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ABSTRACT

Screening procedures for ranking and selection have received less attention than selection procedures, yet
they serve as a cheap and powerful tool for decision making under uncertainty. Research on screening
procedures has been less active in recent years, just as the advent of parallel computing has dramatically
reshaped how selection procedures are designed and implemented. As a result, screening procedures used
in modern practice continue to largely operate offline on fixed data. In this tutorial, we provide an overview
of screening procedures with the goal of clarifying the current state of research and laying out opportunities
for future development. We discuss several guarantees delivered by screening procedures and their role in
different decision-making settings and investigate their impact on screening power and sampling efficiency
in numerical experiments. We also study the implementation of screening procedures in parallel computing
environments and how they can be combined with selection procedures.

1 INTRODUCTION

Ranking and selection (R&S) refers to a class of problems featuring a finite number of simulated alternatives
where a decision-maker wishes to identify one or more alternatives having good expected performance.
Each alternative represents a specific scenario of a simulation model, henceforth referred to as a system. In
the R&S problem, the expected performance of a system can only be observed with error via simulation.
For a recent review of R&S research, see Hong et al. (2021).

In practical R&S problems with large numbers of systems, many systems have poor performance. One
would ideally like to eliminate these inferior systems from contention without needing to spend significant
computational effort simulating them. This task is commonly referred to as screening or subset selection.
In this tutorial, we use the term screening so as to not create confusion with the topic of subset selection
arising in statistical learning. Screening has a long history dating back to the seminal work of Gupta (1965),
who developed the first screening procedure under the assumptions of normally distributed outputs with
known equal variance and a common sample size across systems. In the typical R&S setting, all systems
are simulated to some degree, thus devoting some simulation effort to poor systems is unavoidable. Other
methods exist that can screen unsimulated systems while delivering similar statistical guarantees to those
we study here, e.g., plausible screening methods (Eckman et al. 2022), but to do so they rely on known or
assumed structure relating the expected performances of different systems. In contrast, R&S procedures
typically treat systems categorically, meaning any relationship between the expected performances of
systems and the values of the decision variables describing them is ignored.

Screening procedures involve running replications of the simulation model associated with each system
and performing some statistical comparison of the estimated expected performances before finally returning a
subset of systems. The returned subset can be used for a variety of purposes. For instance, the decision maker
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may inspect the surviving systems and ultimately choose one of them based on secondary considerations.
This approach might be taken when making an expensive, one-time decision. In this setting, one might
alternatively use a selection procedure, which recommends a single system. Another application is to run a
screening procedure to reduce the number of systems under consideration before running a more expensive
selection procedure in a second stage (Nelson et al. 2001). In other situations, such as when different
solutions may be adopted in different scenarios, the decision maker may truly desire to have an assortment
of high-quality systems from which to choose.

Some of the earliest screening procedures consisted of a single stage of sampling, where sample sizes
are fixed in advance (Gupta 1965). Later procedures were designed to conduct sampling in two stages
(Rinott 1978; Dudewicz and Dalal 1975) or fully sequentially (Pei et al. 2022), in which case the total
sample size may not be known in advance. See Gupta and Panchapakesan (1985) for an overview of early
developments in the field. One way to categorize screening procedures is based on whether systems’ sample
sizes are fixed up front or determined adaptively. For screening procedures in which the sample size is
fixed up front, sampling is typically conducted in a single stage. The ability to control the total sample
size in advance is especially appealing to a user with a limited simulation budget. Adaptive screening
procedures, on the other hand, guide the sampling process and can thereby avoid excessively sampling
clearly inferior systems. For this reason, adaptive screening procedures might be expected to return a
smaller subset than those with pre-specified sample sizes if given the same sampling budget. The total
sample size of an adaptive screening procedure may or may not be fixed up front, depending on the type
of statistical guarantee the procedure seeks to deliver.

The goal of this advanced tutorial is to bring a fresh perspective to an old problem. This tutorial
is not intended to be a comprehensive review of screening procedures to date, but rather a collection of
ideas—some borrowed, some new—that extend or generalize screening procedures or apply them in new
ways. We believe this revisit of screening will be of broad interest to the simulation community, researchers
and practitioners alike. The rest of the tutorial is organized as follows: In Section 2, we introduce the
problem, present several frequentist guarantees of screening procedures, and discuss their relative merits. In
Section 3, we examine three screening procedures and present some numerical experiments that shed light on
how well they perform in a variety of situations. Section 4 investigates how screening methods can be run in
parallel computing environments and studies the anticipated efficiency gains of several divide-and-conquer
schemes. Section 5 explores the sampling efficiency of procedures that combine screening and selection
and how their statistical guarantees can be paired to deliver an overall guarantee on the selected system.
We conclude in Section 6 and point out some opportunities for future research.

2 SCREENING AND SCREENING GUARANTEES

A system refers to a design or configuration of the simulation model that is being studied. Suppose we
have k systems under consideration, and let their collective expected performance be represented by an
unknown vector µ = (µ1, µ2, ..., µk), i.e., µi is the expected performance of System i for i = 1, 2, . . . , k.
We assume without loss of generality that µ1 ≤ µ2 ≤ ... ≤ µk and that larger expected performance is
better. Simulating an arbitrary System i produces independent and identically distributed (i.i.d.) outputs
Xi1, Xi2, ..., Xini where ni is the number of replications taken at System i. The numbers of replications
from each system can differ, and N =

∑k
i=1 ni denotes the total sample size. We assume that outputs from

different systems are independent, though some R&S procedures can benefit from inducing dependence in
the outputs from different systems by using common random numbers (CRN)—doing so typically requires
a common sample size across systems. We make the following standard assumption about the outputs:
Assumption 1 For each System i, i = 1, 2, ..., k, the outputs Xi1, Xi2, ..., Xini from system i are normally
distributed with unknown mean µi and unknown variance σ2

i .
In the R&S literature, Assumption 1 is adopted for a variety of reasons: First, it is useful for providing

finite-sample statistical guarantees for R&S procedures. Second, many common performance metrics such
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as profit, service level and average waiting time can be viewed as sums or averages of many terms and
may therefore be approximately normally distributed by the Central Limit Theorem. Lastly, even when
the outputs are not approximately normally distributed, batching outputs from multiple replications can
produce quantities that are, provided the batch size is large enough.

In this tutorial, we assume that the decision maker regards systems whose expected performances are
within δ ≥ 0 of the best as “good.” The case δ = 0 corresponds to the well-studied correct-selection setting.
Let G = {i : µi ≥ µk − δ} denote the set of indices of δ-optimal systems, i.e., good systems. The set G
may contain multiple systems, even when δ = 0 if there are multiple systems tied for the best. Because µ
is unknown, we cannot identify G with certainty given only finite sampling. Screening procedures address
this challenge by returning a subset S ⊆ {1, 2, ..., k} that is related to G at some confidence level 1−α. The
subset S is constructed based on the simulation outputs, often through sufficient statistics like the sample
mean µ̂i = n−1

i

∑ni
ℓ=1Xiℓ and sample variance σ̂2

i = (ni − 1)−1
∑ni

ℓ=1(Xiℓ − µ̂i)
2, for i = 1, 2, ..., k.

For screening procedures, the confidence level, 1− α, total sample size, N , and returned subset size,
|S|, form an impossible triangle. Just as no food can be simultaneously healthy, cheap and tasty, no
procedure can simultaneously control 1−α, N and |S|; only two of the three can be specified by the user,
with the other left free. Enforcing |S| = 1 reduces the problem to that of selecting a single system and
shows that for selection procedures there is a tension between the confidence level and the sample size.
The stricter the user’s demands on the procedure, i.e., higher 1− α, lower N , or lower |S|, the more the
uncontrolled aspect of the procedure suffers. The screening procedures of Gupta (1965) and Nelson et al.
(2001) are examples of those that fix 1 − α and N and allow |S| to vary. We focus on procedures of
this type in this tutorial. When 1− α and |S| = m > 1 are fixed, the problem is referred to as restricted
subset selection (Koenig and Law 1985; Sullivan and Wilson 1989). Fixed-confidence selection procedures
fall into the category of fixing 1 − α and |S| = 1 and take as many replications as necessary to deliver
a guarantee at the specified confidence level (Kim and Nelson 2001). Although we are not aware of any
screening procedures that fix N and |S| = m > 1 but allow 1− α to vary, procedures that do so can be
easily developed from the Bayesian perspective (Eckman et al. 2020). On the other hand, for fixed N and
|S| = 1, the fixed-budget knockout-tournament (FBKT) procedure of Hong et al. (2022) provides a lower
bound on the probability of selecting the best system.

2.1 Fixed-Confidence Frequentist Guarantees

In the frequentist treatment of the R&S problem, the joint probability distribution of the outputs of the systems
is considered fixed, but unknown, and a procedure’s statistical guarantee is with respect to repetitions of the
sampling experiment on the same problem instance. Consequently, the vector of expected performances,
µ, and the set of good systems, G, are fixed. In contrast, the returned subset, S, is random.

We study four frequentist guarantees, all of which feature a confidence level 1 − α specified by the
decision maker. While the names we give to these guarantees may be new, the guarantees themselves are
not. Figure 1 helps to visualize how the guarantees differ.
Definition 1 A screening procedure delivers the Set-wise Probability of Good Selection (Set-wise PGS)
guarantee if for any µ ∈ Rk, P(G ⊆ S) ≥ 1− α.
Definition 2 A screening procedure delivers the System-wise Probability of Good Selection (System-wise
PGS) guarantee if for any µ ∈ Rk, P(i ∈ S) ≥ 1− α for all i ∈ G.
Definition 3 A screening procedure delivers the Expected False Elimination Rate (EFER) guarantee if for
any µ ∈ Rk, E[|S ∩ G|]/|G| ≥ 1− α.
Definition 4 A screening procedure delivers the Probability of Good Inclusion (PGI) guarantee if for any
µ ∈ Rk, P(|S ∩ G| ≥ 1) ≥ 1− α.

The four guarantees form a chain of implications, with the set-wise PGS guarantee being the strongest
and the PGI guarantee being the weakest, as described in Proposition 1. When there is only one good
system, i.e., |G| = 1, all four guarantees are equivalent.
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Figure 1: Illustration of four fixed-confidence frequentist guarantees for screening on a problem instance
with k systems, two of which are good. P( i) denotes the probability that System i is returned.

Proposition 1 For any fixed confidence level 1−α ∈ (0, 1), if a screening procedure delivers the set-wise
PGS guarantee, then it also delivers the system-wise PGS guarantee; if a screening procedure delivers the
system-wise PGS guarantee, then it also delivers the EFER guarantee; if a screening procedure delivers
the EFER guarantee, then it also delivers the PGI guarantee.

The four guarantees serve different purposes and a decision maker’s preferences regarding them may
depend on the situation. The set-wise PGS guarantee states that with high probability all good systems are
returned, which may be desirable when screening is used for population selection within an evolutionary
algorithm (Lam 1986; Hedlund and Mollaghasemi 2001). The system-wise PGS guarantee is more
appropriate if the decision maker wants to ensure that each good system has a good chance of being
returned. The EFER guarantee is inspired by a homonymous guarantee in Pei et al. (2022) that controls
the proportion of good systems that are incorrectly screened out. Here, we express the guarantee in terms
of a complementary inequality, so as to make it more closely resemble the others. The EFER guarantee
ensures that a large proportion of the good systems are returned on average and may be satisfying to a
more tolerant decision maker. If the decision maker were to combine a screening procedure and a selection
procedure with the goal of selecting a good system, then the PGI guarantee may be sufficient because it
asserts that, with high probability, at least one good system survives the first stage (Trawinski 1969).

2.2 Other Guarantees

The aforementioned guarantees aim to control the Type I error rate—the probability that good systems
are accidentally screened out. Few screening procedures deliver guarantees controlling the Type II error
rate—the probability that bad systems survive screening. The ability to control the prevalence of bad
systems in the returned subset may be appealing to a risk-averse decision maker. An example of a guarantee
that controls the Type II error rate is to ensure that with high probability, only good systems are returned,
i.e., for any µ ∈ Rk, P(S ⊆ G) ≥ 1− α (Desu 1970). Another, weaker guarantee is that for any µ ∈ Rk,
P(i /∈ S) ≥ 1− α for all i /∈ G, meaning that for each bad system, the probability it will be eliminated is
sufficiently high. For guarantees controlling the Type II error rate, a serious concern is that with nontrivial
probability the returned subset may be empty. Another guarantee for screening procedures is to control
the average optimality gap of the returned systems, referred to as the expected opportunity cost (Gao and
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Chen 2015a). When the decision maker is not demanding optimality, other definitions of good systems
include being a top-m system (Gao and Chen 2015b) or having an expected performance greater than
min{µk, µ

†}, where µ† is standard specified by the decision maker (Pei et al. 2022).

3 EXAMPLES OF SCREENING PROCEDURES

In this section, we describe several screening procedures that deliver the set-wise PGS, system-wise PGS,
and EFER guarantees. As for the PGI guarantee, it can be delivered by prematurely terminating any
sequential selection procedure that delivers the PGS guarantee, i.e., one that selects a δ-optimal system
with high probability. One such example is the Envelope procedure of Ma and Henderson (2017). Because
the probability of eliminating all good systems is guaranteed to be below α at any time during the run,
the probability of at least one good system remaining in the surviving subset is above 1 − α. For the
δ = 0 case, indifference-zone-free procedures with a probability of correct selection (PCS) guarantee can
also be terminated prematurely (Fan et al. 2016; Wang et al. 2023). This alternative use of sequential
selection procedures offers flexibility in terms of the stopping criteria. One could choose to terminate such
procedures upon exhausting a specified budget of wall-clock time, CPU time, or total sample size, or when
the subset of systems still in contention shrinks to some desired size. This observation motivates the need
for further study of the rate at which procedures eliminate systems and how that rate changes over time.

3.1 Screen-to-the-Best

We start with the Screen-to-the-Best (STTB) procedure of Nelson et al. (2001), which is implemented
in commercial simulation software, including Simio and Arena. STTB performs pairwise comparisons,
taking turns comparing each system against all the others and deciding whether it should be eliminated,
i.e., screened out. Systems that are not eliminated comprise the returned subset. We present a modified
version of STTB that returns the subset

SSTTB =

i : µ̂i + δ ≥ µ̂j − tβ,ν

√
σ̂2
i

n
+

σ̂2
j

n
for all j ̸= i

 , (1)

where tβ,ν is the β quantile of the Student’s t-distribution with ν degrees of freedom. For β = (1−α)1/(k−1)

and ν = n− 1, STTB delivers the system-wise PGS guarantee. Algorithm 1 shows pseudocode for how to
construct the subset SSTTB given the output data. We present STTB with a common sample size, n, for
ease of exposition; the procedure has been extended to handle unequal sample sizes (Boesel et al. 2003).

Algorithm 1: Screen-to-the-Best (STTB)

1 S = {1, 2, . . . , k}
2 for i = 1, 2, . . . , k do
3 for j = 1, 2, . . . , k do
4 if µ̂i + δ < µ̂j − tβ,ν

√
σ̂2
i /n+ σ̂2

j /n then
5 S = S \ {i} and break

6 return S

In the original version of STTB, the δ term in (1) appeared on the right-hand side of the inequality,
paired with the tβ,ν

√
σ̂2
i /n+ σ̂2

j /n term with a positive-part operator applied. We propose this modified
version because it preserves a certain transitive-elimination property when δ > 0. The original procedure
possesses this property when δ = 0 and is purported to when δ > 0, but there are known counter-examples.
Transitive elimination refers to the property that for any Systems i, j, and ℓ, if System i eliminates System
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j, and System j eliminates System ℓ, then System i eliminates System ℓ. This property implies that System
i would eliminate all systems that System j would eliminate, which allows a screening procedure to be
implemented in parallel using a divide-and-conquer scheme, as will be discussed further in Section 4.

3.2 Decoupled Screen-to-the-Best

We next introduce a new variation of STTB called Decoupled STTB (DSTTB) that returns the subset

SDSTTB =

i : µ̂i + tβ,ν

√
σ̂2
i

n
+ δ ≥ µ̂j − tβ,ν

√
σ̂2
j

n
for all j ̸= i

 . (2)

DSTTB delivers the system-wise PGS guarantee when β = (1 − α)1/k and ν = n − 1 and delivers the
set-wise PGS guarantee when β = (1+(1−α)1/k)/2 and ν = n−1. We again choose to show the case of
common sample sizes, but an extension to unequal sample sizes is straightforward. DSTTB’s decoupling of
the square-root term in (1) results in less screening power compared to STTB, as implied by Proposition 2.
Proposition 2 For any µ ∈ Rk, α ∈ (0, 1) and δ ≥ 0, when DSSTB is set up to deliver the system-wise
PGS guarantee, P(SSTTB ⊆ SDSTTB) = 1.

DSTTB constructs either a one-sided or two-sided (1−α)1/k confidence interval for each system. When
systems are simulated independently, the probability that all k systems’ confidence intervals contain their
expected performances is then 1−α. When screening a given system, we optimistically estimate its expected
performance with an upper confidence bound and pessimistically estimate the expected performances of
all other systems with their lower confidence bounds. As illustrated in Figure 2, a system is returned if its
upper confidence bound plus δ is greater than the maximum lower confidence bound of the other systems.
The set-wise PGS guarantee follows from using the same fixed two-sided confidence intervals for screening
all systems, and the system-wise PGS guarantee follows from using one-sided confidence bounds whose
orientations depend on whichever system is being screened. Algorithm 2 shows how to efficiently construct
SDSTTB for either guarantee by computing a benchmark T for making comparisons.

Algorithm 2: Decoupled Screen-to-the-Best (DSTTB)

1 S = {1, 2, . . . , k}
2 for i = 1, 2, . . . , k do

3 li = µ̂i − tβ,ν

√
σ̂2
i
n

4 ui = µ̂i + tβ,ν

√
σ̂2
i
n

5 T = maxi∈{1,2,...,k} li
6 for i = 1, 2, . . . , k do
7 if ui + δ < T then
8 S = S \ {i}
9 return S

3.3 Bi-PASS

The last procedure we exhibit is the bisection Parallel Adaptive Survivor Selection (bi-PASS) of Pei
et al. (2022). Unlike STTB and DSTTB, which fix the sample sizes in advance, the bi-PASS procedure
takes replications sequentially from systems still under consideration and continuously eliminates systems.
Systems are eliminated if their estimated expected performance falls too far below an adaptive standard,

6



Zhao, Gatica, and Eckman

max
𝑗≠4
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System 1

System 2

System 3

System 4

System 5

System Performance

𝛿

(a) System-wise PGS guarantee (Screening System 4)
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(b) Set-wise PGS guarantee

Figure 2: The confidence intervals used by DSTTB when delivering (a) the system-wise PGS guarantee
or (b) the set-wise PGS guarantee on a problem instance with five systems.

which is adopted to overcome the lack of knowledge of the desired standard by which systems are deemed
good. Algorithm 3 shows how the bi-PASS procedure updates the adaptive standard µ̂∗ and uses it to screen
out inferior systems for the setting where δ = 0. The procedure uses a boundary function g(·) to control
how far a system’s estimated expected performance is allowed to deviate from the adaptive standard.

The adaptive standard is designed to converge to the desired standard as the sample size increases.
For example, when the adaptive standard is the average of the sample means of the surviving systems,
it will converge to µk, the expected performance of the best system, thus delivering the EFER guarantee
with δ = 0. To the best of our knowledge, bi-PASS is the only screening procedure designed to deliver
the EFER guarantee for δ = 0, specifically when run with a fixed total sample size. It might be possible
to modify the bi-PASS procedure to handle the setting where δ > 0 by shifting µ̂∗ down by δ.

3.4 Numerical Comparisons

We next compare the empirical performance of the STTB, DSTTB, and bi-PASS procedures. We devise
problem instances having expected performances described by µi = F−1(i/k) for i = 1, 2, . . . , k, where
F−1 is the inverse cumulative distribution function (cdf) of a certain Beta distribution. To investigate how
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Algorithm 3: Bisection Parallel Adaptive Survivor Selection (bi-PASS)

1 S = {1, 2, . . . , k}
2 for i ∈ S do
3 ni = n0 and simulate each system n0 times
4 Compute the initial estimated standard µ̂∗ = |S|−1

∑
i∈S µ̂i and total sample size N =

∑
i∈S ni

5 while |S| > 1 and N < Nmax do
6 for i ∈ S do
7 if (µ̂i − µ̂∗)ni/σ̂

2
i ≤ −g(ni/σ̂

2
i ) then

8 S = S \ {i} and µ̂∗ = |S|−1
∑

i∈S µ̂i

9 else
10 Simulate System i and update ni, µ̂i, σ̂2

i ,N , and µ̂∗

11 return S

conservative DSTTB is relative to STTB, we consider a problem instance with k = 1000 systems and
we use the Beta(a = 4, b = 2) distribution for which there are many near-optimal systems. STTB and
two versions of DSTTB are run with the β and ν values set to deliver PGS guarantees (where δ = 0) at
a confidence level 1 − α = 0.95. We assume a common, unknown variance of σ2 = 0.5 and allow the
procedures to use pooled-variance estimators; this simplification is not believed to affect the procedures’
relative performance. Figure 3 shows the subset size based on 40 macroreplications given different sampling
budgets. The two versions of DSTTB have similar screening power, but STTB eliminates significantly
more systems for all total sample sizes. The same relationships were observed for another problem instance
with many inferior systems, but the differences in subset sizes were smaller.

Figure 3: Mean and 10th/90th percentiles (dashed) of returned subset size for STTB and DSTTB on a
problem instance with 1000 systems with expected performances from the Beta(a = 4, b = 2) distribution.

We next compare STTB and bi-PASS. To make for a fair comparison, we test the two procedures in a
correct-selection setting where δ = 0 and there is a unique optimal system. In this setting, the system-wise
PCS guarantee delivered by STTB and the EFER guarantee delivered by bi-PASS are equivalent.

In the first experiment, we compare how many systems the two procedures screen out when run on the
same problem instance for a range of sampling budgets. We test two problem instances, each with k = 1000
systems. In the first problem instance, we again use the Beta(a = 4, b = 2) distribution. In the second
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(a) Beta(a = 4, b = 2) (b) Beta(a = 2, b = 4)

Figure 4: Mean and 10th/90th percentiles (dashed) of subset size for STTB and bi-PASS on two fixed
problem instances when varying the total sample size.

problem instance, we use the Beta(a = 2, b = 4) distribution for which most systems have poor expected
performance. Both procedures are run with a confidence level 1−α = 0.95. For bi-PASS, we choose to use
the boundary function g(ni/σ̂

2) =
√

(5 + log(ni/σ̂2 + 1))(ni/σ̂2 + 1) to achieve the specified confidence.
The bi-PASS procedure initially takes n0 = 10 replications of all systems and is run with a total budget
of N = 1,000,000 replications; its set of surviving systems is tracked over time. In contrast, STTB is run
with different budgets and allocates replications equally across systems, obtaining N/k replications from
each system. We perform 40 macroreplications of each procedure, each time recording the returned subset.
Figures 4(a) and 4(b) show the size of the subsets returned by each procedure. In both problem instances,
STTB screens out more systems than bi-PASS for small total sample sizes, but bi-PASS eventually becomes
more powerful than STTB, presumably due to its ability to sample adaptively. For the problem instance
with many near-optimal systems, the size of the subset returned by bi-PASS shrinks at an almost linear
rate, while for the problem instance with many inferior systems, the rate is superlinear. The percentile
bands in the two plots show that the size of the subset returned by STTB is more variable.

In a second experiment, we analyze the limiting performance of STTB and bi-PASS as the number of
systems increases. We consider the two problem instances from the previous experiment as well as the
Beta(a = 1, b = 1) distribution, i.e., the Uniform(0, 1) distribution. We test problems with k = 200 to
k = 2000 systems and let the total sample size scale linearly with the number of systems, setting N = 40k.
As before, we perform 40 macroreplications of each procedure, with the same parameters as before, and
record the returned subsets. Figure 5 shows the proportion of returned systems for the two procedures in the
three problem instances. In all three problem settings, we see that STTB screens out a greater proportion
of systems than bi-PASS. This observation is likely specific to the per-system sample size of 40; for larger
total sample sizes, Figures 4(a) and 4(b) suggest the ordering will be reversed. The most interesting finding
from Figure 5 is that the proportion of systems returned by both procedures is largely independent of the
number of systems. This phenomenon might be explained by how the problem instances involve “filling
in” a fixed distribution for the expected performances as the number of systems increases.

4 SCREENING IN PARALLEL COMPUTING ENVIRONMENTS

Modern R&S procedures are used to solve simulation-optimization problems featuring large numbers of
systems, as can arise when systems represent combinations of integer-ordered or categorical decision
variables. The ability of R&S methods to tackle such large-scale problems has increased significantly in
recent years, due to the development of procedures that exploit parallel computing. Problems that were once
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Figure 5: Mean and 10th/90th percentiles (dashed) of the proportion of systems returned by STTB and
bi-PASS when run with a total sample size of N = 40k on three problem instances.

deemed impossible to solve now show promise. In this setting, procedures that obtain samples adaptively
are of special interest, as they can identify and eliminate clearly inferior systems over time and thereby
save considerable sampling effort. Even so, preserving the statistical validity of the guarantees of R&S
procedures that compare systems simulated on different processors remains a formidable challenge.

Recent research on R&S has concerned either how to parallelize existing selection procedures or how
to develop new schemes for comparing systems in parallel environments (Hunter and Nelson 2017). A
computational issue that arises in parallel environments is that under the common master-worker framework,
the master processor can be a bottleneck if overwhelmed by communication tasks (Luo et al. 2015). This
can be overcome by employing a divide-and-conquer scheme in which certain tasks are performed on
worker processors before being performed again on the master processor (Ni et al. 2017). When the
distributed task is screening, systems are first simulated and screened on the worker processors, and then
the results (the identities and outputs of the returned systems) are sent to the master processor for another
round of screening, without additional replications being taken. Under this setup, fewer systems’ outputs
are reported to the master processor, reducing the amount of coordination and the overall wall-clock time.

When designing a R&S procedure to identify optimal or near-optimal systems, it is natural to compare
every system to every other system. However, pairwise comparisons require immense coordination across
processors. To reduce this need for synchronization, bi-PASS instead compares individual systems to an
adaptive standard maintained on the master processor and updated based on the results returned by the
worker processors (Pei et al. 2022).

Relatedly, Zhong et al. (2022) observed that in the elimination check within the KN procedure (Kim
and Nelson 2001) and Paulson’s procedure (Paulson 1964)—when CRN are not used—one can decouple
a certain term σ̂2

ij into σ̂2
i + σ̂2

j and thereby avoid pairwise comparisons. This reduces the time complexity
of the two procedures from O(k2 log k) and O(k2) to O(k log k) and O(k), respectively. The DSTTB
procedure is inspired by this observation and applies a similar decoupling to the pairwise comparisons
performed in STTB. Whereas the time complexity of constructing SSTTB is O(k2), that of SDSTTB is O(k),
regardless of the guarantee being delivered, as can be seen by the two (unnested) for loops in Algorithm 2.
Taken together, this time complexity comparison and the nested relationship established in Proposition 2
suggest that DSTTB might be useful for pre-screening systems before constructingSSTTB from the surviving
systems. Moreover, both STTB and DSTTB have the aforementioned transitive-elimination property, which
implies that they can be parallelized using a divide-and-conquer approach without any loss in screening
power. Thus, any combination of DSTTB and STTB concluding with STTB—whether performed on a
single processor or on multiple processors via a divide and conquer scheme—will ultimately return SSTTB.
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We investigate the potential wall-clock-time savings of pre-screening with DSTTB in various divide-
and-conquer schemes. We run 20 macroreplications of each procedure on the Beta(a = 2, b = 4) problem
instance in which most systems are inferior and there are k = 100,000 systems. We set n = 20 in all
cases and record the wall-clock time spent constructing SSTTB; the time spent running the simulation
replications is not counted. Table 1 reports the wall-clock times of the schemes assuming different numbers
of processors. The experiments are actually conducted on a single processor, so the communication costs
present in a real parallel computing environment are not reflected in the reported times. In Table 1, we
see that in a single-processor setting, using DSTTB to pre-screen can result in a two-fold speed-up for
this large-scale problem. The divide-and-conquer strategy also has a tremendous effect on speeding up
screening, with the divide-and-conquer version of STTB, without using DSTTB, being the fastest. Using
DSTTB to pre-screen on both the worker processor and the master processor is the next fastest.

Table 1: Mean and 10th/90th percentiles of wall-clock time (in seconds) spent screening by combinations of
the STTB and DSTTB procedures given different numbers of processors (p) on a problem with k = 100,000
systems. DSTTB + STTB indicates that STTB is used to screen the systems returned by DSTTB.

On Workers On Master p = 10 p = 20 p = 50 p = 100

– STTB
38.32

[35.71, 39.96]

– DSTTB + STTB
19.62

[18.07, 21.21]

STTB STTB
2.55 2.64 2.65 2.84

[2.16, 2.86] [2.57, 2.74] [2.56, 2.73] [2.73, 3.02]

DSTTB STTB
3.97 3.99 4.14 4.20

[3.81, 4.19] [3.84, 4.11] [4.01, 4.25] [4.12, 4.30]

DSTTB DSTTB + STTB
5.02 4.75 4.97 4.76

[4.44, 5.55] [4.09, 5.28] [4.74, 5.35] [4.39, 5.22]

DSTTB + STTB DSTTB + STTB
3.26 3.14 3.24 3.50

[3.07, 3.44] [2.94, 3.29] [3.14, 3.35] [3.31, 3.65]

5 PAIRING SCREENING AND SELECTION PROCEDURES

Screening procedures can prove useful even when a decision maker’s objective is to ultimately select a
single system. A screening procedure can simulate all systems and winnow out non-competitive systems
in a first stage, before a selection procedure simulates the surviving systems and identifies a single, most
promising system. The screening procedure is intended to cheaply shrink the set of contending systems
prior to running a more sampling-intensive selection procedure, thereby reducing the total sample size
required to deliver a fixed-confidence guarantee. An example of this two-stage approach is the NSGS
procedure of Nelson et al. (2001) which pairs STTB with the selection procedure of Rinott (1978).

Selection procedures offer frequentist guarantees similar to those of screening procedures. For example,
some selection procedures guarantee to select a δ-optimal system with probability exceeding 1−α, referred
to generically as the PGS guarantee. This guarantee can be thought of as the PGI guarantee with the
restriction that |S| = 1. The PGS guarantee for selection procedures pairs well with the PGI guarantee for
screening procedures. In particular, if a first-stage screening procedure delivers the PGI guarantee for some
δ1 > 0 and a second-stage selection procedure delivers the PGS guarantee for some δ2 > 0, then, with
high probability, the selected system has an expected performance within δ = δ1 + δ2 of the optimal, µk.
As we will soon see, the confidence level associated with the assertion that a δ-optimal system is selected
depends on whether the selection procedure reuses the outputs collected during the screening stage.
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Reusing data from the screening stage would seem to improve the efficiency of a combined procedure
by giving the selection procedure a head start with its sampling. However, the reused data, e.g., the sample
means, are not independent of the identities of the surviving systems. That is, systems that survive screening
are more likely to have estimated performances that are better than their true expected performances. Nelson
et al. (2001) show that for the NSGS procedure, first-stage data can be reused if the allowable error, α,
is split across the two stages. The combined procedure entails running STTB with δ1 = 0 and 1 − α1,
followed by Rinott’s procedure with δ2 = δ and 1− α2. The system ultimately selected is guaranteed to
be δ-optimal with probability exceeding 1 − α1 − α2. To establish this guarantee, the constant used by
Rinott’s procedure must be based on the original number of systems, k, and not the number of surviving
systems. This results in a larger value of the constant and thus larger sample sizes taken in the second
stage, undercutting the efficiency gains anticipated from reusing the first-stage data. For certain problem
instances, this trade-off may be worthwhile. Nevertheless, the proof of this additive decomposition lemma
relies on a sample-path-wise coupling argument that is too restrictive to be expected to hold for selection
procedures that sample systems adaptively. Wilson (2001) shows that for the NSGS procedure, a slightly less
conservative, multiplicative decomposition is possible, in which the overall confidence is (1−α1)(1−α2).
The basis for this result is that the event that the best system survives screening and the event that the
best system is ultimately selected when it survives to the second stage are positively correlated. This
relationship makes intuitive sense and, if it could be established for other combinations of screening and
selection procedures, may present more opportunities for reusing first-stage data without issue.

If the first-stage data are not reused, the second-stage selection procedure can be run as if it were
seeing a problem instance consisting of only the returned systems. Assuming the screening and selection
procedures are run independently, the resulting confidence level is (1− α1)(1− α2). There may be some
loss in efficiency from throwing away the first-stage data, as the second-stage procedure must now obtain
fresh replications from each surviving system. Still, if the first-stage screening procedure greatly reduces
the number of systems under consideration, this additional sampling may be negligible compared to the
larger sample sizes that a second-stage selection procedure (with reuse) would have otherwise required.

The approach of throwing away the first-stage data can be applied to any combination of screening
and selection procedures. We experiment with a simple procedure that combines STTB (with δ1 = 0)
with Rinott’s procedure (with δ2 = δ) without reusing first-stage data. Overall, the procedure selects a
δ-optimal system with high probability. For this combined procedure, the decision maker must choose
the initial per-system sample size, n0, of STTB. Increasing n0 increases the number of samples obtained
in the screening stage, but by more precisely estimating the expected performances of the systems, the
screening procedure can return a smaller subset of systems, thereby reducing the number of replications the
second-stage selection procedure will take. Thus, there is a trade-off between the first- and second-stage
sample sizes. A natural question is then how best to choose n0 so as to minimize the total sample size.

In our numerical experiment, we consider a fixed problem instance with k = 100 systems where the
expected performances are µi = i for i = 1, 2, . . . , k. For simplicity, we fix α1 = α2 = 1 −

√
0.95 and

δ2 = δ = 5.5 so that 5 of the 100 systems are δ-optimal. We run 100 macroreplications of the procedure at
different combinations of n0 between 5 and 15 and σ2 between 30 and 35. On each macroreplication, we
record the total sample size of the combined procedure and the size of the subset returned by the first-stage
screening procedure. Heat maps in Figure 6 show the average value of these quantities at different values
of n0 and σ2. Figure 6(a) shows that for small values of n0, the total sample size increases rapidly, with
most of it attributed to Rinott’s procedure. Meanwhile, for larger values of n0, more systems are screened
out and the total sample size increases almost linearly. We can also see from Figure 6(a) that for this
problem instance, a very small first-stage sample size (fewer than 10) can optimize the trade-off between
the first- and second-stage sample sizes. The location of the minimizing n0 appears to be insensitive to
the variance σ2, at least within the tested range. Figure 6(b) shows that the size of subset returned by the
first-stage procedure increases as n0 increases, as expected, and it is very insensitive to σ2. At the optimal
values of n0 in Figure 6(a), we see that STTB screens out about 80% of the systems.
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Figure 6: Heat maps of (a) the average total sample size and (b) the average size of the subset returned by
STTB with respect to the sampling variance σ2 and the initial sample size n0 for a combined procedure of
STTB (with δ = 0) paired with Rinott’s selection procedure on a problem instance with k = 100 systems.

More generally, a decision maker must also choose how to split the overall desired tolerance δ and errorα
so that δ1+δ2 = δ and (1−α1)(1−α2) = 1−α. Absent other information about the problem instance, one
might naturally choose to split these quantities evenly, setting δ1 = δ2 = δ/2 and α1 = α2 = 1−

√
1− α.

Setting δ1 = 0 forces STTB to ensure that the best system survives with probability exceeding 1 − α1,
whereas setting α1 = 0 forces the screening procedure to always return all systems. On the other hand,
the terms δ2 and α2 cannot be set too small without causing the sample size of the second-stage screening
procedure to increase dramatically as it strives to deliver a more exacting PGS guarantee.

To study this question experimentally, we again pair the STTB and Rinott procedures, but enforce
δ1 + δ2 = δ and (1 − α1)(1 − α2) = 1 − α where δ = 5.5 and 1 − α = 0.95. The problem instance
is the same as in the previous experiment, but with common variance σ2 = 30 and initial sample size
n0 = 10. Figure 7 shows a heat map of the average total sample size for values of α1 ranging from 0.005
to 0.03 and δ1 ranging from 0 to 2.75. It can be seen from the figure that the combined procedure becomes
more efficient as δ1 shrinks to zero. This finding is somewhat surprising, as it suggests that no tolerance
should be given to the first-stage screening procedure; instead, we should require that it protect the optimal
solution with high probability. For any fixed δ1, we can see the trade-off between assigning too much or
too little confidence to the first-stage. For the optimal choice of δ1 = 0, the optimal splitting of α gives a
higher confidence level to the first-stage procedure. Both observations indicate that most of the slack in the
combined procedure, in terms of greater tolerance and allowable error, should be given to the second-stage
selection procedure.

6 CONCLUSIONS

Although the bulk of recent research in the field of R&S has focused on the design and parallelization
of selection procedures, screening procedures continue to be used extensively by simulation practitioners
when tackling large-scale optimization problems. This tutorial highlighted a few screening procedures,
discussing their differences in designs, guarantees, and empirical performance under different regimes.
Further advances in the design and analysis of screening procedures will be needed to ensure they continue
to serve as a cheap and effective means of identifying good candidate systems.

On the design side, although many existing screening procedures can be naively parallelized using
a divide-and-conquer approach, few allow for fully sequential sampling in parallel settings, with bi-
PASS being the notable exception. There are ample opportunities to build off of this adaptive-standard
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Figure 7: Heat map of the average total sample size for a combined procedure of STTB (with δ1 and 1−α1)
and Rinott’s selection procedure (with δ2 and 1− α2) on a problem instance with k = 100 systems. The
red line represents evenly splitting α1 and α2; the green diamond indicates the optimal α1 when δ1 = 0.

framework to handle alternative definitions of “good” systems. Other directions for developing altogether
new screening frameworks include Bayesian and bootstrapping methods. Bayesian screening procedures
would offer considerable flexibility in being terminated either when a sampling budget is exhausted or
when the posterior probability of some good-selection event exceeds a threshold. Bootstrapping procedures
also offer flexible stopping conditions while avoiding the assumption that outputs are normally distributed.
Both approaches face nontrivial computational challenges for problems with many systems. In terms
of analysis, more techniques are needed for studying the rate at which sequential screening procedures
eliminate non-competitive systems. A measure of potential interest is the probability that a system with a
given optimality gap is still in contention after expending a given budget.
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