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ABSTRACT

Since the early 2000s, the Royal Canadian Air Force (RCAF) has used a detailed personnel training
model—Pilot Production, Absorption, Retention Simulation (PARSim)—to study the progress of pilots
from recruitment to release. The model captures key dynamics of pilot career throughput, with particular
attention paid to the upgrade of inexperienced pilots arriving at operational squadrons via mentoring by
experienced pilots. Here we develop a simplified model of the same career structure, based on systems of
differential equations, that captures the fundamental dynamics and constraints of the full PARSim model
but enables rapid analysis of the parameter space via numerical simulation to produce a higher level view
of pilot occupation health. A further advantage of this model is that, within certain domains, the equations
can be solved analytically which provides valuable insights into the system’s stability, steady state, and
critical conditions in terms of the model’s fundamental parameters.

1 INTRODUCTION

Training pilots in the Royal Canadian Air Force (RCAF) is complex and resource intensive, with the cost
of training a fighter pilot having been estimated to be between five and ten million dollars for modern
platforms (Mattock et al. 2019). Combined with air assets being crucial for deterrence, intelligence and
reconnaissance, defense, and offense—and air officers being used to staff senior roles in the Canadian
Armed Forces (CAF)—managing the pilot occupation to ensure sufficient production, absorption (into a
squadron), and retention is both a high priority and a significant challenge. Explored here are the resulting
dynamics of this occupation structure (Section 2). Additional factors that affect retention include a strong
draw from industry, high stress, and remote base locations that can negatively affect families and work-life
balance, all of which can result in elevated attrition, an aspect that we can empirically measure and use in
our models (Bryce and Henderson 2023).

Historically, the Centre for Operational Research and Analysis (CORA) in Defence Research and
Development Canada (DRDC) has provided analytic support to decision makers in the context of the pilot
community using the Pilot Production, Absorption, Retention Simulation (PARSim) model. This detailed
model captures the flow of pilots from recruitment, through initial flight training, to their operational
training unit, through their operational flying careers as mentees and subsequently as mentors, to senior
staff positions, and ultimately to release from the CAF. It was first developed in the early 2000s in response
to Chief of the Air Staff direction regarding pilot regeneration (Corbett 2013). PARSim has been used
extensively in the decades since to study and plan for RCAF pilot community sustainability in the face of
policy, market forces, and other changes that affect the occupation (Séguin 2015).

An advantage of detailed simulation models, like PARSim, is that complex behavior can be captured and
specific what-if scenarios explored to determine their likely outcome, whether desirable or not. However, the
associated disadvantage of such models is that it is usually infeasible, in terms of effort and computational
cost, to explore the full parameter space to find regions that have either positive (i.e., stable and healthy) or
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negative (i.e., unstable or infeasible) outcomes. To date PARSim has been used as a detailed what-if analysis
tool solely by CORA analysts due to the complexity of the model and software implementation—originally
a system dynamics model (Corbett 2013) which has recently been reimplemented as a Discrete Event
Simulation (DES) model in Python using the Operational Research Integrated Graphical Analysis and
Modelling Environment (ORIGAME) (Okazawa 2013; ORIGAME GitHub repository 2024)(Okazawa2013;ORIGAMEGitHubrepository.2024). It was thus
desirable to develop a simplified model with a reduced parameter set that could run faster and produce
results across a wide parameter space. This would enable the broader analysis of what conditions constitute
a healthy pilot population, and a simpler and less-costly assessment of whether a particular situation appears
to be sustainable or not. Specific scenarios that are on the borderline of health in this simpler model can
then be explored in greater detail in the full PARSim model.

Here we develop this simplified model of the pilot population, representing the core flows and constraints
affecting the system using systems of differential equations. We focus on the experienced mentor population,
as they are required to absorb new pilots (mentees) and supply senior staff positions and are thus a critical
limiting component that directly relates to the health of the occupation. We call this model the Mentored
Experience Accumulation Differential (MEAD) model to emphasize the key relationships being captured.

The use of models based on differential equations to describe military populations is a well-established
approach, with early work using Markov models going back to the second world war (Seal 1945), and
(Bartholomew et al. 1991) being a classic text outlining Markov and related models. This class of models
represent standard continuous approaches to modelling population dynamics (Vincent and Okazawa 2019),
whereas DES models typically treat populations as sets of discrete entities and population movements as
stochastic events (Henderson 2019). Ideally, the relationship between discrete stochastic processes and
continuous differential models is that the continuous model captures the expectation, or average, of the
stochastic outcome of discrete models (see, for example, (Bryce and Henderson 2023)). The CAF uses a
number of both Markov and DES based models for workforce analysis (Boileau 2012). However, most
of these models do not incorporate mentee-mentor dynamics with experience accumulation, but rather
implement push or pull movements between groups (see (Vincent and Okazawa 2019) for a clear discussion
of push and pull promotions). There is a body of work that considers mentee-mentor dynamics by casting it
into the predator-prey model and explores the stability and controllability of such systems, see, for example,
(Schaffel et al. 2021) and (Lahteenmaa-Swerdlyk and Bourque 2024). In our work, we model a more
complex mentee-mentor dynamic that includes important additional constraints relevant to flight training,
specifically, a cap on flying positions and limited flying resources, constraints that are present in the full
PARSim model (Séguin 2015). Although we can rapidly simulate a given scenario by solving the equations
numerically, we also show that, within specified domains, the equations can be solved analytically. These
analytical solutions provide important insights into the stability, steady state conditions and critical states
of the system; insights that cannot be derived from more complex implementations of the PARSim model.

Because of MEAD’s relative simplicity, allowing scenarios to be rapidly characterized and simulated,
we also created a web tool, which is accessible to analysts, military staff, and decision makers alike. This
tool consists of an easy to use web interface where users input parameters describing the pilot occupation
(Section 2) and generate plots that visualize the system across various parameter spaces (Section 3).

2 THE MENTORED EXPERIENCE ACCUMULATION DIFFERENTIAL (MEAD) MODEL

The components of the PARSim model for a single fleet’s pilot population are depicted in the flow
diagram of Figure 1. The career model flow is divided into four regions consisting of initial pilot training
activities (lower left) leading to the operational squadron as an inexperienced (mentee) pilot, I, (upper left)
transitioning to an experienced (mentor) pilot, E, (upper right), then moving to and from non-operational
staff positions, N, (lower right). Losses from the mentor portion of the population are accounted for via an
attrition rate parameter, α , and other losses, h, that include postings to senior staff positions (upper right).
Due to the restricted release of new pilots in the RCAF, losses from the mentee portion of the population
are considered negligible and are not modelled. Upgrading is the process by which mentees transition to
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mentors, and the rate at which this occurs is the central aspect of the model. In reality, pilot upgrading is a
more complex, multi-levelled process with many internal and external dependencies, but military planners
are primarily concerned with a simplified division into inexperienced (mentee) and experienced (mentor)
pilots and seek the control the ratio between the two. Both PARSim and MEAD include this simplified
upgrade process, where a single transitional rate, u, captures the rate at which inexperienced pilots gain
experience and upgrade via mentoring from experienced pilots. The upgrade rate depends on the number
of inexperienced and experienced pilots, and “flying hours”—a parameter that encapsulates the maximum
annual aircraft availability and budget allocation with the cap set by decision makers, referred to as the
Yearly Flying Rate (YFR). We refer the reader to (Corbett 2013) for a thorough description of the full
PARSim model and to (Séguin 2015) which presents a real case study.

The pared-down elements of this model captured in MEAD are shown in bold in Figure 1, which
remove the details of the initial pilot training (replaced by a single intake rate parameter, g), advanced
training (which has minimal impact on overall pilot numbers), and the re-training of non-operational pilots
(where the staffing flow, s, is a net bi-directional flow). In addition to the level of detail, for an equivalent
scenario a key difference between the models is MEAD is continuous while PARSim is discrete.

Figure 1: RCAF pilot career flow diagram depicting the principle components of the PARSim model (full)
and the MEAD sub-model (bolded).

The parameters of the system must be non-negative, and are as follows:

1. I0: Initial inexperienced (mentee) population (t = 0)
2. E0: Initial experienced (mentor) population
3. N: Non-operational (staff) population
4. P: Number of authorized flying positions (maximum number of pilots in the operational squadron)
5. R: Number of flying hours required to upgrade
6. g: Operational Training Unit (OTU) graduates (people/year)
7. h: Other losses from the experienced population (people/year)
8. α: Attrition rate parameter (/year)
9. rI: Maximum inexperienced training rate (hours/year/mentee)
10. rE : Maximum experienced mentoring rate (hours/year/mentor)
11. rY : Maximum overall yearly flying rate (YFR) (hours/year)
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MEAD employs some simplifying assumptions to retain mathematical tractability: the minimum number
of non-operational positions is always maintained, so staffing flow into N equals attrition flow out to keep
N fixed; the return flow from N back to I is ignored, hence s is considered a net flow; there is no attrition
from I (an assumption in common with PARSim); h and g are fixed and do not change over time.

From the flow diagram we define a system of differential equations describing the changes in I and E,

dI(t)
dt

= g−u(t), (1)

dE(t)
dt

= u(t)− (αE(t)+αN +h), (2)

u(t) = min


rI
R I(t) (mentee-limited)
rE
R E(t) (mentor-limited)
rY
R (resource-limited)
rE
R (P− I(t)) (position-limited).

(3)

The upgrade rate u(t) is the most complex flow in the system and operates in one of four possible domains.
At any given time, the upgrade rate may be limited by the maximum rate of training per mentee, rI ,
the maximum rate of mentoring per mentor, rE , the maximum overall flying rate for the fleet, rY , or the
maximum number of flying positions, P. It is the minimum of these four rates that is the effective rate at a
given time. The upgrade rate is always inversely proportional to the number of hours of experience required
to upgrade, R, hence this parameter appears in the denominator of the upgrade rate equations. If the total
number of pilots, I +E, exceeds the number of authorized flying positions, P, then the excess pilots are
pushed into non-operational positions, so the effective number of experienced pilots becomes P− I. This
produces the position-limited upgrade rate, which is a special case of the mentor-limited domain.

3 SYSTEM SOLUTIONS

As described in the preceding section, the system operates in one of four domains depending on which
constraint is currently limiting the upgrade rate. Within each domain, the equations can be solved analytically,
and this allows us to characterize the behavior of each domain mathematically (Section 3.1), as well as
determining the crossover points between domains (Section 3.2) along the system’s trajectory. However,
there is no analytic solution to the entire model, thus a full solution to MEAD for a given scenario requires
numerical simulation, which we illustrate below (Section 3.3).

3.1 The Four Domains

If the system is mentee-limited we can solve for I(t) by a change of variables (X = g− (rI/R)I) which
allows us to find the solution by separation of variables (exponential) after which we can move back to our
original variable (I). For E(t) we can solve via Laplace transformation, where partial fraction decomposition
is used to facilitate taking the inverse Laplace transform to get back to the time domain. The solutions are
then

I(t) = ∆Ie−
rI
R t + ISS, (4)

where ∆I = I0 − ISS is the difference between the initial inexperienced population level, I0, and with the
steady state level being ISS = gR/rI . And

E(t) =
rI∆I

rI −αR

(
e−αt − e−

rI
R t
)
+∆Ee−αt +ESS, (5)
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where ∆E = E0 −ESS and ESS =
g−h−αN

α
. Note that we have cast the solutions in terms of ISS and ESS as

the mentee-limited domain is the only stable domain with finite, positive steady state values.
If the system is mentor-limited, we can solve for I(t) and E(t) using the same analytic tools as before

and we find

I(t) =
−k1

1− αR
rE

e(
rE
R −α)t +

(
−h−αN

1− αR
rE

+g

)
t + k2, and (6)

E(t) = k1e(
rE
R −α)t +

h+αN
rE
R −α

, (7)

where k1 = E0 −
h+αN
rE
R −α

, and k2 = I0 −
k1

1− αR
rE

.

If the system is resource-limited, we can solve for both I(t) and E(t) by change and separation of
variables. This yields the solutions:

I(t) = I0 +
(

g− rY

R

)
t, and (8)

E(t) =
(E0αR+ k)e−αt − k

αR
, (9)

where k =−rY +hR+αNR.

If the system is position-limited, we can solve for I(t) and E(t) obtaining

I(t) = k1e
rE
R t +P− gR

rE
, and (10)

E(t) =
−k1

1+ αR
rE

e
rE
R t + k2e−αt +

g−h−αN
α

, (11)

where k1 = I0 −P+
gR
rE

, and k2 = E0 +
k1

1+ αR
rE

− g−h−αN
α

.

3.2 Determining Domain Crossover Points

To simulate the population trajectory over time we must determine the points at which crossover between
domains will occur. To do so we solve for the intersections of the subfunctions of u(t) depending on the
current domain. For example, if the system is initially in the resource-limited domain, we determine the
point at which the system will crossover to the mentee-limited domain by solving for t1 in

rY

R
=

rI

R
I(t1)⇔ rY = rI

(
I0 +

(
g− rY

R

)
t1
)
⇔ t1 =

(
rY

rI
− I0

)/(
g− rY

R

)
.

Similarly, to find when the system will crossover to the mentor-limited domain, we can solve for t2 in

rY

R
=

rE

R
E(t2)⇔ rY = rE

(
(E0αR+ k)e−αt2 − k

αR

)
⇔ t2 =

−1
α

ln
(

rY αR+ rEk
rE (E0αR+ k)

)
.

To find when the system will crossover to the position-limited domain, we can solve for t3 in

rY

R
=

rE

R
(P− I(t3))⇔ rY = rE

(
P− I0 −

(
g− rY

R

)
t
)
⇔ t3 =

rEP− rY − rEI0

rE
(
g− rY

R

) .
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Finally, the actual crossover point will be at min{t ∈ (t1, t2, t3) | t ∈R>0}. If a crossover point t is found,
then we can find the next one t ′ by repeating the process using the new domain and by setting I0 = I(t) and
E0 = E(t). If no crossover point is found (either no solution exists or the solution is non-positive), then
the current domain corresponds to the final domain of the system. Appendix A shows the equations to be
solved to find all possible crossover points; ten out of twelve equations for the crossovers are transcendental
equations, four of which we must explicitly root find to solve. To find such trajectory crossover points
we used SciPy’s optimize.root_scalar method (Virtanen et al. 2020). We set the objective function to
f (t) = g(t)−h(t), where g(t) is the subfunction of u(t) for the current domain and h(t) is the subfunction
for the target domain. We use bracketing instead of initial guess to exclude the possibility of the algorithm
finding a negative root, as we are interested in future crossovers. We bracket as [ε,z], where z is a positive
real number such that f (z) > 0 and ε is a small positive number. Because g(t) is the current upgrade
rate, then g(ε)< h(ε) =⇒ f (ε)< 0, satisfying the requirement that we bracket zero (boundary values of
different signs). We chose ε = 0.000001 as the bottom limit of the bracket to avoid finding a null crossover
point, while maintaining some analytic precision and responsive computation. We find z by iteratively
evaluating f at values up to and including 40 years. We chose 40 years as an upper bound as CAF decision
makers are not usually interested in results past this threshold and to maintain a reasonably responsive
computation time.

For the special case where the initial state of the system falls exactly on a boundary between domains,
then the domain it belongs to is considered to be the domain the trajectory will move into.

3.3 Example Scenario

To demonstrate an application of the model we consider a running example with the following parameters:
N = 25 pilots, P = 30 pilots, R = 250 hours, g = 4 graduates/year, α = 0.07 /year, h = 1 pilot/year,
rI = rE = 144 hours/year/mentee-mentor, and rY = 1500 hours/year.

(a) System domains. (b) Change in system domains.

Figure 2: System phase space.

We first consider the I–E phase space for our set parameters. The lines marking the separation between
the domains in Figure 2a correspond to the equations of the intersections of the subfunctions of u(t)
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(Section 3.2, Appendix A). Note that if the amount of flying resources are not a limiting factor (i.e., rY
is large enough), then the pink resource-limited region of the plot would narrow and disappear, and the
mentee-limited and position-limited domains would be separated by the line with equation rII = rE(P− I),
and the lines rII = rEE and rEE = rE(P− I) would intersect to form a triangle delimiting the mentor-limited
domain in the bottom part of the plot.

In Figure 2b we can observe how the experienced and inexperienced populations will change over time
starting at any given value for I and E, and show the vector field defined by the differential model that
indicates the direction of change at each point in the field. The colored areas in the figure define regions of
stability: within the grey region, the system is stable and will progress to a steady state condition denoted
by the star; within the brown region, the system is unstable and will progress to a mentor-limited collapse,
E = 0 pilots, along the bottom of the figure; and within the white region, the system is unstable and will
progress to a position-limited collapse, P− I = 0 pilots, along the right side of the figure. For the system to
be stable, several conditions must be met: there must always be a critical minimum number of mentors or
the system will progress irreversibly toward a mentor-limited collapse; if the number of mentors is low but
not below the critical level, then the number of mentees must be large enough as to not induce a collapse
in the mentor-limited domain; and the number of mentees must not exceed a certain critical maximum
number or the system will progress irreversibly toward a position-limited collapse. Moreover, historically
it was believed that if the number of mentors is low, then the number of mentees should also be kept low
in order to stabilize the system. However, this result shows that, in fact, in a low-mentor situation, it is
both having too few or too many mentees that can lead to a collapse, assuming no intervention is taken.

The inset plot in Figure 2b shows the behaviour around the steady state (here ISS ≈ 6.944 pilots and
ESS ≈ 17.857 pilots). We observe that, generally, the system follows a counter-clockwise trajectory to
steady state, approaching more aggressively when I < ISS and E > ESS or when I > ISS and E < ESS.

By comparing the two graphs in Figure 2, we can observe some common behaviors. For example,
in the bottom-left corner of the plots, the system can start in the mentee-limited domain, crossover to
the mentor-limited domain and collapse; in the upper right side of the plot, the system can start in the
position-limited domain, transition to the resource-limited domain, then to the mentee-limited domain and
reach steady state; or, in the bottom right corner of the plots, the system could begin in the mentor-limited
domain, crossover to the position-limited domain and collapse.

To analyze specific system paths we consider the population trajectory through the vector field defined
by the differential model. On inputting the system parameters plus I0 and E0 we can consider the specific
trajectory of the system as an overlay to the vector field describing the system, the times at which the
system will change domains, collapse, or reach the steady state, and a matching plot showing the variation
of I(t) and E(t) through time (see Figure 3). Note that as we asymptotically approach steady state, we
define reaching this state as being within 5% of ISS or ESS, a choice motivated by staffing levels of 95%
or higher being considered healthy in the CAF (Henderson 2019).

Figure 3 shows example system trajectories near the success versus mentor-limited collapse threshold
seen in Figure 2b using the same input parameters. In Figure 3a, the system starts in the mentee-limited
domain, crosses to the mentor limited domain after 2.11 years, and collapses after 6.61 years. Therefore,
if this system started in January 2025, we can expect the mentor population to be completely depleted by
approximately August 2031. Here, we can also observe how sensitive the system can be. For example,
having one more mentor will cause the system to deviate towards the steady state (Figure 3b) instead of
collapsing (Figure 3a).

4 VERIFICATION

Simulations can most easily be run in practice by solving MEAD’s equations numerically. To verify these
results, we compared the numerical simulations with the analytical solutions for each domain and crossover
points between domains for a number of cases, and we compared MEAD’s results to those of PARSim. For
the comparison between numerical and analytical solutions, we present a special case where the system
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(a) I0 = 0, E0 = 8. (b) I0 = 0, E0 = 9.

Figure 3: System trajectories for different values of I0, E0.

crosses through all four domains, a strong test (I0 = 22 pilots, E0 = 7 pilots). From Equation 1,

∆I
∆t

≈ dI
dt

= g−u(t), ∆I = I(t +∆t)− I(t) =⇒ I(t +∆t)≈ I(t)+(g−u(t))×∆t,

where ∆t is the time step and the differential equation is recovered in the limit. Likewise, from Equation 2,

E(t +∆t)≈ E(t)+(u(t)−h−αE(t)−αN)×∆t.

To determine the trajectory of the system directly from the differential equations we iteratively found
I(t +∆t) and E(t +∆t), calculating u(t) at each timestep and varying the value of ∆t for each experiment.
Figure 4a compares the analytic trajectory with the one obtained directly from the DE with ∆t = 7 years
(the artificially large value selected to allow visual discrimination). Figure 4b shows the mean absolute
error (MAE) between both solutions as a function of ∆t. As ∆t → 0 years we see MAE → 0, verifying the
analytic solutions and crossovers presented here.

For the verification of MEAD against PARSim, we consider a scenario that is initially far from steady
state and observe the initial transient behavior and long term steady state behavior of both models. For
PARSim g is specified as entry of one pilot every three months, and for I0 experience is uniformly distributed
on [0,R]. Visually the trajectories agree reasonably well (see Figure 4c), and both approach identical steady
states to four significant figures (EPARSim

SS = 17.8566 pilots and EMEAD
SS = 17.8571 pilots; IPARSim

SS = 6.9443
pilots and IMEAD

SS = 6.9444 pilots; where PARSim’s steady state was measured over the final 50 years of
a 200 year simulation run). The transient differences are an area of ongoing investigation, but can be
attributed to PARSim and MEAD implicitly assuming different intake processes and survival distributions
for upgrade and attrition (Henderson and Bryce 2019; Bryce and Henderson 2020).
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(a) Comparison of the trajectories with ∆t = 7 years. (b) The MAE with varying values of ∆t.

(c) PARSim versus MEAD trajectories.

Figure 4: Verification of analytic solutions.

5 DISCUSSION

Inspecting the vector fields of a given MEAD parameterization, one can observe certain critical values. In
Figure 3 in the mentor-limited (green) region, there is a critical value for the mentor population, Ecrit , above
which the vector field progresses upwards toward a possible stable solution, and below which the vector
field progresses downwards toward a collapse. Likewise, for the position-limited (white) region there is a
critical value for the mentee population, Icrit , below which the vector field progresses to the left toward a
possible stable solution, and above which the vector field progresses to the right toward a collapse. These
critical values can be determined by inspecting the underlying differential model (Equations 1 and 2, and
upgrade model 3). For the mentor-limited region we find Ecrit = (h+αN)/( rE

R −α), as determined by
setting dE/dt (Equation 2) to zero, which equals approximately 5.4 pilots for our example. It is of note that
this critical value is highly sensitive to α . Similarly, for the position-limited region Icrit = P− gR

rE
, giving

approximately 23.1 pilots for our example. Above this value I will increase and the effective number of
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experienced pilots, P− I, will be driven to zero. Below this value the system will either be driven to steady
state or approach a resource limited special case. For the resource-limited region if dI/dt = 0 we have a
special case where for intake g equal to the resource limit rY/R = 6.25 /year for our parameterization, then
I(t) = I0 for all t and E(t)→ ESS, however this is a metastable solution and any small deviation will push
the system out of equilibrium in I. If g > rY/R, the system will progress into the position limited region,
if g < rY/R, the system will progress into the mentee-limited region. We observe that the mentee-limited
domain is the only domain in which the system is stable and approaches a steady state condition, and that
if E ever drops below Ecrit (critically mentor-limited), or if I ever exceeds Icrit (critically position-limited),
the system will irreversibly collapse.

The mentor population will have an increased effective attrition rate parameter over α , due to the
requirement to maintain the non-operational positions N (see Figure 1). As the attrition rate parameter
fixes the number of people flowing out, by definition, we have out = α

∫ t+1
t Edt ≈ αE (see (Bryce and

Henderson 2023)), and rearranging we have α = out/E. As the number flowing out of E is both due to
true loss (attrition) and movement to N to replace the attrition from N, we have out = αE +αN +h (see
Equation 2) and so the effective attrition rate is αe f f = α(1+N/E)+h/E and we get an “enhanced”, or
increased, attrition rate that is inflated. As a sufficient number of mentors is required to absorb mentees
into a squadron both α and N are important control parameters when attempting to confront situations
where the mentor population level is too low. We note that in steady state, the flow into E must equal
g, and the inflow to E must equal the outflow. From out ≈ αE and the steady state constraints we find
ESS = g/αe f f ≈ 17.857 pilots for the parameters used in our running example, agreeing with MEAD.

Here we made simplifications to the full model of pilot flow as captured in PARSim. The goal was
two-fold, one was to allow a simple to implement and responsive tool that could be used at the staff level
and by decision makers, and the second was to facilitate finding parameters that are plausibly achievable
and appear to lead to a healthy state over time—and then explore these more extensively in PARSim. We
are currently modelling two aircraft fleet transitions, the fighter transition from the CF-18 Hornet to the
F-35 Lightning, and the Canadian Multi-Mission Aircraft (CMMA) transition from the CP-140 Aurora to
the P-8A Poseidon, and will be exploring where a MEAD versus PARSim approach is advantageous and
carefully contrasting the models.

By modifying various parameters where partial control mechanisms may exist such as attrition (α , h),
the number of OTU graduates (g), staff positions (N), and other parameters, the sensitivity and stability
of the system can be explored and appropriate planning and risk mitigation measures can take place. To
facilitate changing parameters and exploring what-if scenarios, we created a web tool where parameters
can be set by sliders and input boxes, and a number of plots are generated (including the figures reported
here, in addition to several others). The intent is to enable both analysts, who traditionally have performed
such what-if exploration, as well as staff and decision makers, to explore and understand the response of
the system to various parameterizations.

We presented preliminary results to the RCAF Fighter Capability Office (FCO) to obtain feedback
regarding the potential usefulness of the web tool for staff and decision makers. They saw value in the
interactivity and ability to quickly answer what-if questions. In particular, being able to discern the upgrade
limiting domains through which the population trajectory passes (e.g., Figure 4a) and how long it would take
to approach steady state were seen as beneficial. Future work will include carefully assessing differences
between PARSim and MEAD and working with military staff and senior officers to deploy and support
the tool for RCAF usage.

6 CONCLUSION

We have developed a judiciously simplified differential equation model, MEAD, of a detailed DES pilot
occupation model, PARSim. MEAD reproduces the key dynamics and inter-relationships present in
PARSim while being orders of magnitude faster to setup and execute for conducting simulations. Due to
its simplified implementation and very fast execution speed, a web tool was developed that accepts user
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inputs for parameters and initial conditions describing a pilot occupation, and returns a number of graphs
communicating how the initial populations will evolve over time as well as regions in the parameter phase
space that are healthy (stable and leading to a non-zero steady state) and unhealthy (unstable and leading
to population collapse). Our analytical analysis of MEAD’s system of equations leads to the discovery
of steady state conditions and certain critical values that bound the regions of stability and instability.
These insights were not possible without MEAD’s mathematical description of the pilot career structure.
An advantage of the web tool is it enables staff and decision makers to run what-if scenarios themselves,
allowing intuition to be built and specific scenarios to be investigated. One key feature of the pilot structure
is its sensitivity to the mentor population size, and small changes in parameters can lead to large changes
in outcome. This makes a sensitivity analysis and understanding of how unstable the system can be in
some regions of the parameter phase space important, and MEAD and the associated web tool facilitate
such analysis and build such understanding.
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A UPGRADE DOMAIN CROSSOVER EQUATIONS

Here we collect all the domain crossover equations, see Section 3.2 for discussion.

Table 1: Crossover equations for all possible domain changes.

Initial Domain Target Domain Crossover Equation
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+∆Ee−αt +ESS

)
Resource-Limited t = −R

rI
ln
((

rY
rI
− ISS

)
/∆I
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