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ABSTRACT

We consider the problem of inferring the system with the best simulation output mean among k systems
when the simulation model is subject to input uncertainty caused by estimated common input models
from finite data. The Input-Output Uncertainty Comparisons (IOU-C) procedure is designed to return a
set of solutions that contains the best solution with an asymptotic probability guarantee when parametric
input models are adopted. We extend this framework to nonparametric IOU-C (NIOU-C) when empirical
distributions of the data are adopted as input models. Representing the simulation output mean of each
system as a functional of the common empirical distributions via the functional Taylor series expansion,
we propose two methods that rely on the nonparametric delta method and an ambiguity set formulation,
respectively. We provide numerical examples to test the performance of our methods and show that they
outperform the IOU-C.

1 INTRODUCTION

Simulation is a common tool for solving a decision-making problem defined for a complex real-world
stochastic system. These simulation models are built to approximate the stochastic behaviors in the
target systems by generating random variates from probability distributions and feeding them through the
simulation logic to produce outputs. Typically, the input probability distributions are unknown and must
be estimated from data observed from the target system. Inevitably, when the data size is finite, there is
estimation error in the postulated input distribution functions. The uncertainty in the simulation output
caused by the estimation error in the input models is referred to as input uncertainty (IU) and has been
actively studied in the literature; see Barton et al. (2022) for a recent review.

When a simulation model has IU, any statistical inference made from its outputs is also subject to
error induced by IU. When we make decisions based on the simulation outputs, there is risk of making a
suboptimal decision due to the discrepancy between estimated input models and true input distributions in
the system. This is known as input model risk.

In this work, we discuss robustifying optimization via simulation against input model risk from the
statistical inference point of view. In particular, we focus on the problems known as ranking and selection
(R&S), where the solutions in consideration are finite and categorical. Traditional R&S does not consider
the input model risk; the focus is on controlling the uncertainty from the stochastic error inherent to
simulation to find the optimal solution. In recent years, several methods have been proposed to incorporate
IU in R&S. Gao et al. (2017) reformulates the traditional R&S problem to find a robust solution under input
model risk and devise finite-budget algorithms to maximize the probability of correct selection. Pearce and
Branke (2017) propose a Bayesian Optimization framework that incorporates IU. Corlu and Biller (2013)
and Corlu and Biller (2015) extend the traditional subset selection procedures to account for IU. Song
and Nelson (2019) propose the Input-Output Uncertainty Comparisons (IOU-C) procedure that extends the
multiple comparisons with the best (MCB) framework (Chang and Hsu 1992) to incorporate IU. However,
majority of these work either assume that the input distributions have known family of distributions, or the
true input distribution belongs in a finite set of candidate distributions. Both assumptions are limiting.
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In this work, we propose two Nonparametric IOU-C (NIOU-C) procedures to account for IU in the
R&S problem. We do not impose any assumptions on the distribution families of the inputs. Instead,
we adopt the empirical distribution function (edf) to approximate the true distributions. We introduce the
influence function, first defined by Hampel (1974), to represent the simulation output mean as a functional
of the edf using the functional Taylor series expansion. In the first procedure, we construct CI widths
from stochastic error and IU separately, each of which relies on a Central Limit Theorem (CLT). In the
second procedure, we exploit the empirical likelihood (EL) theory (Owen 2001) to construct an ambiguity
set for distributions that lets us infer the true performance of each system with a target level of confidence,
asymptotically. Then, the CI widths are computed by solving a set of convex optimization problems while
constraining the true input distribution to belong in the ambiguity set.

Both approaches are benchmarked against IOU-C in our empirical study assuming that incorrect
parametric family assumptions are made for IOU-C. The results show that our first approach selects a
subset of systems that includes the best one with very high probability in all cases, but the number of
systems in the subset could be potentially high, which represents a conservative method. In contrast, our
second approach selects a subset of at most 3 systems, but at the price of having less probability compared
to the first procedure. This method represents an aggressive one. Nevertheless, both approaches shows
better results than the IOU-C methods for the chosen example.

The rest of the paper is organized as follows. In Section 2, we describe the problem, review the MCB
framework, and introduce the nonparametric delta method. In Sections 3 and 4, we provide the NIOU-C
procedures based on a CLT (NIOU-C:CLT) and the ambiguity set formulation (NIOU-C:AS), respectively.
Empirical evaluations are provided in Section 5.

2 PROBLEM DEFINITION

Consider k systems where stochasticity in each system is characterized by the same set of input distributions,
Fc, where the c stands for “correct”. We assume that Fc is a collection of m independent input probability
distribution functions Fc

1 , ...,F
c

m. We also assume that there exists a stochastic simulator that perfectly
emulates the system output given Fc. The ith system’s simulation output given Fc is denoted by Yi(Fc) and
its performance measure is defined as the expected value of the simulation output, E[Yi(Fc)]. The goal is
to find the system with the largest performance measure, i.e. ic ≜ argmax1≤i≤k E[Yi(Fc)]. We assume ic to
be unique in this work. Consequently, E[Yic(Fc)] ̸= E[Yi(Fc)],∀i ̸= ic.

In practice, Fc is unknown and thus must be estimated from finite data observed from the real-world
system. For each p = 1, ...,m, let Xp1, ...,Xpnp denote the independent and identically distributed (i.i.d.)
observations from Fc

p . We do not make any parametric assumptions on the input distributions. Instead, we
adopt an edf F̂ constructed from the observations as an estimator for Fc:

F̂(x1, . . . ,xm)≜ ∏
m
p=1 n−1

p ∑
np

j=1 1{Xp j = xp}.

We emphasize that F̂ is an empirical probability distribution function, not cumulative distribution function.
Let ηi(F) = E[Yi(F)|F], for any generic F. Then, the R&S problem aims to find ic = argmaxi ηi(Fc).

When the simulation is run with F̂, the sample average of the simulation outputs is an unbiased estimator
for the conditional output mean, ηi(F̂) = E[Yi(F̂)|F̂], not ηi(Fc). Simply applying a R&S procedure with
estimated F̂ would let us select the best solution given F̂, not ic. Representing the simulation output at each
solution with a mixed effects model, Song et al. (2015) show that under IU, one may not provide a desired
level (1−α for some arbitrary α) of statistical guarantee for selecting ic even if the sampling distribution
of ηi(F̂) for each i can be characterized. Namely, if the uncertainty about F̂ is too large compared to the
performance difference between ηic(Fc) and ηl(Fc) for all l ̸= ic, then any R&S procedure would not be
able to separate ic from the rest of the systems with high confidence.

Instead of selecting ic, an alternative approach is to provide some statistical inference on the identity
of ic. Song and Nelson (2019) take this approach and focus on providing the simultaneous confidence
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intervals (CIs) for the mean differences, ηi(Fc)−maxl ̸=i ηl(Fc), for all 1 ≤ i ≤ k. These CIs are referred
to as MCB CIs. The following theorem by Chang and Hsu (1992) stipulates how to derive the MCB CIs
when Fc is known:
Theorem 1 (Chang and Hsu 1992) Let η̂i(Fc) be an estimator of ηi(Fc), x+ = max{0,x} and x− =
max{0,−x}. If, for each i ∈ {1, . . . ,k}

Pr{η̂i(Fc)− η̂l(Fc)− (ηi(Fc)−ηl(Fc))≥−qil,∀l ̸= i} ≥ 1−α, (1)

then the following statement holds:

Pr
{

ηi(Fc)−maxl ̸=i ηl(Fc) ∈ [D−
i ,D

+
i ],∀i

}
≥ 1−α,

where D+
i = (minl ̸=i{η̂i(Fc)− η̂l(Fc)+qil})+, I = {i : D+

i > 0} and

D−
i =

{
0 if I = {i}
−(minl∈I:l ̸=i{η̂i(Fc)− η̂l(Fc)−qli})− otherwise.

Theorem 1 allows us to construct the MCB CIs from the k sets of simultaneous CIs comparing each
solution’s mean to the rest of the solutions’. Moreover, it is guaranteed that Pr{ic ∈ I} ≥ 1−α . The MCB
framework is powerful since it does not impose any distributional assumption on the simulation outputs
and the CIs are valid as long as the set of {qil}i̸=l satisfying (1) exists.

However, with unknown Fc, finding such {qil}i̸=l proves to be challenging. Song and Nelson (2019)
study this problem for the case when the parametric family of Fc is assumed known. Extending the MCB
CIs in Theorem 1, they propose the IOU-C procedure that accounts for both IU and simulation error. In
particular, for the former, they coin the term common-input-data (CID) effect highlighting that the IU is
caused by F̂ commonly adopted by all k systems.

Under the parametric assumption, estimating Fc boils down to estimating its unknown parameter vector.
While this makes the problem simpler, it may be unrealistic in many practical problems to know or even
assume that the input distribution function belongs to a certain parametric family.

In this paper, we do not impose a parametric assumption on Fc. Instead, we suppose that Fc is estimated
by an edf F̂. Let bi(F̂,Fc)≜ ηi(F̂)−ηi(Fc). Note that bi(F̂,Fc) denotes the CID effect of F̂ on system i.
Then, the simulation output of system i run with F̂ is

Yi(F̂) = ηi(F̂)+ εi(F̂) = ηi(Fc)+bi(F̂,Fc)+ εi(F̂),

where the simulation error, εi(F̂), has zero mean and a finite variance given F̂. Observe that bi(F̂,Fc)
accounts for IU and εi(F̂) represents the stochastic error in simulation.

For each system i, let
η̂i(F̂) = Ȳi(F̂) = R−1

∑
R
j=1Yi j(F̂),

where Yi j(F̂) is the simulation output of the jth replication using F̂ as input distribution. Then Ȳi(F̂) is the
sample average of R replications.

In Sections 3 and 4, we propose nonparametric extensions of the IOU-C procedure. Both extensions
rely on the functional Taylor series expansion of ηi(F) with respect to F̂, which is discussed below.
To set it up, we explicitly denote the simulation output of solution i as Yi(F̂) = hi(Xi1, ...,Xim) where
Xip = (Xip(1), ...,Xip(Tip)) are the random variates drawn from the pth edf to run the ith solution’s
simulation. This notation highlights the dependency of the simulation output with the random variates.

Let IFip(x) denote the influence function of the performance measure of the system i, ηi(F), where
Fp ∈ F, when there is a perturbation of the input distribution Fp in the direction of x on the support of
Fp. In other words, IFip(x) represents the change in the expected value of the simulation output when the
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corresponding input distribution is infinitesimally perturbed in the direction of x, where x is a support point
of Fp. Mathematically, we have:

IFip(x) = lim
ε→0

η(F1, ...,Fi−1,(1− ε)Fi + εδx,Fi+1, ...,Fm)−η(F1, ...,Fm)

ε
, (2)

where δx puts the unit probability mass on x. Lam and Qian (2019) rewrite (2) as

IFip(x) = ∑
Tip

t=1EF[hi(Xi1, ...,Xim)|Xip(t) = x]−Tipηi(F). (3)

Note that EF[IFip(x)] = 0, where EF denotes the expectation taken with respect to X ∼ F.
Suppose ηi is a smooth function of F̂. From the nonparametric delta method, we have

ηi(F̂)≈ ηi(Fc)+
m

∑
p=1

∫
IFip(x)dF̂p(x). (4)

Then, we can write

bi(F̂,Fc)−bl(F̂,Fc)≈
m

∑
p=1

∫
(IFip(x)− IFl p(x))dF̂p(x). (5)

Observe that the left hand side of (5) represents the difference in the two systems’ CID effects.

3 NONPARAMETRIC IOU-C: ASYMPTOTIC NORMALITY APPROACH

In this section, we describe the NIOU-C:CLT procedure. If Fc is known, a natural choice of η̂i(Fc) is
Ȳi(Fc) in which case {qil}i̸=l accounts only for stochastic error. When input distributions are estimated and
η̂i(Fc) = Ȳi(F̂) is adopted as an estimator for each i, {qil}i̸=l depend on both stochastic error and input
uncertainty. Let qil = q(1)il +q(2)il with q(1)il ,q(2)il > 0. Then, Song and Nelson (2019) show that

Pr{η̂i(Fc)− η̂l(Fc)− (ηi(Fc)−ηl(Fc))≥−qil,∀l ̸= i}

≥ E
[
1{bi(F̂,Fc)−bl(F̂,Fc)≥−q(1)il ,∀l ̸= i}Pr{ε̄i(F̂)− ε̄l(F̂)≥−q(2)il ,∀l ̸= i|F̂}

]
Suppose we choose q(2)il such that Pr{ε̄i(F̂)− ε̄l(F̂) ≥ −q(2)il ,∀l ̸= i|F̂} = 1−α2, then the last expres-
sion becomes E[1{bi(F̂,Fc)−bl(F̂,Fc) ≥ −q(1)il ,∀l ̸= i}(1−α2)] = Pr{bi(F̂,Fc)−bl(F̂,Fc) ≥ −q(1)il ,∀l ̸=
i}(1 − α2). Then, we can find q(1)il such that Pr{bi(F̂,Fc)− bl(F̂,Fc) ≥ −q(1)il ,∀l ̸= i} = 1 − α1 so
Pr{η̂i(Fc)− η̂l(Fc)− (ηi(Fc)−ηl(Fc))≥−qil,∀l ̸= i} ≥ (1−α1)(1−α2).

In the next sections, we discuss different methods to find {q(1)il }i̸=l and {q(2)il }i̸=l satisfying the conditions.

3.1 CID Effects

Let n = m−1
∑

m
p=1 np denote the average number of observations from all data sources. We assume

np
n → βp > 0 when n increases to infinity. In other words, the proportion of observations from each input

distribution converges to a positive number. Then, under some regularity conditions, the following CLT
can be derived from (4):

√
n
(
bi(F̂,Fc)−bl(F̂,Fc)

) D−→ N

(
0,

m

∑
p=1

1
βp

E
[(

IFip(x)− IFl p(x)
)2
])

, as n → ∞. (6)

Here, D−→ means convergence in distribution. Moreover, (6) can be extended to obtain the joint asymptotic
distribution of {

√
n(bi(F̂,Fc)−bl(F̂,Fc))}k

l=1;l ̸=i, denoted by N(0k−1,Σ
i), where 0k−1 is the zero vector of
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dimension k−1 and Σi is the variance-covariance matrix. Observe that, for each i, Σi is a (k−1)× (k−1)
matrix whose (l, l′)th element is Σi

ll′ = limn→∞ nCov(bi(F̂,Fc)−bl(F̂,Fc),bi(F̂,Fc)−bl′(F̂,Fc)). From (6),
we have

Σ
i
ll =

m

∑
p=1

1
βp

E
[(

IFip(x)− IFl p(x)
)2
]
, and Σ

i
ll′ =

m

∑
p=1

1
βp

E
[(

IFip(x)− IFl p(x)
)(

IFip(x)− IFl′p(x)
)]
.

Therefore, we can set {q(1)il }i̸=l to be the (1−α1)-quantile vector of N(0k−1,Σ
i/n).

For general simulation output function hi, however, IFip(·) does not have an analytical expression and
needs to be estimated via simulation. We adopt the estimators proposed by Lam and Qian (2019), which
can be computed by running simulations at F̂ only.

First, Lam and Qian (2019) propose to approximate IFip(x) with the influence function of ηi(·) evaluated
at the empirical distribution functions, F̂:

ÎFip(x) = ∑
Tip

t=1EF̂[hi(Xi1, ...,Xim)|Xip(t) = x]−Tipηi(F̂), for x ∈ {Xp1, ...,Xpnp}. (7)

Unlike in (3), the expectation in (7) is taken with respect to F̂. Since we have F̂, we can obtain an estimator
of (7) via simulations. Namely, the estimator of ÎFip(·) at Xp j can be computed as

ˆ̂IFip(Xp j) =
1
R

R

∑
r=1

(
Yir(F̂)− Ȳi

)(
n

Tip

∑
t=1

1{X r
ip(t) = Xp j}−Tip

)
, (8)

where X r
ip(1), ...,X

r
ip(Tip) are the random variates drawn from the pth input model to run the rth replication

simulation of system i. The variation we make in this work is to allow adoption of the common random
numbers (CRNs) across all systems. That is, for each r and p, X r

ip(1), ...,X
r
ip(Tip) are reused across all

systems as much as possible. If Tip remains the same for all systems, then all Tip inputs are reduced.
From (8), we can estimate the (l, l′)th element of Σi as

Σ̂
i
ll′ =

m

∑
p=1

n
np

np

∑
j=1

1
np

( ˆ̂IFip(Xp j)− ˆ̂IFl p(Xp j))(
ˆ̂IFip(Xp j)− ˆ̂IFl′p(Xp j)), (9)

for each i and 1 ≤ l, l′ ≤ k such that l, l′ ̸= i. Let Σ̂i be the resulting estimator of Σi. Now, {q(1)il } can be
estimated by a (1−α1) quantile of N(0k−1, Σ̂

i/n). Note that there are infinitely many candidates for the
quantile. In our empirical study in section 5, we adopt the quantile estimation procedure in Appendix EC.3
of Song and Nelson (2019).

3.2 Simulation error

To complete the MCB CIs, our goal is to find q(2)il such that for any F̂, we have Pr{ε̄i(F̂)− ε̄l(F̂) ≥
−q(2)il ,∀l ̸= i|F̂} = 1−α2. We have {

√
R(ε̄i(F̂)− ε̄l(F̂))}k

l=1,l ̸=i converge in distribution from a CLT to
N(0,Vi) as R increases, where Vi is the variance-covariance matrix of {Yi j(F̂)−Yl j(F̂)}k

l=1,l ̸=i. Although
Vi is unknown, we can estimate its sample version V̂i from the R replications already made to estimate the
influence functions. Then, {q(2)il }k

l=1,l ̸=i can be computed as a (1−α2) quantile of N(0k−1,V̂i/R).

3.3 Algorithm

We present the NIOU-C procedure that constructs the MCB CIs from the CLTs discussed in sections 3.1
and 3.2:

1. Choose 0 < α1,α2 < 1/2 such that (1−α1)(1−α2) = 1−α .
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2. From observations Xp1, ...,Xpn, compute the edf, F̂p, as the estimator of Fc
p for each p = 1, ...,m.

3. For each i ∈ {1, ...,k}:
(a) Run R simulation replications to obtain Yi1(F̂), ...,YiR(F̂).
(b) Compute Ȳi =

1
R ∑

R
r=1Yir(F̂).

(c) Compute ˆ̂IFip(Xp j) in (8) for p = 1, ...,m and j = 1, ...,np.
4. (CID effects) For each i ∈ {1, ...,k}:

(a) For 1 ≤ l, l′ ≤ k and each i, with l, l′ ̸= i, compute Σ̂i
ll′ as in (9).

(b) Compute the (k−1)-dimensional (1−α1) quantile q(1)il of the distribution N(0, Σ̂i/n).
5. (Stochastic error) For each system i:

(a) Compute the sample var-covariance matrix V̂i of {εi − εl}k
l=1,l ̸=i .

(b) Compute the (k−1)-dimensional (1−α2) quantile q(2)il of the distribution N(0,V̂i/R).

6. For each pair (i, l), i ̸= l, set qil = q(1)il + q(2)il . Use Theorem 1 to derive 1 − α simultaneous
comparisons CIs.

The NIOU-C:CLT procedure runs R replications at each system, which costs kR replications in total.
Note that the algorithm may be run with or without the CRNs. If CRNs are adopted, then in step 3(a), the
same random number stream should be repeated for each i.

4 NONPARAMETRIC IOU-C: AMBIGUITY SET APPROACH

In this section, we extend the IOU-C framework by introducing an ambiguity set to help us infer each
system’s performance under Fc with high probability, where the probability guarantee is supported by the
empirical likelihood theory. Below, we first discuss how the MCB CI framework can be modified to exploit
the ambiguity set formulation.

Recall that the MCB CIs are constructed from the joint CIs in (1) constructed for all 1 ≤ i ≤ k. Defining
Uil ≜ η̂i(Fc)− η̂l(Fc)+qil , (1) can be rewritten as

Pr{Uil ≥ ηi(Fc)−ηl(Fc),∀l ̸= i} ≥ 1−α. (10)

The MCB procedure in Theorem 1 computes D+
i and D−

i from η̂i(Fc)− η̂l(Fc)+qil =Uil and η̂i(Fc)−
η̂l(Fc)−qli =−{η̂l(Fc)− η̂i(Fc)+ η̂l(Fc)−qli}=−Uli for each i. Therefore, it suffices to find {Uil}l ̸=i
satisfying (10) for 1 ≤ i ≤ k. Suppose we have an ambiguity set Uα such that Pr{Fc ∈Uα} ≥ 1−α . Then,
Uil, l ̸= i can be found by solving

maxF ηi(F)−ηl(F) subject to F ∈ Uα . (11)

for all l ̸= i for each 1 ≤ i ≤ k. Clearly, one would prefer a choice of Uα such that (11) can be easily
solved. Below, we discuss how to construct such Uα based on the empirical likelihood theory.

To set up the discussion, consider some d-dimensional random vector Z ∼ G0 with mean E[Z] = µ0
and full-rank variance-covariance matrix V[Z] =V0. Let z1, . . . ,zn be the observed size-n i.i.d. sample from
G0. Given the sample, the empirical likelihood, L, of distribution function G defined on the support of Z
is (Owen 2001)

L(G) =
n

∏
j=1

G(z j). (12)

Thus, L(G) is maximized when G = Ĝ, where Ĝ is the edf constructed from the size-n sample. Note
that (12) is a nonparametric parallel to the parametric likelihood function. Thus, a natural estimator of G0
is the G that maximizes (12).
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Indeed, it is easy to see that if G puts no probability mass on any of the sampled observations, then
L(G) = 0. Moreover, if G assigns nonzero probability to a set of points other than the sample, then one
can also reassign the probability to the sample and increase the empirical likelihood.

From (12), the empirical likelihood ratio of G to the Ĝ is defined as

R(G)≜ L(G)/L(Ĝ).

If the goal is to make inference on the mean of Z, µ0, then we can further define the profile likelihood
function given µ ∈ Rd as

R(µ)≜ sup{R(G) : E[Z] = µ, where Z ∼ G}.

In words, R(µ) returns the largest likelihood ratio of G among those that have mean µ .
We further focus on the class of G that assigns nonzero probability weights to the sampled observations,

z1, . . . ,zn, i.e., G is represented by probability simplex vector w = (w1, . . . ,wn) such that wi ≥ 0 and
∑

n
i=1 wi = 1. Therefore, R(µ) can be redefined as

R(µ)≜ max
{
∏

n
j=1 nw j : ∑

n
j=1 w jz j = µ;∑

n
j=1 w j = 1;w j ≥ 0 for 1 ≤ j ≤ n

}
.

where L(w) = ∏
n
j=1 w j and ∏

n
j=1 nw j is the empirical likelihood ratio between the probability simplex, w,

and the edf, which assigns 1/n weight to each sampled observation. The following theorem restated from
Theorem 3.2 in Owen (2001) stipulates the asymptotic distribution of −2log(R(µ0)) computed from a
random sample of size n.
Theorem 2 Let Z1, . . . ,Zn be i.i.d. observations of G0 defined earlier. Then, −2log(R(µ0)) converges in
distribution to a χ2

d random variable with d degrees of freedom as n → ∞.
Theorem 2 justifies adopting the following ambiguity set for G0, if estimating µ is the goal of the

inference: {
w : −2∑

n
j=1 log(nw j)≤ χ

2
d,1−α ;∑

n
j=1 w j = 1;w j ≥ 0 for 1 ≤ j ≤ n

}
, (13)

where χ2
d,1−α

represents the 1−α quantile of a χ2
d random variable. That is, as n increases, some distribution

G that has the correct mean, µ0, is included in (13) with probability 1−α.
To utilize (13) to construct the ambiguity set, Uα in Problem (11), we first define np-dimensional

probability simplex wp on Xp1, . . . ,Xpnp for 1 ≤ p ≤ m. Then, {w1, . . . ,wm} represents the m input models
defined by assigning probability masses to the observed data. Suppose we define a joint distribution function
F = {w1, . . . ,wm}. Then, the nonparametric delta method in (4) can be rewritten as

ηi(F)≈ ηi(Fc)+
m

∑
p=1

np

∑
j=1

IFip(Xp j)wp j.

Notice that the right-hand side can be regarded as the sum of m expectations, where weight wp j is assigned
to IFip(Xp j) for 1 ≤ j ≤ np for 1 ≤ p ≤ m.

In our framework, the goal is to make simultaneous inference on {ηi(Fc)−ηl(Fc), l ̸= i} for each i,
which is a (k−1)-dimensional vector, where each entry is a sum of m expectations under the nonparametric
delta effect approximation. Therefore, we conjecture that the corresponding R(µ) and µ defined for
the (k−1)-dimensional vector admits the following asymptotic convergence: −2log(R(µ0))

D−→ χ2
k−1 for

appropriately defined µ0. From this result, we adopt the following ambiguity set

Uα =

{
(w1, ...,wm) : −2

m

∑
p=1

np

∑
j=1

lognpwp j ≤ χ
2
k−1,1−α ;

np

∑
j=1

wp j = 1,∀p = 1, ...,m;wp j ≥ 0,∀p, j
}
.

This conjecture is based on the following theoretical result.
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Theorem 3 Let m, t ∈ N, and let Zp ∈ Rt , p = 1, . . . ,m, be integrable, independent random vectors such
that each Zp has a full-rank variance-covariance matrix. Let Yp j ∈ Rt , j = 1, . . . ,np, p = 1, . . . ,m, be
independent such that for each p ∈ {1, . . . ,m}, Yp j, j = 1, . . . ,np, have the same distribution as that of Zp.
We define R on Rt by

R(µ)≜ max
{ m

∏
p=1

np

∏
j=1

npwp j :
m

∑
p=1

np

∑
j=1

Yp jwp j = µ;
np

∑
j=1

wp j = 1,∀p = 1, ...,m;wp j ≥ 0,∀p, j
}
.

Then, −2log(R(∑m
p=1 E[Zp]))

D−→ χ2
t as N ≜ ∑

m
p=1 np → ∞ and liminfN→∞ minnp/maxnp > 0.

For m = 1, Theorem 3 recovers Theorem 2. For t = 1, Theorem 3 corresponds to Theorem 1 in Lam
and Qian (2016).

We provide a sketch of proof to support Theorem 3 following section 11.4 in Owen (2001). The setting of
Theorem 3 can be formulated as a multi-distribution multivariate estimation problem, E[ψ(Z1, . . . ,Zm,µ)] =

0 with unknown µ ∈Rt , where ψ(z1, . . . ,zm,µ)≜∑
m
i=1 zi−µ . Here ψ : Rt ×·· ·×Rt →Rt with the Cartesian

product taken (t +1)-times. For multi-distribution multivariate estimation, the profile empirical likelihood
ratio function is the maximum value of ∏

m
p=1 ∏

np
j=1 npwp j subject to ∑

np
j=1 wp j = 1,∀p = 1, . . . ,m, wp j ≥

0,∀p, j, and ∑
n1
j1=1 ∑

n2
j2=1 · · ·∑

nm
jm=1 w1 j1w2 j2 · · ·wm, jmψ(Y1 j1 , . . . ,Ym jm ,µ) = 0. Since ∑

np
j=1 wp j = 1,∀p =

1, . . . ,m, the latter constraint equals ∑
m
p=1 ∑

np
j=1 Yp jwp j −µ = 0, which is the constraint in the maximization

problem in Theorem 3.

4.1 Estimation of critical values

Observe that if we replace the objective function of (11) with ηi(F)−ηl(F)−(ηi(Fc)−ηl(Fc)), the optimal
solution remains the same. From (5), we can approximate the new objective function as:

ηi(F)−ηl(F)− (ηi(Fc)−ηl(Fc))≈
m

∑
p=1

∫
(IFip(x)− IFl p(x))dFp(x).

The unknown true influence function is replaced with its estimator in (8), which results in the following
optimization problem:

max
w

m

∑
p=1

np

∑
j=1

( ˆ̂IFip(Xp j)− ˆ̂IFl p(Xp j))wp j s.t. w ∈ Uα . (14)

Because Uα is a convex set of w and the objective function of (14) is linear in w, (14) is a convex
optimization problem. Therefore, (14) can be solved by a convex optimization algorithm. Suppose we
obtain the optimal solution wmax

il = (wmax
il1 , ...,wmax

ilm ), where wmax
il p ∈Rnp for p = 1, ...,m. However, plugging

wmax
il back into the objective function of (14) does not provide Uil since ηi(Fc)−ηl(Fc) is unknown.

Instead, we compute the following estimator of Uil by simulating R2 replications with wmax
il :

Ûil =
1

R2

R2

∑
r=1

(Yir(wmax
il )−Ylr(wmax

il )) ,

where Yir(wmax
il ) refers to system i’s simulation output from the rth replication when the random variates

are drawn from a distribution with the same support as F̂ with weights wmax
il .

4.2 Algorithm

The algorithm to obtain the MCB CIs following the NIOU-C:AS method is:
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1. From observations Xp1, ...,Xpn, compute the edf, F̂p, as the estimator of Fc
p for each p = 1, ...,m.

2. For each i ∈ {1, ...,k}:
(a) Run R1 replications of the simulation to get Yi1(F̂), ...,YiR1(F̂).
(b) Compute Ȳi =

1
R1

∑
R1
r=1Yir(F̂).

(c) Compute ˆ̂IFip(Xp j) in (8) for each p = 1, ...,m and j = 1, ...,np.
3. For each pair i ̸= l, compute the optimal solution wmax

il of (14).
4. For each pair i ̸= l, compute Ûil =

1
R2

∑
R2
r=1

(
Yir(wmax

il )−Ylr(wmax
il )

)
.

5. For each i, compute D+
i = (minl ̸=i{Ûil})+ and I = {i : D+

i > 0}. If I = {i}, D−
i = 0; otherwise,

D−
i =−(minl∈I:l ̸=i{−Ûli})−.

6. For each i, we have the CI [D−
i ,D

+
i ].

The NIOU-C:AS procedure runs R1 replications at each system to estimate the influence functions.
Additionally, in Step 4, a total of 2k(k−1)R2 replications are made to compute {Ûil}i̸=l for 1 ≤ i ≤ k. In
summary, the total simulation cost of NIOU-C:AS is kR1 +2k(k−1)R2. In addition, the procedure solves
k(k−1) convex optimization problems in Step 3. We use the cvxpy package implemented in Python to
solve Problem (14) in the empirical study presented in Section 5.

5 EMPIRICAL STUDY

In this section we compare the performances of NIOU-C:CLT and NIOU-C:AS procedures to those of
IOU-C: All-in and IOU-C: Plug-in procedures, by Song and Nelson (2019). We first describe our example
below.

Let us consider a tandem queueing system with three servers, where each server has a FIFO service
rule. The arrival process to the system is a Poisson process with mean λ−1 = 0.15 and is independent from
all service times. For each s ∈ {1,2,3}, let Ss represent the service time of the sth server. We choose the
following bimodal distribution for Ss:

Ss = 1{Z = 1} ·a1
s ·Beta(a2

s ,a
3
s )+1{Z = 0} ·a4

s ·Beta(a5
s ,a

6
s ),

where Z is a Bernoulli random variable with success probability γs. The parameters take the following
values: a1 = (1,1,1),a2 = (2,2,2),a3 = (6,6,6),a4 = (3,2.3,1),a5 = (10,6,12),a6 = (2,2,2) and γ =
(0.785,0.7,0.1). The mean of the three services times are approximately µ1 = 0.73,µ2 = 0.7 and µ3 = 0.8,
respectively. To examine the effect of incorrectly specifying the parametric families, we run IOU-C
procedures with the assumption that the service times are exponentially distributed.

We assume the first server has an infinite-capacity queue so that every customer is accepted into the
system. However, the second and third servers have queue capacities of 2 and 3, respectively, which may
cause blocking. For instance, if server 2 has no available resources and two customers are in the queue of
server 2 (i.e. full capacity), then a customer finishing its service at server 1 will be blocked from joining
the second queue preventing server 1 to release the resource.

The base capacity of each server is 4. We consider adding extra server capacities to the system. Let
c = (2,5,6) be the vector of the cost per extra server at each station. With budget 9, the set of all possible
systems is {(d1,d2,d3) ∈ Z+ : ∑

3
s=1 csds ≤ 9}, which results in k = 9 systems. We define the average total

waiting time of the first 100 customers as our performance measure. Table 1 summarizes the systems and
their estimated performance measures from 1000 Monte Carlo simulations; the smaller, the better.

Table 1: List of feasible systems with their expected simulation outputs (waiting times).

System 1 2 3 4 5 6 7 8 9
Added Capacities (2, 1, 0) (1, 0, 1) (1, 1, 0) (3, 0, 0) (2, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 0)

Expected Wait Time 2.36 2.40 2.55 2.77 2.86 3.03 3.22 3.24 3.73
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We assume the three service time distributions must be estimated from data. At each macrorun we
generate np, 1 ≤ p ≤ 3, i.i.d. data from the true service time distribution. We set np = n for each p, where
n = 100 or n = 400. For IOU-C procedures, we estimate the maximum likelihood estimators (MLEs) of
the exponential service time distributions from the data. We set the confidence level 1−α to 0.9 and
adopt CRNs to run the simulations. We generate exactly 100 random variates from each input distribution,
because every customer enters the system and goes through all three servers. That is, Tip = 100 for 1 ≤ i ≤ k
and 1 ≤ p ≤ 3.

To make fair comparisons, we assign the same total simulation budget to each method. For the IOU-C
methods, Song and Nelson (2019) suggest to run, for each system i, n replications at F̂ and to sample
B = n1.1 design points from the asymptotic sampling distribution of the MLEs and to make one replication
at each to fit the linear regression for each system. Let R be the total number of simulations to run at each
system i ∈ {1, ...,k}. Then, we have R = B+n, which accounts to the total budget of kR. We allocate the
same budget for the NIOU-C methods. For NIOU-C:CLT, we run R replications at F̂ for each system,
which are used to calculate both IU and stochastic error CI widths. Finally, for the NIOU-C:AS method
we allocate R/2 to run simulations at F̂ to estimate the influence function for each system. The other half
is spent for estimating the bounds {Ûil}i̸=l .

Table 2 shows the summary results of 1000 macro runs of all methods when the number of observations
for each service time distribution is n = 100 with two settings of simulation budget, R = 259 and R = 1000.
For each method we estimate the probability that each system is in the set, I, as well as the joint coverage
probability of the MCB CIs and the average size of I.

Table 2: Probability of i ∈ I for each system i, MCB Coverage and Average Size Set when n = 100 for
NIOU-C and IOU-C procedures using R = 259 and R = 1000. Results are computed from 1000 macroruns.

System
R = 259 R = 1000

NIOU-C IOU-C NIOU-C IOU-C
CLT AS All-in Plug-in CLT AS All-in Plug-in

1 1 0.923 0.993 0.701 0.988 0.99 0.987 0.671
2 1 0.92 0.999 0.979 0.998 0.995 1 0.976
3 0.999 0 0.964 0.609 0.97 0 0.917 0.567
4 0.998 0.088 0.761 0.134 0.918 0.203 0.684 0.123
5 0.996 0 0.676 0.01 0.886 0 0.599 0.007
6 0.976 0 0.382 0.005 0.479 0 0.331 0.005
7 0.973 0 0.592 0.233 0.716 0 0.527 0.22
8 0.989 0 0.681 0.668 0.732 0 0.642 0.617
9 0.541 0 0.026 0.001 0.001 0 0.019 0

MCB Coverage 1 0.842 0.969 0.631 0.984 0.986 0.968 0.592
Avg set size 8.5 1.9 6.1 3.3 6.7 2.2 5.7 3.2

Table 2 shows that, when R = 259, the NIOU-C:CLT method is overly conservative; the average size
of I is 8.5 and the joint probability coverage is 1. In contrast, the NIOUC:AS tends to be aggressive; it
selects system 1 only with probability 0.923. System 2, which is very close to the optimal, is selected with
probability 0.92. The average size set is 1.9 and the coverage is 0.842. IOU-C:All-in is conservative as its
I contains 6.1 systems on average with a joint coverage of 0.969. System 1 and 2 are in I with probability
higher than 0.99. The IOU-C:Plug-in procedure is more aggressive, however, observe that the probability
of i = 1 being in I is 0.701, close to that of system 8, which is the second worst. Whereas, system 2
is included in I with a significantly higher frequency. This is likely caused by the incorrect parametric
assumptions.
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When R is increased to 1000, NIOU-C:CLT becomes less conservative: the average size set and MCB
coverage decrease to 6.7 and 0.984 respectively. Each of the best two systems are in I with a probability
higher than 0.98. The NIOU-C:AS, on the other hand, becomes less aggressive: the average size set
increases to 2.2 and the MCB coverage increases to 0.986. Each of the two best systems are in I with
probabilities of at least 0.99, increased from when R= 259. These results suggest that increasing R improves
the performance of each NIOU-C procedure as CI bounds are computed more precisely.

Table 2 also shows that IOU-C:All-in and IOU-C:Plug-in methods select the best system with probabilities
0.987 and 0.671, respectively. Although the former exceeds the target coverage 0.9, this is likely caused
by its inherent conservatism. We expect the performance would worsen when R increases because All-in
and Plug-in methods start behaving similarly for large R.

Table 3 shows the average of 1000 macro runs of all methods when n = 400. When R = 1129, the
NIOU-C:CLT method has a joint coverage probability of 1 and the average size set is 5.4, both are smaller
than when n = 100. Such reduction comes from reduced IU thanks to higher n. The NIOU-C:AS procedure,
in contrast, has the joint coverage probability of 0.822 and average size set of 1.9. Moreover, it only selects
systems 1 and 2 to be in I; no other system is considered to be the true best under the unknown true
service distributions. On the contrary, system i = 1 is ruled out 2.2% of the times by the IOU-C:All-in
procedure and 46.9% of the times by the IOU-C:Plug-in procedure. The MCB coverage probabilities for
these methods are 0.949 and 0.412, respectively, and the average sizes set are 2.9 and 1.9, respectively.
The probability of selecting the best system in IOU-C:Plug-in is far below the target indicating the model
risk caused by wrong parametric assumptions.

Table 3: Probability of i ∈ I for each system i, MCB Coverage and Average Size Set when n = 400 for
NIOU-C and IOU-C procedures using R = 1129 and R = 5000. Results are computed from 1000 macroruns.

System
R = 1129 R = 5000

NIOU-C IOU-C NIOU-C IOU-C
CLT AS All-in Plug-in CLT AS All-in Plug-in

1 1 0.912 0.978 0.531 0.999 0.993 0.977 0.539
2 1 0.943 1 0.993 0.998 0.995 1 0.993
3 1 0 0.663 0.287 0.632 0 0.64 0.279
4 0.942 0 0.078 0.001 0.09 0.001 0.079 0.001
5 0.771 0 0.019 0 0 0 0.021 0
6 0 0 0 0 0 0 0 0
7 0.521 0 0.065 0.003 0 0 0.059 0.001
8 0.125 0 0.098 0.058 0 0 0.087 0.061
9 0 0 0 0 0 0 0 0

MCB Coverage 1 0.822 0.949 0.412 0.991 0.983 0.94 0.399
Avg set size 5.4 1.9 2.9 1.9 2.7 2.0 2.9 1.9

Finally, when R increases to 5000, we can observe that systems 1 and 2 are chosen over 99% of times
by the NIOU-C methods. NIOU-C:CLT also selects system 3 and 4 with probability 0.632 and 0.09, which
makes the average size set to be 2.7. The MCB coverage probability is 0.991 for NIOU-C:CLT and 0.983
for NIOU-C:AS. In the IOU-C procedures, the results are similar to the case when R = 1129.

Results in Table 3 suggest that increasing R makes the NIOU-C perform better as it should: for
the NIOU-C:CLT procedure, it reduces the average size set allowing us to make a better decision while
maintaining a high MCB coverage; for the NIOU-C:AS procedure, it increases the probability of selecting
the best system up to 99%. The IOU-C:Plug-in method does not perform well due to the wrong parametric
assumptions. IOU-C:All-in procedure shows good MCB coverage, thanks to its conservatism, but it is not
expected to perform well if R increases.
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In this queuing example, the NIOU-C procedures show good performances. The NIOU-C:AS method
returns the smallest I among all methods and system 1 is included in I with probability over 1−α . For the
NIOU-C:CLT method, the probability of system 1 being in I is always close to 1 due to its conservatism.
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