УДК 004.05

МОДЕЛЬ СИСТЕМНОЙ ДИНАМИКИ ДЛЯ ОЦЕНКИ КАЧЕСТВА ERP-CИСТЕМ

О.И. Дранко

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: olegdranko@gmail.com

А.Ф. Резчиков

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: rvcv@mail.ru

В.А. Кушников

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Саратовский научный центр Российской академии наук»
Россия, 410028, Саратов, Рабочая ул., 24
E-mail: kushnikoff@yandex.ru

А.С. Богомолов

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Саратовский научный центр Российской академии наук»
Россия, 410028, Саратов, Рабочая ул., 24
E-mail: alexbogomolov@yandex.ru

А.Д. Селютин

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Саратовский научный центр Российской академии наук»
Россия, 410028, Саратов, Рабочая ул., 24
E-mail: aseliutin@ya99.ru

Ключевые слова: ERP-системы, системная динамика, ISO 25010, AnyLogic, качество программного обеспечения, нечеткая логика.

Аннотация: В данной статье представлен комплексный анализ качества ERP-систем с использованием системно-динамического подхода. Была разработана модель, основанная на параметрах качества, определенных в стандарте ISO 25010. Модель включает в себя как количественные, так и качественные параметры. Для сбора статистики и построения модели использовался аппарат нечеткой логики. В рамках исследования был проведен вычислительный эксперимент на open-source ERP-системе Odoo. В рамках эксперимента возникла критическая ситуацию по необеспечению надежности в рамках разработки. После переконфигурации вектора начальных значений критических комбинаций на всем интервале времени не возникло. Результаты эксперимента подтвердили эффективность предложенного подхода и позволили выявить особенности качества данной системы. В заключение, предложенный подход способствует повышению эффективности ERP-систем и улучшению управления бизнеспроцессами, что является важным для компаний, стремящихся оптимизировать свои операции, увеличить прибыльность и достичь большей конкурентоспособности.

1. Введение

В современном обществе, где динамичные бизнес-процессы и сложные структуры предприятий стали неотъемлемой частью средних и крупных компаний, эффективное управление ресурсами и информацией становится принципиальным фактором успешного функционирования корпораций. В этом контексте, системы планирования ресурсов предприятия (ERP) предоставляют комплексный инструментарий для учета, анализа и управления функциональными областями предприятия [1-5].

Однако, несмотря на широкое распространение ERP-систем, необходимо подчеркнуть, что качество их функционирования становится фактором, имеющим критическое значение для организаций. Недостаточное внимание к обеспечению высокого уровня качества ERP-систем может привести к финансовым потерям. В условиях, где точность, надежность и актуальность информации играют важную роль в принятии стратегических решений, недостатки в функционировании ERP-систем могут повлечь за собой не только операционные сбои, но и серьезные убытки. В данной статье проводится анализ качества ERP-систем с использованием системнодинамического подхода, основанный на структуре этих систем, а также выявляются ключевые аспекты качества, подлежащие оценке и управлению со стороны лиц, принимающих решения.

2. Методы и материалы

2.1. Сравнительный анализ

Проведен сравнительный анализ исследований, касающихся анализа качества ERP-систем:

Исследование [6] использует нейросетевую модель для анализа качества ERPсистем, фокусируясь на предсказании производительности и стабильности. Однако, недостатком этого исследования является ограниченная учетная запись факторов, влияющих на качество, что затрудняет репродуцируемость результатов.

Работа [7] основана на статистическом анализе данных, оценивая влияние различных переменных на уровень удовлетворенности пользователя ERP-системой. Недостатком является ограниченная генерализуемость результатов из-за использования ограниченной выборки предприятий.

Таким образом, для полноценного анализа качества ERP-систем необходимо учесть множество аспектов, включая технические, организационные и человеческие факторы. Критической важностью является всесторонний подход к моделированию, включая учет взаимодействия между бизнес-процессами и технологическими аспектами. В данной работе применяется системно-динамический подход для анализа качества ERP-систем, поскольку он обеспечивает рассмотрение взаимосвязи разных факторов.

2.2. Постановка задачи

Сформулируем задачу управления качеством ERP-систем. Для эффективной эксплуатации ERP-системы необходимо разработать модели, которые на временном интервале $t \in [t_0; t_n]$ определяют управляющие воздействия $p(t) \in P$, минимизирующие функцию:

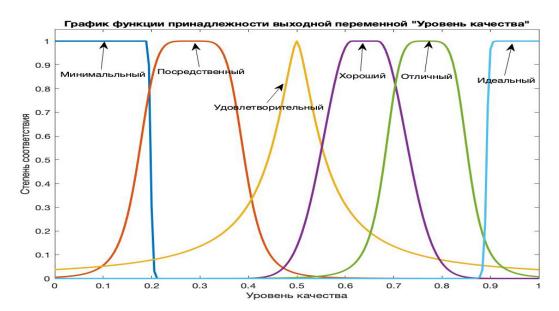
(1)
$$Z(t,p(t),q(t)) = \int_{t_0}^{t_n} \sum_{i=1}^{m} (L_i^* - L_i(t,p(t),q(t)))^2 \eta_i dt,$$

при ограничениях

(2)
$$\frac{dL_i(t,p(t),q(t))}{dt} = f\left(t,q(t),L_1(t,p(t)),\dots,L_m(t,p(t))\right), i = \overline{1,m},$$

$$t > 0, L_i(t,p(t)) > 0,$$

где L_i^* — рекомендуемые (начальные) значения характеристик качества ПО, $L_i(t,p(t),q(t)),\ i=\overline{1,m}$ — метрики качества ПО, η_i — весовой коэффициент i-ой характеристики, q(t) — вектор показателей внешней среды. Управляющие воздействия p(t) определяются в виде планов мероприятий, направленных на устранение последствий.


Задача (2) относится к задачам вариационного исчисления, связанным с условным экстремумом. Решение данной задачи с использованием традиционных методов вариационного исчисления имеет свои трудности. Целесообразно использовать аппарат системной динамики для описания процессов изменения качества ERP-систем. В соответствии с методологией, моделируемый объект описывается посредством системы нелинейных дифференциальных уравнений.

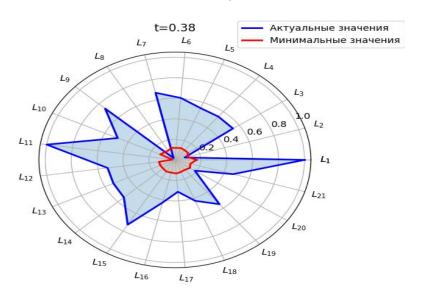
(3)
$$\frac{dL_{i}(t,p(t),q(t))}{dt} = f_{i}^{+}(F_{1},F_{2},...,F_{m}) - f_{i}^{-}(F_{1},F_{2},...,F_{m}), i = \overline{1,m},$$
 где $f_{i}^{+},f_{i}^{-},i = \overline{1,m}$ – темпы изменения, определяющие положительное и отрицательное

где $f_i^+, f_i^-, i = \overline{1,m}$ – темпы изменения, определяющие положительное и отрицательное изменение значения системной переменной $L_i(t,p(t),q(t)), i = \overline{1,m}.$ $f_i^+, f_i^-, i = \overline{1,m}$ – функции от факторов F_i .

3. Математическая модель

При разработке математической модели для оценки качества ERP-систем было выбрано сечение из 21 параметра качества программного обеспечения из стандарта ISO 25010. Также было выбрано 5 возмущений, влияющих на функционирование ERP-системы. Данные переменные и возмущения описаны в [8]. Для сбора данных о качестве ERP-систем была разработана и использована модель нечеткой логики, график функции принадлежности выходной переменной которой представлен на рис. 1.

Рис. 1. График функции принадлежности выходной переменной «Уровень качества» модели нечеткой логики.


Далее был разработан граф причинно-следственных связей [9]. На основе графа и собранной статистики были построены уравнения регрессии между ребрами графа [10]. После этого составлена система дифференциальных уравнений в нормальной форме Коши в частном виде:

$$\begin{cases} \frac{dL_{1}}{dt} = \frac{1}{L_{1}^{*}} (((5,0441(L_{2}(t))^{2} - 5,4411(L_{2}(t)) + 1,7574) \\ * (6,4124(L_{3}(t))^{2} - 5,9811(L_{3}(t)) + 1,3994) \\ * (-543,06(L_{13}(t))^{3} + 1523(L_{13}(t))^{2} - 1418(L_{13}(t)) + 439,07) \\ * (-7,8366(L_{14}(t))^{3} + 15,855(L_{14}(t))^{2} - 9,1663(L_{14}(t)) + 2,0469) \\ * (7,9951(L_{15}(t))^{4} - 9,3355(L_{15}(t))^{3} - 0,162(L_{15}(t))^{2} + 2,1404(L_{15}(t)) + 0,52) \\ * (-0,8791(L_{21}(t))^{2} + 1,0984(L_{21}(t)) + 0,5591)) - (1.3015(t) - 1.82)) \\ \vdots \\ \frac{dL_{21}}{dt} = \frac{1}{L_{21}^{*}} ((L_{15}(t) * L_{16}(t) * L_{17}(t) * L_{18}(t) * L_{19}(t) * L_{20}(t) * (0.25(t)^{2})) + (1.15(t) + 0.152 * exp(2.32 * (t)))))) \\ + (0.152 * exp(2.32 * (t)))))) \end{cases}$$

На основе разработанной математической модели была реализована системнодинамическая модель в программной среде AnyLogic.

3.1. Вычислительный эксперимент

Был проведен вычислительный эксперимент для разрабатываемого модуля учета сотрудника open-source ERP-системы Odoo. При начальном векторе значений $L_0 = [0.5; 0.3; 0.8; 0.4; 0.6; 0.7; 0.9; 0.9; 0.5; 0.3; 0.4; 0.5; 0.3; 0.4; 0.7; 0.8; 0.9; 0.3; 0.4; 0.5; 0.5] было обнаружено, что в момент времени <math>t = 0.38$ не обеспечивается надлежащий уровень качества программного обеспечения для параметра L_8 (надежность) из-за высоких изначальных требований к правильности (L_3) и стабильности (L_7) кода.

Рис. 2. Критическая ситуация необеспечения надлежащего уровня качества ERPсистемы в момент времени.

На основе данной критической ситуации были сформированы правила продукции для исправления ситуации и ее переконфигурации (был переопределен вектор начальных значений). С учетом изменений в следующем эксперименте не возникло критических ситуаций.

4. Заключение

Была разработана системно-динамическая модель, основанная на аппарате системной динамики, для оценки и управления рисками, связанными с функционированием ERP-систем. Использование модели, реализованной в программном комплексе AnyLogic, позволяет проводить симуляции и эксперименты, что способствует более точному анализу качества ERP-систем.

Разработанная системно-динамическая модель может быть полезна для широкого круга лиц, включая разработчиков ERP-систем, менеджеров проектов, аналитиков, специалистов по управлению рисками и других заинтересованных сторон. Она позволяет проводить симуляции и эксперименты для более точного анализа качества ERP-систем, оценки и управления рисками, а также принятия обоснованных решений. Результаты моделирования могут помочь в определении оптимальных стратегий разработки, внедрения и эксплуатации ERP-систем, а также в улучшении их функционирования и производительности.

Список литературы

- 1. Резчиков А.Ф., Кушников В.А., Богомолов А.С., и др. Математические модели и методы анализа выполнимости планов управления сложными системами в условиях критических комбинаций событий. Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, 2023. 128 с.
- 2. Селютин А.Д. Анализ качества ERP-систем с открытым исходным кодом с использованием модели нечеткого вывода // Материалы XIX Международной научно-практической конференции. Саратов, 13-14 апреля 2023 года. Саратов: ИЦ «Наука», 2023. С. 654-664.
- 3. Rezchikov A.F., Selyutin A.D., Bogomolov A.S., Kushnikov O.E. Development of a Predictive Multilayer Perceptron for Quality Analysis of an ERP Systems // 16th International Conference Management of large-scale system development (MLSD). Moscow. Russian Federation. 2023.
- 4. Хамутова М.В., Кушников В.А. Математическая модель прогнозирования последствий наводнений // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2016. № 3. С. 109-114.
- 5. Серов Е.И. Проблема обновления ERP-систем на примере SAP ERP // Труды Семнадцатой международной научной конференции. Москва. 22–23 апреля 2016 года. М.: Российский новый университет, 2016. С. 329-332.
- 6. Артамонова Т.Е., Овсянникова А.В., Воробьева А.В., Попович А.Э. ERP-системы. Эффективность и проблематика внедрения ERP-систем // Естественные и технические науки. 2016. № 4 (94). С. 173-174.
- 7. Бельмас С.М. Разработка и внедрение ERP-систем // Шумпетеровские чтения. 2018. Т. 1. С. 48-60.
- 8. Одинцова М.А. Возможности систем класса ERP для стратегического управления предприятием // Политика, экономика и инновации. 2020. № 4(33). С. 7.
- 9. Петров В.Ю. Рынок ERP-систем на примере управления цепями поставок // Европейский журнал социальных наук. 2018. № 3. С. 29-37.
- 10. Уразаков Д.А., Беляева А.С. ERP системы в бизнесе // Российский электронный научный журнал. 2023. № 2 (48). С. 493-501.