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ABSTRACT 

Manufacturing systems, as significant energy consumers and potential contributors to energy efficiency 
optimization, play an important role in addressing global energy challenges. Digital Twins utilize available 
data from smart manufacturing systems to effectively understand and replicate systems’ energy-related 
behaviors. Digital Twins facilitate detailed systems analysis and enable decision support for optimizing 
energy efficiency through performing relevant "what-if" scenario analyses. In this paper, we propose a 
methodology for data-driven extraction of simulation models for Energy-Oriented Digital Twins of smart 
manufacturing systems. Through a case study of a data-driven Energy-Oriented Digital Twin for an 
assembly process of a quadcopter drone part, we illustrate our initial methodology and the related data 
requirements. Our case study helps comprehend the complexity of extracting Energy-Oriented Digital 
Twins in smart manufacturing systems, offering insights into the integration of production and energy-
related processes and behaviors of the system.  

1 INTRODUCTION 

Rapid global economic growth and population increases are driving a significant surge in energy demand, 
which is projected to potentially double by 2050, leading to concerns about energy supply and resource 
reduction (Khan et al. 2021). CO2 and other greenhouse gas emissions are also driving climate change, 
necessitating immediate action to reduce their impact (Keiner et al. 2023). The industrial sector, accounting 
for more than 30% of global greenhouse gas emissions, is under significant pressure to minimize its 
environmental footprint (Mallapaty 2020). Consequently, several countries are targeting 'net zero' carbon 
emissions by enforcing strict controls on industrial systems. The shift towards greener operations, coupled 
with the surge in consumer demand, is leading to increased manufacturing expenses and impacting 
competitiveness, highlighting the urgent need for advanced energy-saving technologies, and establishing a 
low-carbon energy infrastructure. In this context, Digital Twin (DT) technology stands out as a key enabler, 
offering a promising solution to enhance energy efficiency in manufacturing by optimally aligning plant 
operations and assets to tackle energy-emission challenges (Do Amaral et al. 2023). 

A DT is a virtual model that replicates and simulates the behavior of a physical system. A DT is defined 
as a virtual representation or model that mirrors a physical object, where both entities are linked through 
the real-time exchange of data (Singh et al. 2021). Smart Manufacturing Systems (SMS) are advanced, fully 
integrated, and collaborative systems that deliver real-time responses to meet the demands and conditions 
of the industry, supply chains, and customer needs (Kusiak 2023). The term "energy-oriented" refers to 
approaches, strategies, or systems that emphasize efficient energy utilization. Implementing Energy-
Oriented DTs (EODTs) in SMSs to evaluate energy utilization and enhance energy efficiency facilitates the 
identification of significant energy consumers, supports process improvements, and leads to cost reductions 
(Billey and Wuest 2024). While a standard DT can track energy consumption by monitoring the necessary 
variables, an EODT specifically simulates, analyzes, and supports decision-making to optimize energy use 
and sustainability, providing targeted insights and actionable strategies for energy efficiency improvements. 
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Even with the broad application of DTs in diverse domains of manufacturing systems, the adoption of DTs 
for improving energy efficiency in the manufacturing industry is still notably limited. In this paper, we 
explore the methodology for developing EODTs for SMSs, and through a case study, we explain DT’s 
model extraction methodology and DT’s potential to optimize energy efficiency in SMS. 

We structured the paper as follows: In Section 2, we discuss the concept of DT and its role in enhancing 
energy efficiency in SMSs, with an overview of relevant research. In Section 3, we outline an initial 
methodology for extracting EODTs. In Section 4, we present a case study to illustrate the requirements, 
implementation process, and outcomes of EODTs in smart manufacturing systems. Finally, in Section 5, 
we summarize our findings and provide insights into potential future advancements in EODT for SMSs. 

2 BACKGROUND AND RELATED WORK 

In this section, we provide an overview of DTs for SMSs, followed by a discussion on the significance of 
energy efficiency in SMS. In the final subsection, we summarize existing research on the use of modeling, 
simulation, and DTs for enhancing energy efficiency in manufacturing processes. 

2.1 Digital Twins for Smart Manufacturing Systems 

The origins of DTs can be traced back to Grieves and Vickers (2017) formal introduction to the concept of 
DTs, at a conference organized by the Society of Manufacturing Engineers. Grieves outlined the 
foundational framework that consists of three main components: the physical entity in the real world, its 
digital counterpart, and the data and information connections that facilitate interactions between the 
physical and virtual realms. The term “Digital Twin” was first used in the work of Hernández and 
Hernández (1997), where DT was applied to iterative changes in the design of urban road networks. The 
continuous updating feature of DTs allows us to test various “what-if” scenarios, aiding in outcome 
prediction and decision-making support. Furthermore, the International Organization for Standardization 
has introduced a framework for DT manufacturing. ISO 23247 aims to establish a universal language and 
structure for the development of DTs within the industry (ISO 23247-1  2021). 

Data-driven solutions, which utilize data analysis and interpretation to inform decision-making, offer 
an opportunity for manufacturing systems as an effective way to address challenges, including rapidly 
changing demands and the need to reduce time to market. Consequently, the adoption of data-driven 
technology is increasingly employed as an approach to developing DTs in process industries (He et al. 
2019). DTs have demonstrated substantial potential across various domains, attracting significant interest 
from both the industrial sector and academic communities (Liu et al. 2021). DTs can be applied to various 
industry domains, such as training employees (Kaarlela et al. 2020), real-time monitoring (Li et al. 2023), 
fault detection (Kumbhar et al. 2023), and maintenance prediction (Zhong et al. 2023). 

2.2 Energy Efficiency in Manufacturing Systems 

Over the last three decades, researchers and policymakers have paid close attention to the relationship 
between energy demand and environmental impact (Hussain and Zhou 2022). Energy performance stands 
as a crucial component of policies aimed at securing inclusive and sustainable economic growth worldwide 
(Ahmad and Zhang 2020). Energy efficiency represents the ratio of performance, goods, or services output 
to the necessary energy input (Lovins 2004). In manufacturing, energy efficiency focuses on optimizing the 
ratio of production output to the total energy consumption (Patterson 1996). 

Manufacturing processes encompass a range of inputs and outputs. Inputs include production 
components such as raw materials and energy, whereas outputs include the manufactured products and 
waste generated (Mohamed et al. 2019). Energy waste may occur due to heat loss, inefficient usage, or 
inappropriate arrangements of machinery. Optimizing energy consumption in non-value-adding production 
phases is crucial for reducing overall consumption, targeting periods where energy is used without 
contributing to product creation, such as the idle state of a machine (Römer and Römer 2021). 

1670



Khodadadi and Lazarova-Molnar 
 

 

To optimize production, continuous monitoring of operational parameters is crucial for improving 
resource efficiency, output quality, and energy consumption through data-driven insights and iterative 
improvements. In the context of  SMSs, key enabling technologies encompass the Internet of Things (IoT) 
(Ryalat et al. 2023), Cyber-Physical Systems (CPS), cloud computing, artificial intelligence (AI) (Liagkou 
et al. 2021), and big data analytics (Liagkou et al. 2021). A study by the Institute for Mechanical Systems 
Engineering and Structural Durability (IMAB) at Clausthal University of Technology, based on a VDMA 
survey, highlights the significant advantages of SMSs  (Lentes and Dangelmaier 2013). According to IMAB 
assessments, the benefits of utilizing data in SMS include a 70% reduction in planning errors, 30% less 
planning time, 15% in change costs reduction, and savings of 3-5% in total manufacturing costs, underlining 
the primary advantage of enhanced planning quality and error prevention. 

2.3 Modeling, Simulation, and Digital Twins for Energy Efficiency in Manufacturing Systems 

Despite the vast use of DTs in various aspects of SMSs, research in the field of EODT in SMS is limited. 
As a result, we performed a literature review on the application of DTs and simulation to enhance energy 
efficiency in SMSs. To enhance energy efficiency in SMSs, it is critical to both understand the dynamic 
interconnections across the system and closely analyze the energy consumption behaviors of each 
component. Additionally, evaluating key metrics such as output, time, quality, and costs is essential for a 
holistic approach to improving efficiency (Wenzel et al. 2023). 

Simulation models can generally be developed using one of four main approaches: discrete-event 
simulation (DES), continuous simulation, also referred to as system dynamics (SD), agent-based simulation 
(ABS), and hybrid simulation (HS). Each paradigm has its own strengths and application areas, and offers 
unique insights, especially for enhancing energy efficiency in manufacturing. In DES models, the state of 
the system is considered to change only at discrete points in time, triggered by events. In contrast to DES, 
in SD the state of the system is considered to change continuously over time (Banks and Carson 1986). 
ABS concentrates on a system's active parts, describing them as agents, each with their own behaviors (Parv 
et al. 2019). HS models systems with mixed continuous/discrete behavior (Mosterman 1999). 
 From existing literature, we observed that DES and HS provide valuable tools for modeling and 
analyzing different energy-related aspects of an SMS. Based on literature, there is three main strategies for 
integrating energy-related behaviors of manufacturing systems in DES simulations (Herrmann et al. 2011). 
Strategy A employs external energy analysis, utilizing production data from the simulation environment 
for energy demand calculations, offering an approach where energy needs are assessed separately. Strategy 
B integrates production simulation with other modules, such as technical building services (TBS), either 
within one software suite or through the combination of multiple tools, for a more comprehensive analysis. 
Strategy C embeds energy considerations directly into the simulation environment itself, creating a unified, 
seamless approach for energy efficiency analysis within manufacturing systems. 

In the following, we list relevant approaches of the different simulation strategies, used for enhancing 
energy efficiency in SMSs. Ghani et al. (2012) implemented strategy A in the automotive sector, focusing 
on comprehensive energy analysis and optimizing design processes to minimize time and costs. The study 
offers insights to identify and reduce energy use in idle processes, supporting sustainable resource 
management and cost-effective product development. 

Sobottka et al. (2020) developed and evaluated a model based on strategy B for a metal casting 
manufacturer in Austria, integrating DES and SD models into an HS method for multi-criteria optimization. 
Results indicate a potential of ca. 10% in global optimization, improving cost and energy efficiency, with 
an additional 6% in energy savings. Using the same simulation paradigm, Schönemann et al. (2019) created 
a hybrid agent-based simulation model for battery factory systems, improving energy efficiency and 
reducing environmental impact. Schönemann et al.’s work enhances energy efficiency, environmental 
impacts, and costs by deriving alternative strategies in the production of lithium-ion battery cells.  

To study the feasibility of the third strategy C, Dér et al. (2022) developed a DES framework to evaluate 
the environmental impact of manufacturing fiber-reinforced automotive parts, analyzing energy use at each  
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process step to create load profiles. The authors identified that the top five process steps accounted for 
about 80% of energy intensity. Dér et al. further revealed through simulation that increasing processing 
rates by 5% in bottleneck areas could eliminate the need for an additional machine, thereby reducing total 
energy demand. Similarly, Kesharia et al. (2018) presented a DES to explore energy efficiency in the pulp 
and paper industry, implementing strategies to improve energy use and production flow in two scenarios, 
enhancing both energy and operational efficiency. 

3 ENERGY-ORIENTED DIGITAL TWINS 

An EODT is a virtual model designed particularly to simulate, analyze, and optimize the energy 
consumption behavior and possibly, sustainability of systems, such as SMS. EODTs leverage real-time data 
and predictive analytics to identify energy-saving opportunities and reduce carbon footprints, making DTs 
an essential tool for achieving energy efficiency and sustainability goals in the industrial sector. In this 
section, we introduce an initial methodology for extracting EODTs. We examine the key elements of an 
EODT for an SMS, as well as the essential data requirements to capture manufacturing processes' energy 
dynamics accurately. We then explore model extraction processes, utilizing data- and process-mining (PM) 
techniques. Lastly, we discuss the methodology for model validation of EODTs. 

3.1 Key Elements of Energy-oriented Digital Twins of Manufacturing Systems 

 
Figure 1: Framework for the energy-oriented data-driven Digital Twin. 

 
As we illustrate in Figure 1, three key elements that enable a data-driven DT for an SMS include the physical 
entity, data-driven simulation model, and data flow between these two elements. The physical system 
(SMS) that generates large-scale data, such as event logs from different sources, including IoT technology, 
focuses on capturing energy-related information, such as energy consumption over time. The extracted data, 
integrated from various sources, creates a comprehensive, accurate, and current dataset that also serves as 
a historical record. In the data validation step, we validate the data to ensure it is free from problems such 
as noise and missing values (Koschmider et al. 2021). The validated data is a foundation for reliable 
knowledge extraction. In the next step, knowledge extraction involves pulling insights from validated data, 
focusing on several critical processes. Event detection in an SMS is crucial for the construction of DES 
models. Experts pinpoint events in unlabeled event logs, and further ML techniques, such as classification 
(Morariu et al. 2020) and clustering (Landauer et al. 2020), can be used for automatically detecting events. 
Next, we extract the process flows with the help of the PM of the event logs. In the context of knowledge 
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extraction, data analysis facilitates the uncovering of process insights, such as the distribution of timed 
transitions, as well as energy-specific knowledge, for example, Energy Consumption Profiles (ECP). From 
the knowledge extraction, we achieve a unified process model that integrates both product and energy-
focused processes. Discovered process flows can be described and analyzed using modeling languages or 
specifications, such as Petri nets (Murata 1989). The next critical step in our proposed framework is creating 
an energy-oriented, data-driven simulation model based on the extracted model. This simulation model 
automatically updates to mirror changes in the SMS (Friederich et al. 2022). The continuous validation 
ensures accurate models that support effective energy-focused decision-making. Finally, the validated DT 
turns into a valuable resource for executing various "what-if" scenarios, leading to the development of a 
decision support system focused on energy optimization. 
 
3.2 Data Requirements 

Next, we identify the essential data requirements for enabling EODTs in SMSs. Given the discrete 
operational nature of manufacturing systems, the collection of event and state logs is a standard practice. 
Although DES is widely researched and frequently used in SMSs, applying DES to assess energy aspects 
of systems is a relatively recent development that has become increasingly significant (Wenzel et al. 2023). 
In our previous study (Khodadadi and Lazarova-Molnar 2023), we identified the necessary data for creating 
EODTs in SMSs. We described the corresponding event and state log structures, required for gathering 
information on energy consumption and operational states of SMSs for analysis and improvement of SMSs 
energy efficiency.  Event logs should be collected from each asset in the manufacturing system and the 
production line of interest, along with a state log from the production line of interest.  

The event log structure comprises several key components that capture the dynamics of energy 
consumption and task management. Each event is marked with a Timestamp (TS), indicating the exact time 
the event occurred, a Task Identifier (ID) for tracking and identification of each event, and an 'Event' field 
that details the action occurring at the time of logging. The Energy Stamp (ES) captures the energy 
consumption of each asset for each activity in the meantime of event occurrence. Each piece of equipment 
within the system is uniquely identified in the 'Asset' field, and the Power Type (P) field indicates the source 
of energy, such as battery, grid, or solar, which is essential for further energy analysis and optimization. 

The state log complements the event log by tracking the status of assets over time. The state log includes 
a Timestamp (TS), 'Asset' as a unique identifier for each piece of energy-consuming equipment, and 'State' 
field to identify the asset's current operational state. This structured approach to data logging is vital for 
detailed analysis of a system's energy bottleneck and for driving improvements in operational efficiency. 

3.3 Energy-oriented Model Extraction 

In the following, we describe the methodology for extracting a data-driven EODT from an SMS. The 
extraction process captures event and state logs from the original model, encompassing all relevant 
activities and energy consumption patterns. We process the extracted logs using PM techniques to identify 
the underlying process flows. The extracted flows are integrated to create a comprehensive energy-oriented 
model, represented as an SPN, which is then simulated. In Algorithm 1, we outline the systematic approach 
for extracting a comprehensive model from event and state logs. Collected data is first subject to a data 
validation phase, which includes cleaning and preprocessing tasks such as removing incomplete event 
records. Subsequently, we implement PM techniques to extract individual process flows from the 
production line and each asset's event log. These process flows are then integrated, combining the basic 
production flow with the asset’s process flows in overlapping processes, such as places where assets are 
involved in the production process. Moreover, we transform asset flows into iterative loops to signify 
repeated utilization. The final process flow integrates both time-oriented and energy-oriented process flows. 

The underlying extracted model is a Stochastic Petri Net (SPN), which is characterized by incorporating 
two distinct node varieties, named places, and transitions, with connections that extend from a place to a 
transition or vice versa (Murata 1989). The changes within a Petri net are driven by the movement of tokens 
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from one place to another via transitions representing the execution of operations or events, altering the 
system's state accordingly. SPNs distinguish between two categories of transitions: timed and immediate 
transitions. To effectively implement the SPN model, it is essential to detail the attributes of each transition, 
such as the distribution of timed transitions and the weights of immediate transition outputs.  

After PM, we apply data mining in four steps. First, we extract probability time distributions for timed 
transitions (Friederich et al. 2022). For start events, such as new orders, we employ a modest input dataset 
of the original model (a simulation model showcasing a manufacturing system used as a case study), while 
for other timed transitions, we utilize the whole dataset. Second, for immediate transitions with multiple 
outputs, we determine each event's occurrence weight. The third task involves calculating each asset's 
energy consumption profile from its event log. To achieve the ECPs of the asset, we calculate the energy 
consumed between the beginning and end of activity with the same ID, dividing by the activity's duration, 
as outlined in Equation (1), expressed in the power per unit of time, where n represents the number of IDs, 
𝐸𝑖 denotes the energy consumed for the activity, and 𝑇𝑖 is the time duration of each activity. The average 
energy consumed for all identical activities is considered the energy consumption rate for that activity, 
which, within our extracted process flow, denotes the energy rate for transitions. The fourth task aims to 
identify and analyze special energy-related behaviors of assets, for instance, the charging threshold for 
battery-operated assets. We can identify special energy-related behaviors from each asset’s event log. 

 
 𝐸𝐶𝑃 =  

1

𝑛
∑ (

𝐸𝑖

𝑇𝑖
)𝑛

𝑖=1  (1) 
 
The final step of our methodology is the integration of the extracted ECP, and process flows with their 

distributions into an energy-enriched process flow. This model comprehensively extracts the EODT, 
detailing both the operational processes and the associated energy consumption patterns of the system. 

 
Algorithm 1: Extraction of Energy-Oriented Digital Twin model. 

 

Input:  energy-oriented_event_log 

Output: energy_featured_model 

Procedure: 

1. Data Preprocessing 

• Remove noise and incomplete events. 

2. Process Mining 

• For each event log, extract the individual process flows. 

• Synthesize the production line and each asset’s process flows into a unified process flow 

model by: 

- identifying and aligning overlapping processes. 

- converting asset flows into iterative loops, indicating repeated asset utilization. 

3. Data Mining 

• Timed Transitions 

- Calculate durations between the start and end of the same activities based on 

individual event identifiers. 

- Apply statistical analysis to find the best-fitting probability distribution. 

• Immediate Transitions 

- Determine the probability of occurrence for each event by dividing the count of 

specific event occurrences by the total count of all linked places’ events. 

• Energy Consumption Profile extraction 

- From each asset’s event log aggregate activities and compute: 

      - energy consumed and the duration until the subsequent event. 

 - calculate the mean of energy consumption rate per unit of time per each activity. 

• Energy-Related Behaviors of Assets 

- Identify and analyze specific or unusual energy consumption patterns and behaviors of 

assets that deviate from the norm such as activities that are not included in the 

production process. 

4. Integration of Process and Energy Data  

• Merge the detailed process flows with the extracted energy profiles to construct the 

“energy_featured_model”. 
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3.4 Model Validation 

Validation is the process of ensuring that a simulation model accurately reflects real-world behaviors 
sufficiently for informed decision-making. The model validation process follows a two-step approach: first, 
developing a model with high face validity; second, assessing the simulation's output quality (Kleijnen 
1995). Face validity is assessed by presenting the model's outputs to both users and experts familiar with 
the system, ensuring the outputs reflect realism. To further validate the extracted model, we directly 
compare its outputs with data from the original model. The comparison utilizes Key Performance Indicators 
(KPIs) that are pivotal in the validation process of data-driven EODT models (Friederich 2023). These KPIs 
and Energy KPIs include production volume, which measures the total number of production orders 
completed in a set period, throughput, which indicates the portion of the output to production orders (input), 
overall energy consumption, which tracks total energy used through the manufacturing process over time, 
and energy consumption per asset which monitors energy usage by each asset over time. 

The validation frequency indicates how often we assess the validity of our data-driven model against 
the real-world system. For this, we compute a 95% confidence interval using the t-distribution for both the 
original and the extracted models. We then examine the extent of overlap between these confidence 
intervals. An overlap indicates that the means of the observed and simulated data sets are not significantly 
different, affirming the model's validity. Comparing these results allows us to demonstrate the effectiveness 
of our approach in applying the model in different "what-if" scenarios to improve energy efficiency in SMS. 

4 CASE STUDY 

To demonstrate the process of extracting underlying models of EODT for SMS, we designed a case study 
based on a previous study presented in (Friederich et al. 2022). In our case study, we use a DES simulation 
model of a system using the “c-paradigm” (Herrmann et al. 2011), which includes energy evaluation in a 
program. We use our model which we term as the original model to generate data that we then use to (re-
)discover the underlying energy-oriented model. We, first, outline the case study system, followed by 
identifying the necessary data for extracting EODT’s underlying model. Next, we elaborate on the process 
of extracting the data-driven DT model. Subsequently, we detail the methodology to validate the extracted 
EODT’s model with the original model. Finally, to illustrate its applicability, we use the validated model 
in "what-if" simulation scenarios for energy efficiency improvement of the SMS. 

4.1 Case Study Model Description 

Our case study production line assembles a vital component of a quadcopter drone, consisting of a rotor, 
motor, and chassis. We operate two production lines that, while identical in assets, each exhibit unique 
energy consumption patterns. The production line is equipped with five key assets: a warehouse with 
automated order picking and admission, two Automated Guided Vehicles (AGVs) for loading, transporting, 
and unloading items, and two assembly cobots, designed for assembly tasks. 

Each production line follows the same process but operates independently with its own set of AGVs 
and cobots. The production process is initiated when a user places an order. The warehouse then prepares 
the necessary parts. An order has a 50% chance of being assigned to either Line 1 or Line 2. The assigned 
line's AGV transports the parts to the line's cobot assembly area. Here, the cobot assembles the parts and 
returns the finished product. Finally, the warehouse stores the finished product, and notifies the user. 

In terms of energy usage, Line 1 features an AGV with a low ECP and a cobot with a high ECP. 
Conversely, Line 2’s AGV has a high ECP, while its cobot has a low ECP. Each AGV operates with 
different ECP rates based on its activity, including idle, loading, unloading, and moving with or without 
production parts. AGVs are battery-powered, while cobots are connected to the grid for their power supply. 
AGVs receive an alert to proceed to the charging station when their battery level drops to a specified 
threshold, set at 30%. AGVs utilize an inductive charging system located at the loading and unloading areas 
for this process. The time required to fully charge an AGV depends on its current battery level and charging 
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rate, set at 1.5% per minute. Cobots have two energy states: idle and active, ensuring efficient energy use 
throughout the production process. 

4.2 Data Requirements 

In this subsection, we outline the data requirements to extract the energy-oriented (EO) model of our case 
study. For this purpose, we require two types of logs: event logs and state logs. We require event logs for 
the entire production process as well as for each energy-consuming asset. To extract the event log from 
each asset, it is essential to identify all activities of the asset, encompassing both non-value and value-
adding processes. For instance, in our case study, we maintain event logs for the entire production system, 
from the placement of a new order to the end of production.  

State logs are implemented to extract the utility of each asset, aiming to identify non-value-adding 
states. This analysis enables us to pinpoint areas within the SMS states that offer opportunities for 
enhancement. Consequently, we gather event and state logs, yielding a total of five event logs and one state 
log. Table 1 and Table 2 showcase a subset of the event and state logs related to the production line. The 
data extracted from the system covers a 24-hour operation period of the production line, with each data 
point recording time details down to the second. 

Table 1: Energy-oriented event log excerpt. Table 2: Energy-oriented state log excerpt. 
Time 

Stamp 

ID Asset Energy 

Stamp 

Power 

Type 

Event 

00:07:00 531 NA NA NA New Order 
00:07:00 531 NA NA NA Direct to Line1 
00:07:01 531 AGV1 68.51 Battery Seize AGV1 Begin 
00:08:21 531 AGV1 67.94 Battery Seize AGV1 End 
… … … … … … 

 

TS Asset State 

00:07:01 AGV1 Active 
00:09:43 AGV2 Idle 
00:09:43 AGV2 Active 
00:12:32 Cobot1 Idle 
… … … 

 

 
4.3 Energy-Oriented Model (Digital Twin) Extraction 

In the following, we explain the methods, applications, and tools utilized to extract the EODT model of our 
case study. To ensure data validity, we eliminate unfinished processes during the validation phase, 
preventing the misidentification of incorrect endpoints in process mining (PM). We employ the PM4Py 
(Berti et al. 2023), a PM library, to extract the process flow from each event log of each asset and the entire 
production line, resulting in five distinct processing models. At this stage, our objective is to merge 
processes that occur at the same places, thereby capturing a unified process flow of the entire system. 

We apply data mining techniques to analyze the distribution of timed processes and extract the weight 
of immediate transitions with two or more output places, as demonstrated in our case study for the new 
order's line assignment. We use SciPy (Virtanen et al. 2020) to identify the best-fitting probability 
distributions for the timed transitions on the event logs of 100 runs of the original model. We examine the 
logs of each asset to determine the ECP for each one. To calculate the ECP of each asset, we use Equation 
(1), as outlined in our methodology. Additionally, we assess the rate at which AGV batteries charge by 
dividing the required charging percentage by the duration of charging. 

In Figure 2, we present the final extracted Petri net of the case study system, integrating energy-related 
information with the traditional Petri net components. Our Petri net includes specific transitions and places, 
such as energy places that record the energy consumption by assets, whether from a battery or the grid. The 
energy value at these places can be altered through timed or immediate transitions, based on the principle 
that the energy added to each energy place is the product of the transition's time duration and the ECP rate 
of the transition. Each asset's place is considered an idle state, assuming that when the asset's token is in its 
place, it is in an idle state. As soon as the asset moves, the energy consumption of the idle state is added to 
its energy place, considering the duration from when the token is in the idle place until it departs, noting 
that immediate transitions do not have a time duration. Whenever an AGV is in an idle state and a new 
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order is placed, we evaluate if the AGV's battery level exceeds the 30% threshold required to proceed with 
the transport process, or if it necessitates charging. The duration of the transition to fully charge the AGV’s 
battery is defined by equation (2), expressed in units of time, where 𝐸𝑐 represents the current battery level, 
and 𝑅𝑐ℎ represents the AGV charging rate. Once the AGV reaches full charge, its battery energy level is 
restored to full capacity. Next, we used PySPN (Friederich and Lazarova-Molnar 2023), a Python library 
for modeling and simulation of stochastic Petri nets (SPN), and extended it with elements to capture energy-
related dynamics. 

 
 𝑇𝑐ℎ =

100−𝐸𝐶

𝑅𝑐ℎ
 (2) 

4.4 Case Study Model Validation 

To validate the model, we compare the outputs of the original model with the outputs from the extracted 
simulation model. We began with face validity assessments, which demonstrated that the Petri net extracted 
from the simulation model accurately reflected the real system. Subsequent validation involved checking 
for overlap of 95% confidence intervals for KPIs after 100 independent replications. The validation KPIs 
include production volume, throughput, overall energy consumption, and energy consumption per asset. In 
Figure 3, we present a comparison of throughput and total energy consumption, demonstrating a reasonable 
match between our extracted and original models.  

4.5 What-If Scenarios 

Based on the extracted model, we aim to optimize the energy efficiency of the system through a "what-if" 
scenario. Analysis of the cobots' extracted state log revealed a substantial duration of idle states. Therefore, 
we proposed an improvement strategy where cobots are programmed to shut down after a 30-second 

 
Figure 2: Petri net of the case study using event logs. 

  
Figure 3: KPIs’ 95% confidence intervals from simulating 100 independent replications. 
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inactivity period during the production cycle. This strategy defines "turned off" and "startup" as distinct 
energy consumption profiles. In the "turned off" state, cobots consume zero energy, whereas the "startup" 
phase initiates when AGVs begin the unloading of parts, prompting cobots to activate. The "startup" state 
is characterized by a higher energy consumption rate over a duration of 20 seconds. We conducted a 
comparative analysis of energy utilization between the original system and the system post-scenario 
implementation, maintaining an equal product output rate. As shown in Figure 4, using this strategy for 
both cobots resulted in a notable reduction in energy consumption, averaging a decrease of 25%. 
Additionally, we present a comparison of the total energy consumption of the SMS in its baseline 
configuration and with the scenario implementation. The analysis reveals that, with the application of our 
proposed strategy, the total energy consumption of the SMS exhibits an overall improvement of 11% in 
energy efficiency. This enhancement further validates the significance of our optimization approach in 
contributing to more energy-efficient scenarios using DTs in manufacturing systems. 
 

  
Figure 4: Comparative energy consumption of one cobot and total energy consumption over 24 hours. 

5 SUMMARY AND OUTLOOK 

The rapid expansion of the global economy and the growing world population have significantly increased 
energy demand, raising concerns about energy supply limitation, resource depletion, and environmental 
impacts. The necessity for low-carbon operations, rising production costs, and the quest for competitive 
advantage underscore the importance of advanced energy-saving technologies and the establishment of a 
sustainable energy ecosystem. In this context, leveraging Industry 4.0 technologies, DTs stand out as a 
promising tool for optimizing energy efficiency and reducing carbon footprint in SMSs. Our research 
explores a foundational methodology and essential requirements for extracting data-driven EODTs for 
SMSs. Through a detailed case study, we demonstrated the effectiveness of our proposed methodology in 
extracting a DT model that accurately captures both production and energy consumption behaviors. 
Additionally, we conducted validation of the extracted simulation method to ensure the robustness of our 
methodology. Subsequently, we applied our extracted EODT to a practical scenario, where we achieved an 
11% reduction in energy consumption within the production line of interest, illustrating the potential 
benefits of integrating data-driven EODTs for energy optimization in SMSs. For our future work, we aim 
to tackle the following challenges for advancement: 

 
• Complex Systems Expansion: The approach will be extended to include systems with various 

energy-consuming assets and distinct ECPs, requiring advanced modeling techniques to capture 
diverse energy dynamics accurately. 

• Renewable Energy Integration: This challenge includes integrating renewable energy systems, like 
solar power while managing weather-related uncertainties. We aim to develop predictive models 
to forecast energy availability and optimize usage, ensuring manufacturing efficiency. 

• Automation for Model Extraction: This challenge is aimed at fully automated model extraction. 
This effort will boost the system's adaptability to changes, securing continuous energy 
optimization. 
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