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ABSTRACT 

Simulation modeling has become essential in industries for enhancing processes, improving efficiency, and 
mitigating risks within manufacturing systems. However, the automatic discovery of these models remains 
challenging, particularly in labor-intensive manufacturing systems (LIMSs), which are widespread in in-
dustries like food or apparel manufacturing. LIMSs are characterized by the central and direct involvement 
of human operators throughout the value chain. In this paper, we investigate state-of-the-art modeling ap-
proaches for capturing behaviors of human operators in LIMSs and examine their implications for extract-
ing simulation models. Specifically, we use these insights to automatically extract a simulation model of 
LIMSs as a stochastic Petri net (SPN): this SPN explicitly models operators' fatigue and its impact on task 
durations. Our research contributes to laying the groundwork for developing Digital Twins for LIMSs. By 
automating model creation and ensuring continuous updates, our approach facilitates the automatic adap-
tation of simulation models to reflect changes in the system.  

1 INTRODUCTION 

Simulation modeling has emerged as an essential tool for industries seeking to improve processes, increase 
efficiency, and mitigate risk in manufacturing systems. Simulating different scenarios and predicting sys-
tem behaviors provides invaluable insight for decision-making and performance improvement. Companies 
are recognizing the significance of simulation in optimizing resource allocation, scheduling, and through-
put, ultimately leading to cost savings and competitive advantages (Kormin et al. 2021). 

Typically, simulation models are developed manually in collaboration with domain experts. While ef-
fective, this approach can be labor-intensive and time-consuming (John and Heavy 2006). Furthermore, the 
static nature of manually developed models poses challenges in rapidly evolving manufacturing environ-
ments where adaptability is paramount (Robinson 2014). 

To address these limitations, data-driven approaches to simulation modeling have gained traction in 
recent years (Tao et al. 2019). By leveraging operational data collected from various sources, such as sen-
sors, Industrial Internet of Things devices, and production logs, and applying advanced analytical tech-
niques, such as machine learning algorithms, statistical analysis, and process mining, these approaches en-
able automatic and continuous model discovery and updates (Reza and Behzadan 2013). These data-driven 
methods streamline the model development process and ensure that models accurately reflect the complex-
ity and dynamics of the real world (Friederich and Lazarova-Molnar 2022). While manually developed 
models and data-driven approaches can achieve similar capabilities, the key difference is that data-driven 
models can be automatically updated, providing continuous adaptability to changing production conditions. 

Labor-intensive manufacturing systems (LIMSs) involve production processes that heavily rely on 
manual labor for tasks where human operators form the backbone of value-generating operations. These 
systems often require human operators to perform intricate tasks that are difficult to automate efficiently. 
Industries, such as textiles, home fixtures and fittings, furniture, travel goods, apparel, and footwear are 
well-known examples of labor-intensive manufacturing sectors (Hanson 2021). Despite advancements in 
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automation technologies, the unique characteristics of these industries still necessitate heavy human in-
volvement. Consequently, data availability is restricted as human operators cannot be monitored as easily 
and freely as machines. This limitation arises from both data privacy legislation and the potential physical 
and psychological strain on humans, which likely will negatively impact performance, stress, work moti-
vation, satisfaction, and behavior (Smith et al. 1992; Backhaus 2019). Additionally, sensors for collecting 
data points of human operators need to be as non-intrusive as possible, and their introduction should be 
communicated in a manner that fosters intrinsic motivation and support from the workers to mitigate the 
aforementioned issues. As a result, research on data-driven simulation model extraction in LIMSs has been 
scarce. However, the discovery of such simulation models could unlock the potential for labor-intensive 
manufacturing companies to enhance processes by factoring in human elements like motivation, fatigue, 
and emotional states. This informed decision-making facilitates efficient resource allocation, ultimately 
enhancing workers' well-being, productivity, and product quality (Götz and Lazarova-Molnar 2024). In this 
paper, we propose a data-driven methodology for discovering simulation models of LIMSs, focusing on 
integrating human factors like fatigue in the derived models.  

The paper is organized as follows: In Section 2, we provide background information and review related 
work. Section 3 presents a detailed description of our methodology for extracting simulation models of 
LIMSs. We illustrate the application of this methodology through a case study in Section 4. Finally, we 
summarize our findings and outline avenues for future research in Section 5. 

2 BACKGROUND AND RELATED WORK 

In the following, we provide an overview of related work on modeling human operators in manufacturing 
systems and background on simulation modeling relevant to our approach discussed in Section 3. 

2.1 Approaches for Modeling Human Operators in Manufacturing Systems 

Modeling human operators in manufacturing systems is a complex task. Modeling involves, e.g., deciding 
on relevant features to be captured, setting up data collection for relevant aspects of human behavior, such 
as cognition, emotions, and interactions within a dynamic and multifaceted environment, as well as finding 
appropriate ways to model these aspects. This complexity is further increased in LIMSs, where humans 
play a central role in manufacturing processes. Therefore, accurate modeling of operators is essential for 
the simulations to represent the corresponding real-world systems correctly. Despite the inherent complex-
ity and associated challenges, numerous efforts have been made to integrate human factors into existing 
simulation frameworks, as detailed in Table 1. In the table, we classify existing approaches to model human 
operators into three categories: discrete, continuous, and agent-based, providing modeling goals, data re-
quirements, and key performance indicators (KPIs) for each approach. In the following, we describe each 
category and the corresponding approaches in detail. This informs us how the models have been adjusted 
and guides our research on what to consider to automatically discover these additional aspects from data. 

2.1.1 Discrete Models 

Certain methodologies involve representing human operators in a discretized fashion. This means that the 
behaviors of human operators are viewed through a series of events or state changes that happen at specific 
points in time, neglecting continuous changes that happen in between (Varga 2001; Borshchev 2013). E.g., 
fatigue can be segmented into three distinct categories: “fit”, “tired” and “fatigued”. However, when dealing 
with discretized factors or attributes, it is essential to acknowledge that introducing discretization to a con-
tinuous phenomenon, such as fatigue, inherently introduces error. If this error is significant or not, needs to 
be evaluated each time as it depends on both the discretization method employed and the specific context 
in which the discretized value is utilized. 

Peças and Semeano (2019) explored the impact of worker performance variations on overall system 
efficiency in an industrial assembly setup using discrete event simulation. To ensure realistic representation 
of a worker’s performance, the authors drew on data from one of their previous industrial studies in which  
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they observed workers in an assembly cell. They categorized the workers into four performance classes 
based on task completion time and its variance. Their findings indicate that poorer performing workers 
substantially slow down system throughput, while higher performing workers only marginally enhance 
productivity. In a similar study, Vilela et al. (2020) analyzed how the performance of human operators 
affects the efficiency of the assembly line. To accomplish this, the authors divided the workday into four 
periods, during which the speed of the workers would fluctuate based on the collective state of the work-
force. Rather than relying on specific attributes, such as fatigue, this state was inferred from real-world data 
collected within a company. From this data, the authors derived various distributions to determine the work-
ing speed for each of the four distinct workday periods. Lämkull et al. (2009) investigated the predictive 
accuracy of ergonomics simulations for manual assembly tasks. They evaluated the economic implications 
of 155 simulation cases involving three distinct operators. Comparing the simulation results with data gath-
ered from interviews, they concluded that the simulations effectively predict ergonomic challenges. 

2.1.2 Continuous Models 

Unlike discrete models where events or state changes occur at specific points in time, continuous models 
allow for state changes to happen continuously over a time interval. These changes are gradual, providing 
a more nuanced understanding of human behaviors and interaction dynamics since these phenomena are 
also continuous in nature (Borshchev 2013). It is, however, important to note that while continuous models 
provide greater precision, they can also introduce higher complexity. E.g., rather than representing fatigue 
as three distinct levels, it can be modeled as a continuous gradient from low to high. 

An early effort in modeling human operators was made by Lassila et al. (2005) in which the authors 
tried to identify bottlenecks in a LIMS. For this reason, the authors modeled human workers as processes 
with scheduled availability and limited capacity. The resulting model showed that buffers between opera-
tions accounted for most of the product's lead time. Baines et al. (2004) tried to improve simulation accuracy 
and reliability by including age- and fatigue-related effects in the human model. To achieve this, the authors 
successfully implemented a circadian rhythm for fatigue and made the performance of the human operators 

Table 1: Approaches for modeling of human operators in the literature. 
 

Modeling 

approach 

Reference Simulation/ Modeling Goal Data Requirements KPIs 

Discrete 

Models 

(Peças and Se-
meano 2019) 

System Performance Analy-
sis 

Task Completion Times System Cycle Times 

(Vilela et al. 2020) System Performance Analy-
sis 

Task Completion Times Throughput 

(Lämkull et al. 
2009) 

Evaluate Ergonomics Simu-
lations’ Accuracy 

Anthropometric data, e.g., weight, 
height, and waist circumference 

Volvo Car Corporations 
Ergonomics Requirements 

Continuous 

Models 

(Lassila et al. 
2005) 

Bottleneck Identification Processing, transfer, setup, and re-
work times of products 

Average Lead Time 

(Baines et al. 
2004) 

Improve Simulation Accu-
racy and Reliability 

Human operator age, current shift 
length 

Cycle Times 

(Perez et al. 2014) Improve Human Operators 
Well-Being 

Biomechanical, maximum endurance 
time, tasks durations, recovery dura-
tions 

Cumulative Production 

(Abubakar and 
Wang 2019) 

Human Operator Perfor-
mance Analysis 

Age, experience, cycle times, total 
count of units to be assembled 

Task Completion Time 

(Ferjani et al. 
2018) 

Enhance Worker’ Perfor-
mance and Well-being 

Number of task repetitions, and im-
pact of environment and machines 
like noise levels or temperature 

Satisfaction Level and Er-
ror Rate 

(Baskaran et al. 
2019) 

Analyze Ergonomic Impact Biomechanical and anthropometric 
data of human operators 

Human Operator Well-Be-
ing 

Agent-based 

Models 

(Liu et al. 2023) Analyze the Impact of Fa-
tigue on Productivity 

Work duration, skill levels Makespan 

(Sammarco et al. 
2014) 

Improve Production Perfor-
mance through Dynamic 
Worker-Assignment 

Work schedule, task durations, opera-
tors’ skillsets 

Production Rate, Flowtime, 
Utilization 
Mean Switch Rate 
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dependent on their age. Similarly, Perez et al. (2014) tried to incorporate fatigue into their human operator 
model. They inspected four different equations proposed in the literature on how fatigue accumulates and 
dissipates based on maximum endurance times. In 2019, Abubakar and Wang (2019) presented an extension 
through which human elements could be integrated into a DES model. They showcased how the human 
elements significantly impacted the assembly time of their LIMS of interest. Their extension, AutoHmot, 
considers human operators’ age, experience, cycle time, and total count of units to be assembled, to calcu-
late their current task completion speed. Ferjani et al. (2018) propose a method for integrating fatigue into 
simulations. They successfully combine Discrete-Event Modeling, Multi-Agent, and System Dynamics into 
a single framework. This framework allows managers to comprehensively evaluate manufacturing systems 
by considering the evolution of human operator fatigue throughout their work, enabling informed decisions 
regarding work schedules, facility layouts, and rest periods. Human operators are modeled as agents and 
have a fatigue function attached that is modeled using differential equations. Baskaran et al. (2019) focused 
on analyzing ergonomics in an automotive assembly process. In the simulation of the assembly process 
they modeled human operators in a human Digital Twin using biomechanical, anthropometric, and ergo-
nomic characteristics tables as basis. With this human Digital Twin, the authors analyzed how high the 
strain on the lower back is when doing physically demanding overhead assembly operations. With their 
study, Baskaran et al. could show that it is possible with their simulation to generate ergonomic reports 
based on which improvements in the work environment could be achieved. 

2.1.3 Agent-based Models 

Agent-based models (ABMs) use individual entities, termed agents, each featuring autonomous behavior 
and interacting within a simulated environment. ABMs aim to capture emergent phenomena stemming from 
the interactions among agents and enable the examination of system-level dynamics, driven by individual 
agent behaviors rather than hardcoded rules, resulting in a more realistic representation of real-world sys-
tems. It is, however, important to acknowledge that while ABMs offer high fidelity in capturing complex 
interactions, they can also pose computational challenges. This is due to the complexity of simulating nu-
merous autonomous entities and their interactions with each other and the environment (Wu et al. 2023).  

In relation to LIMSs, Lui et al. (2023) developed an agent-based model to simulate a production shop 
floor with multi-skilled workers and fatigue factors, aimed at investigating the hybrid flow shop scheduling 
problem, first formulated by Arthanary (1971). Worker agents in this model are characterized by two pri-
mary features: fatigue accumulation over time, and multi-skilled capabilities for performing multiple tasks 
within the manufacturing system. One notable result of the study is the demonstration that the constructed 
agent-based model can express the influence of uncertainty and dynamic factors better than conventional 
mathematical models. In another study, Sammarco et al. (2014) explored the outcomes of various dynamic 
worker-assignment strategies by developing an agent-based simulation, where workers, workstations 
(WSs), and products are modeled as agents. Additionally, Sammarco et al. implemented a set of rules that 
determined when and which worker is doing what task, when workers are available and which worker is 
doing the next task. Through their study, the authors could showcase that, e.g., depending on the employed 
rules, a reduction in mean flowtime of 15% to 30% was possible. 

2.1.4 Findings 

In our literature review, we observed that discrete-event models tend to be employed frequently for model-
ing higher-level or aggregate characteristics, by distinguishing, e.g., between high- and low-performance 
workers/teams. Conversely, continuous models and functions are predominantly utilized to describe spe-
cific attributes of individual human operators, such as fatigue or skill level. Generally, researchers tend to 
prefer continuous models over discrete ones when describing the characteristics or behavior of human op-
erators. This preference seems logical since studying these characteristics is typically the focus of those 
studies. By selecting continuous attributes, researchers can avoid discretization errors or inaccuracies in the 
values, thereby strengthening the insights generated from these studies. Moreover, we discovered numerous 
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studies that focus on fatigue and its impact on performance and productivity, exceeding the research on 
other related topics. This signifies a high demand for accurate fatigue models as part of more comprehensive 
LIMS models. However, many of these LIMS models are constructed manually rather than using data-
driven approaches. Consequently, these manually constructed models often become outdated quite fast, 
particularly in fast-paced LIMSs’ environments. Therefore, the goal of this paper is to provide an initial 
methodology to discover simulation models through data that not only describe the production system but 
also the effects of fatigue experienced by human operators throughout their shifts. 

2.2 Data-driven Simulation Model Discovery 

Simulation models, designed by domain experts with deep understanding, have historically delivered accu-
rate representations of complex systems, however, demanding significant time, labor, and iterative refine-
ments. The challenges of constructing simulation models become particularly pronounced in the context of 
highly adaptable systems, like manufacturing environments that demand rapid responsiveness to shifting 
requirements such as external demand changes or fluctuations in resource availability. In these scenarios, 
the hand-crafted simulation models face a diminishing validity period, raising questions about the propor-
tional alignment of time and monetary investments with the resultant benefits. 

To address these challenges, there have been a number of data-driven approaches for automatic model 
discovery. These approaches facilitate simulation models that adapt in (near-)real-time to changes in the 
corresponding systems, ensuring ongoing accuracy of the model in mirroring real-world conditions. Such 
changes may involve reconfigurations as well as significant changes to the systems, such as updating the 
material flow or introducing new WSs. These data-driven models can dynamically update their structures 
and parameters to match changed conditions in the systems. This adaptability not only enhances the robust-
ness and flexibility of simulation models but also reduces the time and effort needed for model development 
and maintenance. Moreover, by continuously learning from new data and feedback, data-driven simulation 
models can refine themselves iteratively, improving their accuracy and predictive capabilities as they 
evolve. In this paper, we explore the utilization of process mining techniques to discover simulation models 
for LIMSs, as detailed in Section 3. Several studies have used process mining techniques in conjunction 
with event logs to discover simulation models, often in the form of various Petri net variants. Friederich 
and Lazarova-Molnar (2022, 2021) employed these methods alongside conditional data, describing ma-
chine states, to derive reliability models in the form of stochastic Petri nets (SPN). Maggi et al. (2014) 
extracted a hierarchical hybrid model by applying a context analysis algorithm to the event log, effectively 
distinguishing between structured and unstructured events. Furthermore, colored Petri nets mining has also 
been explored in (Knopp et al. 2023; Rozinat et al. 2008; Van Der Aalst and Van Dongen 2013).  

3 METHODOLOGY FOR EXTRACTING SIMULATION MODELS 

In the following, we outline our approach to extracting simulation models from event logs of LIMSs. In 
particular, we explore the impact of human factors, such as fatigue, on these systems. Building on our 
previous work in which we introduced our framework for creating Digital Twins for LIMSs (Götz and 
Lazarova-Molnar 2024), our approach consists of two main steps. First, we extract a basic model with key 
details about the manufacturing setup, including layout, process times, and dependencies. Subsequently, 
we enhance this model with fatigue models for the human operators, resulting in what we call a human-
centric model. We validate our approach by comparing KPIs derived from the extracted simulation model 
to those from the original model using confidence intervals.  

3.1 Data Requirements 

Event logs constitute the foundational data source for process mining. In our case, a row in an event log 
contains a timestamp, an order ID, a resource, an activity, and an event. An excerpt of the used event log is 
shown in Table 2. Moreover, we need data outlining workers' shifts and breaks, specifically their start and 
end times, respectively. Ideally, these details are presented in a similar format as the event log data. Building 
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on Friederich and Lazarova-Molnar's approach (2021, 2022), we also generate reliability models automat-
ically. This involves maintaining an additional state log that records machine failure and repair events. 

We utilize event and state logs for their common availability in manufacturing environments, eliminat-
ing the need for additional sensor installations. This streamlines the adjustment period and enhances work-
force acceptance, as there is no need for adaptation to a new environment. This reduces the potential for 
psychological strain, as outlined in Section 1. Furthermore, this setup also eases data privacy challenges by 
abstaining from the use or storage of user-specific data that could be traced back to individual workers. 

To enhance quality and completeness of the data, we excluded each order that lacked data on certain 
events, particularly if the storage events are missing as these are the last events tracked in our production 
process and indicate a full production cycle. These exclusions might occur if sensors are not working cor-
rectly, or the production process is not finished at the time the dataset was extracted. Furthermore, all shifts 
that have fewer or more tasks completed than predefined thresholds were also excluded as these shifts are 
outside of realistic task duration boundaries considering the typical time required to complete the tasks. 
This might be the case if machines fail, or the needed supplies are unavailable.  

Finally, several additional key data points are derived from the event log. This involves calculating task 
durations using the timestamps of activity start and end events, determining the cumulative work time of 
each WS leading up to each event by summing previous process times within the corresponding shift and 
generating a binary-encoded column indicating whether a break occurred prior to each event.  

3.2 Simulation Model Discovery 

The simulation model extraction process extracts SPNs as basic models which are further enhanced with 
fatigue models in a subsequent step, resulting in more realistic human-centric models. 

3.2.1 Basic Model 

We extract basic models as SPNs from event logs using a customized version of the ddra library (Friederich 
2023). First, we use the Alpha Miner (Van Der Aalst et al. 2004; Van der Aalst and van Dongen 2002) to 
discover Petri net of the LIMS, which primarily captures information about the production layout and de-
pendencies. Next, we estimate probability distributions of transitions in the Petri net to capture task dura-
tions, thereby converting the Petri net into an SPN. This enables us to capture more detailed information 
about the manufacturing process. E.g., we can calculate the mean flow time of a production cycle, expressed 
in terms of KPIs like cycle time. Moreover, we can analyze whether the expected planned task durations 
align with the actual recorded task durations, facilitating a more comprehensive performance analysis.  

To extract probability distributions for machine-only WSs, we can readily utilize the functionality of 
ddra with all available data points. However, for human-operated WSs, we developed a custom solution. 
For this, we combined Kolmogorov-Smirnov and Cramer-von Mises tests and considered only the first x 
data points, where x is a predefined threshold. We justify this approach by the assumption that the initial 
iterations contain minimal influence from factors such as fatigue, allowing us to extract process times that 
are relatively uninfluenced. Lastly, we utilize the ddra library to extract reliability models of machine WSs 
and integrate them through inhibitor arcs to the corresponding transitions. 

3.2.2 Human-centric Model  

After extracting a basic model that captures machines-related behaviors, our next step is to enhance it by 
incorporating fatigue models in the extracted SPN. Algorithm 1 shows our approach to extracting fatigue 
models. We assume that fatigue levels steadily rise throughout a shift and only reduce during scheduled 
breaks. Additionally, we assume that low levels of fatigue do not significantly influence overall task dura-
tions, whereas higher levels of fatigue do, increasing task durations (Abd-Elfattah et al. 2015). Our fatigue 
model extraction approach is split in two parts: 1. isolate effects of fatigue on tasks’ durations (lines 4 – 
13), and 2. train a polynomial model (lines 15 – 17) to capture fatigue given the cumulative task durations 
and if the break has occurred yet. To isolate the effects of fatigue on tasks’ durations, we calculate the 
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average duration of a predefined number of initial tasks for each shift (lines 4 and 6), assuming fatigue has 
minimal impact on these tasks, as discussed earlier. Then, we subtract this shift-specific average task dura-
tion from all task durations within that shift (line 7). The subtraction allows us to reduce the influence of 
the baseline task duration and focus on the effects of fatigue. The resulting values primarily reflect fatigue 
and are, hence, referred to as fatigue values. Note that fatigue values can also be influenced by other factors 
in real-world settings, such as operator mood, skill level, weather, or market demand. As our analysis is 
based on event logs, we lack the necessary data to refine our understanding of these values and proceed 
with the assumption that these values mainly represent fatigue.  
 

Algorithm 1: Extraction of fatigue models. 

 Subsequently, we preprocess the fatigue values to prepare the data for modeling. For this, we project 
the fatigue values onto a natural logarithmic space (lines 9 – 13). This transformation involves fitting a 
natural logarithm function for each shift to the fatigue values of the respective shift and applying it to the 
fatigue values. Specifically, we fit two logarithmic functions: one prior to the break and one after. Prior to 
fitting the logarithmic functions, a smoothing algorithm is applied to the fatigue values to mitigate the 
influence of outliers and extreme values (line 8). The smoothing algorithm calculates the mean within a 
predefined window size of 10 around each data point and replaces the original value with this smoothed 
value. Subsequently, the fitting of the logarithmic functions is done by using the non-linear least squares 
approach. For the first function, fitting is based on minimum, maximum, and mean fatigue values observed 
before the break, while for the second function, it is based on those observed after the break (lines 10 and 
11). This ensures that each logarithmic function captures the relevant characteristics of fatigue within its 
respective phase of the shift. 

The choice of mathematical model for representing fatigue, in our case the logarithmic one, is highly 
context dependent. Different contexts and types of fatigue may require different mathematical frameworks. 
E.g., experienced mental fatigue of office work might necessitate a different modeling approach compared 
to the physical fatigue encountered in construction work (Frone and Tidwell 2015). Therefore, the selection 
of the appropriate mathematical model should be guided by the specific characteristics of the assumed 
fatigue model and the trends present in the data. 

Finally, with the fatigue values isolated, we train a nth-degree polynomial model to predict fatigue (lines 
15 - 17). This choice of model degree is determined through a grid search, ensuring its ability to capture 
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the complexity of the fatigue data without overfitting. Our predictive model relies on two main features: 
the cumulative work duration at the time of fatigue prediction and a binary indicator for breaks. To improve 
the model’s performance, we apply a logarithmic transformation to the cumulative work duration feature. 

In conclusion, we developed an approach to capture fatigue in LIMSs. We assume fatigue levels rise 
steadily throughout a shift and decrease during breaks. After isolating fatigue effects on task duration, we 
preprocess fatigue values by projecting them onto a natural logarithmic space and fitting logarithmic func-
tions. Finally, we train a nth-degree polynomial model using cumulative work duration and break status as 
features, ensuring robustness through grid search to prevent overfitting. 

4 CASE STUDY  

In the following, we demonstrate the effectiveness of the methodology outlined in Section 3 in extracting 
simulation models of LIMSs through a case study. We developed a simulation model of a LIMS based on 
insights gained from our project, where we collaborate with two companies that feature LIMSs. We use 
this model (which we term as original model) to generate data that we then use to re-discover the model.   

4.1 Description of the LIMS Case Study 

Our case study LIMS has four WSs on which either human operators or autonomous machines are working. 
In the first three steps, different assembly activities are performed and in the fourth step, the assembled 
goods are transported to storage by an AGV. Assembled items are transported from station to station via 
conveyor belts. WS1 and WS3 have one and three human operators working on them, respectively, and at 
WS2 and WS4, machines are used. Each WS’s task durations follow different probability distributions 
(time unit is minutes). The assumed distributions are exemplary and have to be checked and adjusted to the 
given manufacturing context. E.g., human operator’s tasks at WS1 have durations following a normal prob-
ability distribution with a mean of 10 min and a standard deviation (std) of 1 min. Furthermore, each 8-hour 
shift has one 45 min long break that occurs 4 h after the shift started. For human operators, task duration is 
influenced by their current fatigue level 𝐹𝑖(𝑡) which is utilized in the fatigue coefficient 𝑓𝑐𝑖, as per Equa-
tions (1) and (2).  

 
 

Τ𝑖 =  𝑓𝑐𝑖 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑) (1) 

The task duration 𝛵𝑖  at task number i is calculated by multiplying the drawn base task duration of the normal 
distribution with the fatigue coefficient 𝑓𝑐𝑖. This fatigue coefficient is determined as per Equation (2). 

 
 

𝑓𝑐𝑖 = {
1

0.75 + 𝐹𝑖(𝑡)
    

𝑖𝑓 𝐹𝑖(𝑡) ≤ 0.25

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2) 

The fatigue coefficient 𝑓𝑐𝑖 is 1 if the current fatigue level 𝐹𝑖(𝑡) is less than or equal to 0.25, assuming low 
levels of fatigue have minimal influence on overall task durations. The current fatigue level ranges from 0 
to 1, indicating no fatigue to maximum fatigue, respectively. If the current fatigue level is greater than 0.25, 
the fatigue coefficient is the sum of 0.75 and the current fatigue level. 

The fatigue level calculations are derived from the work by Jaber et al (2013). For each operator, the 
new current fatigue level is calculated after he/she finishes a task using the following set of equations. 
 

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡, 
 

(3) 

where F(t) denotes the fatigue accumulated by time t within the range of 0 to maximum endurance time 
(MET). MET refers to the length of time a worker can sustain a posture or effort before reaching the limits 
of their capability. Additionally, Equation (4) defines residual fatigue after a rest break of length 𝜏𝑖 > 0. 
 

 𝑅(𝜏𝑖) = F(t)𝑒−𝜇𝜏𝑖, (4) 

1700



Götz and Lazarova-Molnar 
 

 

𝜆 and 𝜇 represent fatigue and recovery parameters, respectively, which regulate the rate of fatigue accumu-
lation and recovery. Lower values indicate slower fatigue accumulation or recovery, while higher values 
signify faster processes. 

Notably, Equation (3) suggests that fatigue increases gradually over time t, beginning from an initial 
value of zero, indicating full recovery achieved during the previous rest break. However, real-world rest 
breaks between work repetitions are typically brief, not allowing complete recovery. Thus, residual fatigue 
𝑅(𝜏𝑖) persists into the subsequent task repetitions, which is reflected in the updated Equation (5). 

 
 𝐹𝑖+1(𝑡) = 𝑅(𝜏𝑖) + (1 − 𝑅(𝜏𝑖))(1 − 𝑒−𝜆(𝑡𝑛−𝑡𝑖)) (5) 

 
where 𝑡𝑛 represents the production time at task number i and 𝑡𝑖  is specified by projecting the value of 
𝑅(𝜏𝑖) onto the fatigue curve as shown in Equation (6). 

 
 

𝑡𝑖 =
−ln (1 − 𝑅(𝜏𝑖))

𝜆
 

(6) 

4.2 Results of the Model Discovery 

To generate the necessary event log, we ran simulations for roughly 2000 á 8-hour shifts, generating around 
382000 events and processing nearly 48000 orders. An excerpt of the generated event and state log as well 
as the predefined work schedule are shown in Table 2. 

Table 2: Event and state log as well as the work schedule of the original model. 

 
4.2.1 Basic Model 

The extracted basic model, represented as an SPN, is shown in the dark grey part in Figure 1. This SPN 
encapsulates two primary components: the basic model component and the human-centric component. The 
main workflow is shown in the middle of the figure going from the (material) source through WSs 1, 2, 3, 
and 4. The fault loops of the machines are illustrated in the lower part of the figure. Above each transition, 
one to three aspects are outlined: the event, the extracted probability distribution, and for the tasks of human 
operators, fatigue functions are specified, which modify the drawn samples of the distribution during 
runtime. The fatigue functions are added during the enhancement of the basic model in the next subsection. 

 
Figure 1: The extracted simulation model as an SPN. 
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4.2.2 Human-centric Model 

We refined the basic model by incorporating human operators’ fatigue and a break/shift loop in the SPN. 
The fatigue functions are attached to transitions related to WSs with human operators. For this, we trained 
a polynomial model to capture the extracted fatigue values. This model utilized the cumulative work dura-
tions of each worker and a binary feature indicating whether a break has occurred, as outlined in Section 3. 
After testing various functions, we concluded that the most suitable projection space for the fatigue values 
is a logarithmic one. Furthermore, utilizing grid search, we found that a 4th-degree polynomial model 
demonstrated the best performance. This resulted in achieving an average pairwise correlation score of 0.95 
(Pearson) between the predicted fatigue values and the true recorded values along with a Root Mean 
Squared Error (RMSE) of 0.07. Figure 2 exemplifies the results of the fatigue function by displaying ex-
amples of three discovered fatigue functions for randomly selected work shifts. Finally, the break/shift loop 
and the fatigue functions, highlighted in light grey in Figure 1, are added to the SPN. 

 
Figure 2: Comparison of three discovered fatigue functions with the original. 

4.3 Evaluation and Discussion 

In the following, we examine the results of our case study. Our main objective is to assess whether it is 
feasible to extract a valid model of LIMS that captures the fatigue of operators using limited input data. 

Probability distribution fitting for task durations in the basic model, which includes human operators 
and machines, was successful. We fitted the normal distributions and their parameters from the original 
models, describing baseline task durations. Our results achieved an average p-value of 0.8. Consequently, 
our initial assumption that fatigue has a minor impact during the first x task repetitions holds. Moreover, 
the extraction of the fatigue model from cumulative task durations and break indicators produced promising 
results. With an average Pearson correlation score of 0.95 between the predicted and the true recorded 
values, along with an average RMSE of 0.07, the model proves effective in capturing fatigue. 

The comparison of the entire extracted simulation model against the original model was done using 
confidence intervals of KPIs. The extracted Petri net model was run for the same number of shifts as the 
original model to generate synthetic data e.g. fatigue values. The generated data was compared against 
fatigue data from the original model. We calculated confidence intervals as 𝐶𝐼 = �̅� ± 𝑍(𝜎/√𝑛), with �̅� be-
ing the sample mean, Z the Z-score corresponding to the desired confidence level, 𝜎 the std and n the sample 
size. The confidence intervals calculated for task durations of both datasets overlapped, indicating con-
sistency, and suggesting efficacy of the extracted model in capturing relevant patterns. 

Acknowledging context-specific assumptions that we made is critical. E.g., preprocessing fatigue val-
ues is guided by the expected fatigue type, the corresponding mathematical model, and observable fatigue 
behavior in the data, if any. Moreover, it is essential to recognize that the values identified as fatigue are 
likely influenced by other factors such as mood or motivation. This raises the question of the extent to 
which these influences impact the observed fatigue levels. Given our approach with limited data, it is ap-
parent that the dataset lacks the granularity to differentiate between these factors. Therefore, a more com-
prehensive investigation with additional data would be necessary to address these complexities effectively.  
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5 SUMMARY AND OUTLOOK 

In this paper, we demonstrated the feasibility of deriving a model of LIMS that considers fatigue with 
minimal data requirements. Our methodology leverages event logs and work schedules to train a polyno-
mial model that captures fatigue levels based on cumulative work duration and the occurrence of breaks. 

Our approach offers several advantages. Firstly, it utilizes readily available data sources, circumventing 
the complexities associated with installing new sensors that may raise concerns regarding personal data 
protection legislation. Secondly, we employ simple polynomial models, enhancing interpretability and fa-
cilitating comprehension of the results. Thirdly, both the Pearson correlation coefficient and the RMSE 
indicate the model’s efficacy in capturing fatigue accurately. Lastly, the model’s ability to accurately rep-
licate the LIMS is evidenced by its capacity to generate similar event logs. 

However, some limitations have to be considered. Firstly, our approach relies on strong assumptions 
regarding the underlying mathematical fatigue model and the extracted fatigue values. Secondly, it predicts 
fatigue on a WS level, not of the individual operator. Our future research efforts will focus on addressing 
these challenges while also broadening the scope of considered human factors. For instance, we plan to 
include variables such as skill progression or mood into the model. 
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