112–121. DOI: 10.25729/ESI.2024.33.1.010.

2. Cardoso R.C., Ferrando A. A review of agent-based pro-
gramming for multi-agent systems // Computers. 2021. Vol. 10,
Is. 2. P. 16. DOI: 10.3390/computers10020016.

3. Antelmi A., Cordasco G., D’Ambrosio G., De Vinco D.,
Spagnuolo C. Experimenting with agent-based model simu-
lation tools // Applied Sciences. 2022. Vol. 13, Is. 1. P. 13.
DOI: 10.3390/app13010013.

4. Томин Н.В., Домышев А.В., Барахтенко Е.А. Обзор
методов моделирования и управления киберфизическими
системами в мультиэнергетических микросетях // iPolytech
Journal. 2023. Т. 27, № 4. С. 773–789. DOI: 10.21285/1814-
3520-2023-4-773-789.

5. Бычков И.В., Феоктистов А.Г., Чекан М.А. Модель
поведения агента микросети // Вычислительные технологии.
2023. Т. 28, № 6. С. 108–117. DOI: 10.25743/ICT.2023.28.6.010.

6. Lemmassi A., Derouich A., Hanafi A., Benmessaoud M.,
El Ouanjli N. Design and conception of an electrical power sys-
tem for 1U CubeSat using MATLAB/Simulink // The European
Physical Journal Plus. 2025. Vol. 140, Is. 1. P. 45. DOI: 10.1140/
epjp/s13360-024-05934-1.

7. Феоктистов А.Г., Костромин Р.О. Разработка и при-
менение проблемно-ориентированных мультиагентных си-
стем управления распределенными вычислениями // Из-
вестия ЮФУ. Технические науки. 2016. № 11. С. 65–74.
DOI: 10.18522/2311-3103-2016-11-6575.

8. Чекан М.А. Сравнительный анализ программного
обеспечения для автоматизации процесса моделирования
микросетей // Современные наукоемкие технологии. 2022.
№ 9. С. 33–38. DOI: 10.17513/snt.39305.

9. Bergenti F., Caire G., Monica S., Poggi A. The first
twenty years of agent-based software development with JADE //
Autonomous Agents and Multi-Agent Systems. 2020. Vol. 34.
P. 1–19. DOI: 10.1007/s10458-020-09460-z.

10. Bellifemine F., Poggi A., Rimassa G. Developing
multi‐agent systems with a FIPA‐compliant agent framework //
Software: Practice and Experience. 2001. Vol. 31, Is. 2. P. 103–
128. DOI: 10.1002/1097-024X(200102)31:2<103::AID-
SPE358>3.0.CO;2-O.

11. Ivanchev J., Deboeser C., Braud T., Knoll A., Eck-
hoff D., Sangiovanni-Vincentelli A. A hierarchical state-ma-
chine-based framework for platoon manoeuvre descriptions //
IEEE Access. 2021. Vol. 9. P. 128393–128406. DOI: 10.1109/
ACCESS.2021.3106455.

12. Rocha M., Simão A., Sousa T. Model-based test case
generation from UML sequence diagrams using extended finite
state machines // Software Quality Journal. 2021. Vol. 29, Is. 3.
P. 597–627. DOI: 10.1007/s11219-020-09531-0.

13. Griss M.L., Fonseca S., Cowan D., Kessler R. Using
UML State Machine Models for More Precise and Flexible
JADE Agent Behaviors // Agent-Oriented Software Engineering
III. 2003. Vol. 2585. P. 113–125. DOI: 10.1007/3-540-36540-0_9.

14. Чекан М. Среда программирования киберфизиче-
ских систем в парадигме машин состояний // Материалы
VI Международного семинара по информационным, вычис-
лительным и управляющим системам для распределенных
сред (ICCS-DE 2024). Иркутск: ИДСТУ СО РАН, 2024.
С. 217–219. [Электронный ресурс]. URL: https://iccs-de.icc.
ru/files/2024/Proceedings_ICCS-DE-2024.pdf (дата обраще-
ния: 05.02.2025).

15. Feoktistov A., Edelev A., Tchernykh A., Gorsky S.,
Basharina O., Fereferov E. An Approach to Implementing High-
Performance Computing for Problem Solving in Workflow-based
Energy Infrastructure Resilience Studies // Computation. 2023.
Vol. 11, Is. 12. P. 243. DOI: 10.3390/computation11120243.

