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ABSTRACT

This paper investigates the problem of ranking and selection under input uncertainty with simultaneous
resource allocation. In this problem, two types of resources are sequentially allocated at the same time
to collect input data to reduce input uncertainty and run simulations to reduce stochastic uncertainty. We
formulate the simultaneous resource allocation problem as a concave optimization problem that aims to
maximize the asymptotic probability of correct selection (PCS) through the allocation policy for both input
data collection and simulation, based on a moving-average estimator for aggregation of simulation outputs
and its asymptotic normality. The two optimal policies are interdependent since they jointly affect the
PCS. We derive the optimality equations to characterize the optimal policies and develop a fully sequential
algorithm that demonstrates high efficiency through numerical experiments.

1 INTRODUCTION

Stochastic simulations are a common tool for comparing the performance of complex systems or designs
in many applications. To assess the performance of a system or design, it is necessary to collect input
data for estimating the input distribution, which captures the system’s external randomness that affects the
system’s performance. Based on this estimation, multiple simulation replications are conducted to reduce
stochastic error. However, collecting input data can be a challenging and time-consuming task, as there
may be multiple data sources with limited availability for different input distributions. Input data collection
can also incur high monetary costs. In addition, running simulations can also be a time-consuming process,
particularly when the model being simulated is complex, and each replication may take several hours of
computing time.

Consider a supply chain optimization problem where the manager wishes to compare various potential
inventory policies across multiple products. Due to the large number of products, the various route planning,
and the possibly long planning horizon, simulating the supply chain system can be a time-consuming process.
In addition, collecting input data for the unknown input distribution (e.g., transit lead time, service time,
or product demand) can also be laborious. For instance, to estimate the service rate, the service needs
to be deployed to gather the realized service times. The amount of data required for accurate estimation
depends on the length of time for collecting such data. Another example of a scenario where input data
collection can be time and cost-intensive is a recommendation system. In order to obtain feedback for a
certain type of service, the manager must conduct the service to collect actual feedback data. It is crucial
to decide on an appropriate data collection policy to avoid redundant efforts and minimize the amount of
time and money spent on data collection.
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When carrying out input data collection and simulation, one approach is to wait until sufficient input data
is collected to obtain a good estimation of the input distributions before proceeding with the simulation.
However, given that input data collection and simulation require different resources, conducting both
activities simultaneously may be more time-efficient. In this paper, we investigate a simultaneous resource
allocation problem, where input data collection and simulation are conducted sequentially at the same time.
This procedure involves multiple stages, starting with updating the estimation of input distributions with
the collected data from the previous stage and updating the design performance with the simulation output
from the previous stage. Based on the current estimates of input distributions and design performance, two
optimal resource allocation policies for input data collection and simulation are computed and carried out
with two stage-wise budgets. These two policies are interdependent, as they jointly influence the probability
of correct selection (PCS).

1.1 Literature Review

The earliest work of ranking and selection (R&S) concerning input uncertainty (IU) assumes a fixed input
data set and the simulations are run under fixed input distributions. As a result, no input data collection
is involved and the IU is not reduced. One stream of work quantified the impact of IU and give a
probability guarantee on the final selection. For instance, Corlu and Biller (2013), Corlu and Biller (2015)
considered the subset selection with the existence of IU, where a subset of designs that contains the optimal
design with a desired confidence is returned; Song and Nelson (2019) developed asymptotically valid
concentration bounds to account for both IU and stochastic uncertainty (SU). Another line of work took a
robust approach. Gao et al. (2017), Fan et al. (2020) considered finding the design with the best expected
worst-case performance. Kim et al. (2021) also considered the worst-case performance but with a different
criterion called the most probable best. Other robust methods include Zhu et al. (2020) and Zhou and Xie
(2015), where they used the risk functional value at risk or conditional value at risk as a measure against
IU.

While using a fixed input data set can simplify the simulation process by generating independent and
identically distributed samples, real-world data often arrives in an online streaming fashion. To address this,
researchers have explored running simulations with dynamically updated input distributions, which can
reduce input uncertainty (IU). However, there has been limited research on R&S with streaming input data.
Two recent studies by Wu et al. (2022) and Wang and Zhou (2022) have focused on the scenario where
input data arrive in batches periodically, and the input distribution is updated at the end of each period.
Wu et al. (2022) proposed a fully sequential algorithm that returns the optimal design with the desired
confidence level, using the fixed confidence formulation. Meanwhile, Wang and Zhou (2022) considered
the fixed budget setting and adjusted the optimal budget allocation policy at each period based on the
current estimation of the input distribution.

In both Wu et al. (2022) and Wang and Zhou (2022), input data is obtained passively from the
environment, and modelers can only adjust their simulation strategies to improve their decision quality.
However, in some cases, input data can be actively collected, but at a cost. Wu and Zhou (2017), Xu et al.
(2020), and Kim and Song (2022) have followed this approach, considering that input data collection and
simulation share a joint budget. Wu and Zhou (2017) formulated joint budget allocation as a two-stage
problem, where sufficient input data is collected in the first stage, and the remaining budget is allocated to
run simulations in the second stage. Xu et al. (2020) considered scenarios where the cost of data collection
is random and compared two cases where the simulation cost is negligible or not compared to the data
collection cost. Kim and Song (2022) used the Bayesian posterior to estimate input distributions and the
most probable best as their selecting criterion. However, the framework of joint budget allocation has its
hidden nature in that simulations start after input data collection, ignoring the possibility that input data
collection and simulation can be conducted simultaneously to save time and resources. In this paper, we
formulate the resource allocation problem as a simultaneous resource allocation, where input data collection
and simulation have their own budgets. We propose an efficient and fully sequential algorithm based on
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the asymptotic behavior of PCS, and periodically exchange information to adjust their resource allocation
policies. We demonstrate the effectiveness of our algorithm through numerical experiments.

2 PROBLEM STATEMENT

Suppose a set of K designs I = {1, 2, . . . ,K} are given. Let F c
i (·) denote the unknown input distributions

which capture the real-world randomness. Let Xi(F
c
i ) denote the random performance of design i. The

goal is to find the one with the largest expected performance µi(F
c
i ) = E[Xi(F

c
i )]. Throughout the paper,

we make the assumption that all designs share the same input distribution, that is, F c
i = F c. Notice

this does not limit any practical usage since we can simply include all design-specific input distributions
into the common input distribution. We make the following assumption on the commonly shared input
distributions.
Assumption 1 (Parametric Input Distribution)
All designs share the same input distributions F c, which contain S mutually independent input distributions
that belong to a parametric family {Fθ(·)|θ ∈ Θ} with known density fθ(·) and unknown parameters
θc = (θc1, θ

c
2, . . . , θ

c
S).

Assumption 1 is common in the literature of R&S, by which the input distributions Fθ is then a product
measure of Fθs , s = 1, 2, . . . , S. That is, Fθ =

∏S
s=1 Fθs . Accordingly, we use Xi(θ), µi(θ) to denote the

random and expected performance under input distributions Fθ. Since θc is unknown, one needs to collect
the input data to get an estimator θ̂, under which simulation is run to get samples Xr

i (θ̂) for design i to
estimate the expected performance. We make the following assumption about the input data.
Assumption 2 (unbiased estimator of input parameters)

1. For each θcs, the input data ζs,1, ζs,2, . . . are independent and identically distributed (i.i.d.) with
distribution Fθcs .

2. For each θcs, There exists a function Ds such that

θ̂Ns =
1

N

N∑
j=1

Ds(ζs,j)

is an unbiased estimator of θcs.

2.1 Sequential Resource Allocation

Suppose input data are actively collected with a cost of cs per unit for s = 1, 2, . . . , S. At the same time,
designs are chosen to run simulations to avoid idling computing resources, with a cost of 1 per unit. From
this perspective, consider a multi-stage resource allocation procedure. At each stage t, one computes a
stage-wise allocation policy {mi,t} to allocate a stage-wise budget TS (part of the total budget) to run the
simulation for designs under θ̂t, which is the estimation of the input distribution at the beginning of stage t,
to get samples X1

i (θ̂t), . . . , X
mi,t

i (θ̂t). At the same time, one also computes a stage-wise allocation policy
{ns,t} to allocate a stage-wise budget TI to collect input data and update the input parameter θ̂t+1. The
TS and TI measure how often we update the input distribution. However, such dynamically updated input
distributions bring up a problem of how to aggregate the past simulation outputs, which are generated
from different input distributions. We adopt a moving-average estimator which was introduced in Wu et al.
(2022). Let Mi,t =

∑t
ℓ=1mi,t be the total budget assigned to design i up to stage t. Let η ∈ [0, 1) be the

drop rate and ti,η = max τ s.t. Mi,τ ≤ Mi,tη be the stage before which the simulation outputs for design
i are discarded. The The moving-average estimator µ̂i,t is defined as

µ̂i,t := [Mi,t −Mi,ti,η ]
−1

t∑
ℓ=ti,η+1

mi,ℓ∑
r=1

Xr
i (θ̂ℓ). (1)
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That is, we only utilize a fraction of (1 − η) of the current simulation outputs to estimate the design
performance. The drop rate η reflects a trade-off between IU and SU. Setting η small leads to more
simulation outputs and reduces SU, while setting η large aggregates simulation outputs generated under
recent input distribution estimates, reducing IU. The selection of η will be discussed in Section 3.3.

The analysis of the PCS with finite samples is difficult, even without input uncertainty. Hence, we focus
on the asymptotic behavior of PCS. We make the following mild assumption on the input distributions.
Assumption 3 For all i ∈ I and s ∈ {1, 2, . . . , S},

(i) ΣD,s := Cov(Ds(ζs,1)) exists.
(ii) Σ(θ) exists and is continuous for all θ ∈ Θ, where Σij(θ) = Cov[Xi(θ), Xj(θ)].

(iii) µi(·) is twice continuously differentiable in Θ.

Let δij(θ) = µi(θ)−µj(θ) be the performance difference between design i and j under input parameter
θ, δ̂ij,t = µ̂i,t − µ̂j,t be the sample approximation of δij(θc) and σ2

i (θ) = Var(Xi(θ)) be the performance
variance of design i under θ. The next theorem establishes the asymptotic normality of the moving-average
estimator µ̂i,t, which is a variant of Theorem 3 in Wu et al. (2022).
Theorem 1 (Asymptotic Normality) Suppose {ns,t} and {mi,t} are uniformly bounded. Furthermore,
there exist positive constants n̄s and m̄i such that Ns(t)/t → n̄s and Mi(t)/t → m̄i as t → ∞ almost
surely. √

t
[
δ̂ij,t − δij(θ

c)
]
⇒ N (0, σ̃ij), as t → ∞ almost surely,

where σ̃2
ij = λI,η

∑S
s=1 n̄

−1
s ∂θsδij(θ

c)⊺ΣD,s∂θsδij(θ
c) + λS,ηm̄

−1
i σ2

i (θ
c) + λS,ηm̄

−1
j σ2

j (θ
c)), ∂θs is the

partial derivative taken with respect to θs, λI,η =
(

2
1−η + 2η ln η

(1−η)2

)
and λS,η = 1

1−η .

We now study the asymptotic behavior of PCS, which is defined as PCS := P(µ̂b,t ≥ maxi̸=b µ̂i,t),
where b = argmaxi∈I µi(θ

c) is the best design. Notice for ∀i ̸= b,

P(µ̂b,t ≤ µ̂i,t) ≥ PCS ≥ 1−
∑
i̸=b

P(µ̂b,t ≤ µ̂i,t).

Using the asymptotic normality in Theorem 1, we have approximately

µ̂b,t − µ̂i,t ∼ N
(
δbi(θ

c),
σ̃bi
t

)
For X following a standard normal distribution and x > 0,

x√
2π(x2 + 1)

exp (−x2

2
) ≤ P(X < x) ≤ 1√

2πx
exp (−x2

2
).

Hence, with the Gaussian approximation by Theorem 1,

P(µ̂b,t ≤ µ̂i,t) ≥
√
tδbi(θ

c)/σ̃bi(θ
c)√

2π(δ2bi(θ
c)/σ̃2

bi(θ
c)t+ 1)

exp (−
δ2bi(θ

c)

2σ̃2
bi

)t, (2)

and

P(µ̂b,t ≤ µ̂i,t) ≤
δbi(θ

c)√
2πtσ̃bi(θc)

exp (−
δ2bi(θ

c)

2σ̃2
bi

)t. (3)
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With (2) and (3),

− lim
t→∞

1

t
logP(µ̂b,t ≤ µ̂i,t) =

1

2

δ2bi(θ
c)

σ̃2
bi

.

Furthermore, we have for PCS

− lim
t→∞

1

t
log PCS = min

i̸=b

1

2

δ2bi(θ
c)

σ̃2
bi

.

In the long run, the budget allocated to a certain design i (or input distribution s) is approximately tm̄i (or
tn̄s). Ignoring the minor issue of tm̄i and tn̄s not being integers, we relax n̄s and m̄i to be continuous
variables. We now aim to solve the following problem,

max
n̄s,m̄i≥0,z

z

s.t.
δ2bi(θ

c)

σ̃2
bi

≥ z ∀i ̸= b

S∑
s=1

csn̄s = TI

K∑
i=1

m̄i = TS

(4)

To solve the optimization problem (4), we further make the following assumption.
Assumption 4 (Impact of input uncertainty)
For each 1 ≤ s ≤ S, there exists i ̸= b, such that ∂θsδbi(θ

c) ̸= 0.
Assumption 4 guarantees that, for each input distribution considered, there exists at least one sub-optimal

design whose performance is affected by the input distribution in a way that differs from the optimal design.
In other words, an inaccurate estimation of the input parameter θcs can lead to difficulty in distinguishing
the sub-optimal design i from the optimal design b. Suppose, for instance, that δbi(θ) is a constant for all
possible values of θ (in which case ∂θsδbi(θ

c) = 0). In such a case, the difference between any two designs
would remain the same no matter what the input parameter is, and the input estimation error would have
no effect on the selection process. We exclude such cases and focus only on the input distributions that
are truly relevant.

The following lemma guarantees Problem (4) is a convex optimization problem, and hence, we can
adapt the Karush-Kuhn-Tucker (KKT) condition to derive the optimality conditions.

Lemma 1 Denote by Gi(m̄b, m̄i, n̄) =
δ2bi(θ

c)

σ̃2
bi

the rate function for sub-optimal design i. Suppose
Assumption 1 - 4 hold. Then Gi is increasing and concave in m̄b, m̄i and n̄ for m̄, n̄ ≥ 0.

Proof. It suffices to show the concavity of the function for x ∈ Rn
+ with form f(x) = 1/(

∑n
i=1

ai
xi
),

where ai > 0 for i = 1, 2, . . . , n. The proof then follows from Lemma 1 in Wang and Zhou (2022).

By Lemma 1, the optimal solution for (4) cannot be obtained on the boundary, i.e., all n̄s and m̄i

should be strictly positive. Otherwise, we have σ̃bi = ∞ for some i and Gi = 0, since there is either input
uncertainty, simulation uncertainty, or both unaddressed.
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Theorem 2 Under Assumption 1-4, Problem (4) has an optimal solution satisfying

1. (Local Balance)
δ2bi(θ

c)

σ̃2
bi

=
δ2bj(θ

c)

σ̃2
bj

∀i ̸= j ̸= b (5)

2. (Global Balance) m̄2
b = σ2

b (θ
c)
∑
i̸=b

m̄2
i

σ2
i (θ

c)
(6)

3. (IU Balance)
1

csn̄2
s

∑
i̸=b

m̄2
i

σ2
i (θ

c)
g(i, s) =

1

cs′ n̄
2
s′

∑
i̸=b

m̄2
i

σ2
i (θ

c)
g(i, s′) ∀s ̸= s′ (7)

where g(i, s) = ∂θsδbi(θ
c)⊺ΣD,s∂θsδbi(θ

c).
Remark 1. The “Local Balance” equation and the “Global Balance” equation, two of the three

optimality equations, were derived in a similar form in previous works Glynn and Juneja (2004), Chen and
Ryzhov (2022) without input uncertainty and with passively obtained input data in Wang and Zhou (2022).
Following tradition, we adopt these names for the two equations. In Section 3.2, we demonstrate that the
“Local Balance” equation can be used to adjust the allocation policy of the simulation budget between
two sub-optimal designs, while the “Global Balance” equation can be used to tune the allocation policy of
the simulation budget between the optimal design and other designs, as in Chen and Ryzhov (2022) and
Wang and Zhou (2022). However, the rate function in the “Local Balance” equation now includes both the
allocation policy for the simulation budget and the allocation policy for input data collection since they
jointly determine the variance term σ̃2

bi as defined in Theorem 1.
Remark 2. The third optimality equation, the ”IU Balance” equation (7), can be used to adjust the

allocation policy for input data allocation to reduce IU. Equation (7) suggests that the amount of input
data allocated to a particular distribution Fθcs depends on three factors in addition to cost: the simulation
effort m̄i, the simulation noise σ2

i (θ
c) for design i ̸= b, and its sensitivity g(i, s) to the input parameter

θcs. When the function g(i, s) is large, the performance of design i is more sensitive to the input parameter
θcs. If at the same time, m̄2

i

σ2
i (θ

c)
is also large, which means the simulation error of design i is small, more

effort should be devoted to reducing IU. To provide a clear example, let us consider a case where the
number of independent input distributions equals to the number of designs, i.e., S = K. Moreover, each

design i is only affected by the ith input distribution Fθci
, i.e., ∇θsµi(θ

c) =

{
= 0, if s ̸= i

> 0, if s = i
. Then, we

have n̄i ∝
m̄2

i

σ2
i (θ

c)
g(i, s) for i ̸= b.

Remark 3. It is worth noting that in Wang and Zhou (2022), there exists a different equation called
the “Input Balance” equation, which differs from the “IU Balance” equation discussed in this paper. In
their scenario, the input data is obtained passively, and the simulation is conducted on a design and fixed
input realization pair. Since there is no randomness generated from the input distribution in the simulation
output, the “Input Balance” equation is utilized to adjust the allocation policy of the simulation budget
toward different input realizations for a fixed design. On the other hand, in this paper, the “IU Balance”
equation is utilized to adjust the allocation policy for input data collection, as will be demonstrated in
Section 3.2.
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Proof. For positive solution {n̄s, m̄i}, apply the KKT conditions and we obtain

1−
∑
i̸=b

µi = 0 (8)

csλ−
∑
i̸=b

µi

2

δ2bi(θ
c)

σ̃3
bi

1

n̄2
s

λI,η∂θsδ
⊺
bi(θ

c)ΣD,s∂θsδbi(θ
c) = 0 ∀1 ≤ s ≤ S (9)

γ − µi

2

δ2bi(θ
c)

σ̃3
bi

1

m̄2
i

λS,ησ
2
i (θ

c) = 0 ∀i ̸= b (10)

γ −
∑
i̸=b

µi

2

δ2bi(θ
c)

σ̃3
bi

1

m̄2
b

λS,ησ
2
b (θ

c) = 0 (11)

µi(
δ2bi(θ

c)

σ̃2
bi

− z) = 0 ∀i ̸= b (12)

For necessity, from (8) we have there exists i ̸= b such that µi > 0. For this i, from (10) we obtain γ > 0.

Hence for all i ̸= b, µi =
2γσ̃3

bim̄
2
i

λS,ησ
2
i (θ

c)δ2bi(θ
c)

> 0. Then, from (12), we have δ2bi(θ
c)

σ̃bi
=

δ2bj(θ
c)

σ̃bj
∀i ̸= j ̸= b,

which proves (5). Substituting µi =
2γσ̃3

bim̄
2
i

λS,ησ2(θc)δ2bi(θ
c)

in (11), we obtain m̄2
b = σ2

b (θ
c)
∑

i̸=b
m̄2

i

σ2
i (θ

c)
, which

proves (6). Also, substituting µi in (9), we obtain ∀s ̸= s′,

1

csn̄2
s

∑
i̸=b

m̄2
i

σ2
i (θ

c)
∂θsδbi(θ

c)⊺ΣD,s∂θsδbi(θ
c) =

1

cs′ n̄
2
s′

∑
i̸=b

m̄2
i

σ2
i (θ

c)
∂θs′ δbi(θ

c)⊺ΣD,s′∂θs′ δbi(θ
c),

which proves (7).
For sufficiency, it suffices to show KKT conditions are satisfied if the three optimality condi-

tions (5) - (7) are satisfied. Let i0 ̸= b be some fixed sub-optimal design. Let z =
δ2bi0

(θc)

σ̃2
bi0

, µi =

σ̃3
bim̄

2
i

σ2
i (θ

c)δ2bi(θ
c)

/∑
j ̸=b

σ̃3
bjm̄

2
j

σ2
j (θ

c)δ2bj(θ
c)

, λ =
λI,η

2c1n̄2
s

∑
i̸=b

m̄2
i

σ2
i (θ

c)
∂θsδ

⊺
bi(θ

c)ΣD,s∂θsδbi(θ
c)

/∑
j ̸=b

σ̃3
bjm̄

2
j

σ2
j (θ

c)δ2bj(θ
c)

and γ = 1

/∑
j ̸=b

2σ̃3
bjm̄

2
j

λS,ησ
2
j (θ

c)δ2bj(θ
c)

. Then one can verify all the KKT conditions are satisfied.

3 ALGORITHM

3.1 Parameter Estimation

To design an algorithm, there are several unknown parameters that need to estimate. They include

1. The true input parameter θc and its covariance matrix ΣD,s for s = 1, 2, . . . , S.
2. The true expected performance µi(θ

c) and variance σ2
i (θ

c).
3. The gradient ∇µi(θ

c) = (∂θ1µi(θ
c), ∂θ2µi(θ

c), . . . , ∂θSµi(θ
c))⊺.

For θc and ΣD,s, by Assumption 1 and 2, we can use the sample average and sample variance, respectively.
Let θ̂s,t = 1

Ns,t

∑Ns,t

ℓ=1 Ds(ζs,ℓ) and Σ̂D,s,t =
1

Ns,t−1

∑Ns,t

ℓ=1 (Ds(ζs,ℓ)− θ̂s,t)(Ds(ζs,ℓ)− θ̂s,t)
⊺. For µi(θ

c),
we use the moving-average estimator defined in (1). Similarly, we estimate σ2

i (θ
c) as

σ̂2
i,t =

1

Mi,t −Mi,ti,η − 1

t∑
ℓ=ti,η+1

mi,ℓ∑
r=1

(Xr
i (θ̂ℓ)− µ̂i,t)

2.
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Finally, for ∇µi(θ
c), one approach is to use important sampling. Suppose ∀θ ∈ Θ, fθ has the same

input support Ω. That is, ∀ξ ∈ Ω, fθ(ξ) > 0 for all θ ∈ Θ. Furthermore, suppose when simulating
Xr

i (θ̂ℓ), one first generates ξri,ℓ ∼ f
θ̂ℓ

, then runs the simulation under ξri,ℓ and obtains the simulation output

Xi|ξri,ℓ = Xr
i (θ̂ℓ). Since

∇θµi(θ
c) = ∇θEξ∼fθc [Xi|ξ] = ∇θ

∫
ξ∈Ω

fθc(ξ)Xi|ξdξ,

assuming the interchangeability of the integration and the gradient, we have

∇θµi(θ
c) =

∫
ξ∈Ω

∇θfθc(ξ)Xi|ξdξ = Eξ∼fθ [
∇θfθc(ξ)

fθ(ξ)
Xi|ξ], ∀θ ∈ Θ

An analogy can be drawn to design the following moving-average important sampling estimator by replacing
θc and θ with θ̂ℓ for ℓ = ti,η + 1, . . . , t.

∇̂µi,t =
1

Mi,t −Mi,ti,η

t∑
ℓ=ti,η+1

mi,ℓ∑
r=1

∇f
θ̂ℓ
(ξri,ℓ)

f
θ̂ℓ
(ξri,ℓ)

Xr
i (θ̂ℓ).

Denote by ĝ(i, s) the estimate of g(i, s) with replacement of the unknown parameters with their estimates.
It is worth pointing out that to estimate the unknown parameters, we use all the simulation outputs after
stage ti,η and do not run any extra simulations for the purpose of efficient sampling.

3.2 Balancing Approach: A Fully Sequential Procedure

In this section, we propose a fully sequential algorithm that uses a so-called ”Balancing” approach.”Balancing”
means reducing the gap between two sides of the optimality equations. To see how this works, first no-
tice in (5)-(7), if we multiply an optimal allocation policy {n̄s, m̄i} by any constant C, then the three
optimality equations remain valid. Then, at stage t, We can substitute n̄s and m̄i with Ns,t and Mi,t in
(5)-(7), respectively. For input data selection, we can collect input data for input distribution Fθs , where s
maximizes

1

csN2
s,t

∑
i̸=b

M2
i,t

σ2
i (θ

c)
g(i, s).

By doing so, we decrease the maximal value of 1
csn̄2

s

∑
i̸=b

m̄2
i

σ2
i (θ

c)
g(i, s) and thus reduce the biggest gap

in equations (7). Similarly for design selection, if M2
b,t < σ2

b (θ
c)
∑

i̸=b

M2
i,t

σ2
i (θ

c)
, we simulate for design b.

Otherwise, we pick a sub-optimal design i that minimizes δ2bi(θ
c)

σ̃bi
, where m̄i and n̄s are substituted with

Mi,t and Ns,t, respectively. This procedure is shown in Algorithm 1.

3.3 Boosting through η

In the previous section, we derive the asymptotic optimality conditions by maximizing the rate functions
mini̸=bGi through the (asymptotic) budget allocation policy {n̄s, m̄i}. Although the rate function is also
influenced by the drop rate η, we cannot give a relatively simple expression of the optimal solution. However,
given an allocation policy {n̄s, m̄i}, we can adjust the drop rate for the sake of increasing mini̸=bGi. For
a fixed i ̸= b, maximizing Gi over η is equivalent to minimizing

σ̃bi ∝
κ

1− η
+

η ln η

(1− η)2
,
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Algorithm 1 Simultaneous Resources Allocation
1: Input: Number of designsK, number of input distributionsS, input data collection cost cs, s = 1, . . . , S,

stage-wise budget TI and TS , initial budget n0 and m0, drop rate η, maximal stage T .
2: Initialize Collect n0 input data for each input distribution and run m0 simulation replications for each

design. Estimate θ̂0, Σ̂D,s,0, µ̂i,0, σ̂i,0 and ∇̂µi,0 as in Section 3.1. b̂ = argmaxi µ̂i,0, Ns,0 = n0,∀s,
Mi,0 = m0, ∀i. Set t = 0.

3: for t = 1 : T do
4: Mi,t = Mi,t−1, Ns,t = Ns,t−1, ∀1 ≤ i ≤ K, 1 ≤ s ≤ S.’
5: Do the following two WHILE loops for Data Collection and Simulation simultaneously.
6: while

∑S
s=1 csNs,t < t× TI do

7: s∗ = argmaxs
1

csN2
s,t

∑
i̸=b̂

M2
i,t

σ̂2
i,t

ĝ(i, s).

8: Collect 1 input data for distribution Fθs∗ , Ns∗,t = Ns∗,t + 1. Update θ̂s and Σ̂D,s,t.
9: end while

10: while
∑K

i=1Mi,t < t× TS do

11: if M2
b̂,t

− σ̂2
b̂,t

∑
i̸=b̂

M2
i,t

σ̂2
i,t

< 0 then

12: Simulate 1 sample for design b̂. M
b̂,t

= M
b̂,t

+ 1. Update µ̂
b̂,t

, σ̂
b̂,t

and ∇̂µ
b̂,t

.
13: else
14: Choose i∗ = argmin

i̸=b̂

(µ̂
b̂,t

−µ̂i,t)
2

λI,η
λS,η

∑S
s=1

ĝ(i,s)
Ns,t

+
σ̂2
i,t

Mi,t
+

σ̂2
b̂,t

M
b̂,t

. Simulate 1 sample for design i∗. Update

µ̂i∗,t, σ̂i∗,t and ∇̂µi∗,t.
15: end if
16: b̂ = argmaxi µ̂i,t.
17: end while
18: end for
19: Output: b̂ = argmaxi µ̂i,T .

where ∝ means proportional to and κ = 1+
m̄−1

b σ2
b (θ

c)+m̄−1
i σ2

i (θ
c)

2
∑S

s=1 n̄
−1
s ∂θsδij(θ

c)⊺ΣD,s∂θsδij(θ
c)

. The following lemma which

shows we can adjust η somehow by optimizing a convex function.

Lemma 2 (Wu et al. (2022)) Let h(η) := κ
1−η + η ln η

(1−η)2
, κ ≥ 1. h(·) is strictly convex in η ∈ (0, 1).

Thanks to the convexity property established in Lemma 2, determining the optimal value of η to
maximize Gi is a straightforward task. In Algorithm 1, we incorporate this insight by adjusting η at the end
of each stage. Specifically, at the conclusion of stage t, we identify the sub-optimal design i∗ for which
Gi∗ is the smallest among all designs except for the baseline b. Next, we employ a numerical optimization
method such as gradient descent to solve for the value of η that maximizes Gi∗ . For more details on this
process, see Algorithm 2.

4 CONSISTENCY OF ALGORITHM 1

Lemma 3 Assume there exists x̄, F̄ > 0, such that |Xi(θ)| ≤ x̄ almost surely andE
[(

∇θfθ(ξ)
fθ(ξ)

)2
]
≤ F̄ < ∞

for all θ ∈ Θ and 1 ≤ i ≤ K. Suppose Ns,t → ∞ and Mi,t → ∞ as t → ∞ almost surely for all
1 ≤ s ≤ S, 1 ≤ i ∈ K, then (a) µ̂i,t → µi(θ

c), (b) σ̂2
i,t → σ2

i (θ
c) and (c) ∇̂µi,t → ∇θµi(θ

c) as t → ∞
almost surely.
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Algorithm 2 Boosting through η

1: Run Algorithm 1 until Line 17

2: Let i∗ = argmin
i̸=b̂

(µ̂
b̂,t

−µ̂i,t)
2

λI,η
λS,η

∑S
s=1

ĝ(i,s)
Ns,t

+
σ̂2
i,t

Mi,t
+

σ̂2
b̂,t

M
b̂,t

.

3: Solve η = argminη λI,η
∑S

s=1
ĝ(i,s)
Ns,t

+ λS,η(
σ̂2
i,t

Mi,t
+

σ̂2
b̂,t

M
b̂,t
).

4: Update µ̂i,t, σ̂2
i,t and ∇̂µi,t for i = 1, . . . ,K.

5: Continue running Algorithm 1.

Proof. Due to the page limit, we omit the proof details. The idea is to partition the estimation error
into two parts, accounting for SU and IU separately. Specifically, to prove (a), rewrite

µ̂i,t − µi(θ
c) =

1

Mi,t −Mi,ti,η

t∑
τ=ti,η+1

mi,τ∑
ℓ=1

[Xi,ℓ(θ̂τ )− µi(θ̂τ )]

+
1

Mi,t −Mi,ti,η

t∑
τ=ti,η+1

mi,τ [µi(θ̂τ )− µi(θ
c)].

By the Strong Law of Large Number for Martingale difference sequence (e.g., see Csörgő (1968)), we can
prove the first term converges to zero almost surely. The convergence for the second term holds due to the
convergence of θ̂t and the fact that µi is continuous in θ. We can prove (b) and (c) in a similar way.

With Lemma 3, we can prove the consistency of Algorithm 1 by showing Ns,t → ∞ and Mi,t → ∞
as t → ∞, which is stated in the following Theorem 3. The proof is omitted due to page limit.
Theorem 3 (Consistency) Algorithm 1 selects the optimal design almost surely as T → ∞.

5 NUMERICAL EXPERIMENT

In this section, we carry out some numerical experiments to test the efficiency of the proposed algorithms.

5.1 Comparison Baselines

1. Simultaneous Resource Allocation (SRA). The proposed Algorithm 1.
2. Simultaneous Resource Allocation with adaptive η (SRA-η). The proposed Algorithm 2.
3. Equal Allocation (EA). Equally allocated the simulation budget to all designs and the budget for

input data collection to all input distributions.
4. Equal Allocation + OCBA (EA OCBA). Equally allocated the budget for input data collection to all

input distributions, and implement OCBA for simulation budget allocation, where all the simulation
outputs are treated as i.i.d. data.

5. Joint Budget Allocation (JBA). The two-stage joint budget allocation procedure in Wu and Zhou
(2017), where the input data collection and simulation share a common budget and the simulation is
conducted after input data collection. To implement the algorithm in our setting, set the stage-wise
budget TI = TS after re-scaling cs and the total joint budget is T · TI .

5.2 Simulation Example

Service Comparison with random return. Consider one wants to compare K types of services within
a time period τ . Assume customers arrive as a Poisson process with unknown arrival rate θci,1. For each
customer serviced, a return ri is obtained, which follows a normal distribution with unknown mean θci,2
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and variance σ2. The return and arrival time are independent. The goal is then to find service b such that
b = argmaxi E[Diri], where Di ∼ Poi(θci,1τ) and ri ∼ N (θci,2, σ

2).

5.3 Results

For implementation details, we set the number of designs K = 10, time period τ = 1, customer arrival rate
θci,1 = 0.5 · (i+ 1), average reward θci,2 =

K
2 − |i− K

2 | and reward variance σ2 = 1. The maximal stages
T = 500, stage-wise simulation budget TS = 10, stage-wise budget for input data collection TI = 10,
input data collection cost cs = 2, ∀s. Figure 1 shows the Average PCS obtained of different algorithms at
each stage by running all algorithms for 200 times.

(a) drop rate η = 0.1. (b) drop rate η = 0.25.

Figure 1: Performance comparison with different drop rates.

1. The results shown in Figure 1 indicate that both SRA and SRA-η perform well in both scenarios,
with SRA-η performing the best. On the other hand, EA and EA OCBA perform much worse than
other algorithms, highlighting the importance of considering both IU and SU.

2. In terms of comparing the fully sequential procedures, SRA and SRA-η, with the two-stage procedure
JBA, JBA reaches a high final PCS but has a relatively low intermediate PCS due to not running any
simulations before collecting all input data. In contrast, SRA and SRA-η maintain high intermediate
PCS and reach high final PCS.

3. Regarding the impact of the drop rate η, the experiment shows that for a drop rate of η = 0.1,
SRA reaches a similar final PCS as JBA, which is lower than the PCS obtained by SRA-η. For
η = 0.25, SRA outperforms JBA and performs more similarly to SRA-η. During the experiment,
we found that the optimal choice of η for SRA is between 0.25 and 0.3.

4. It is worth noting that while SRA-η automatically adjusts η to obtain higher PCS, it is more
computationally expensive. At each stage, the adjustment of η requires solving a convex optimization
problem. Furthermore, Figure 1 indicates that SRA-η reaches the lowest PCS at very early stages
due to large estimation errors for any unknown parameter, which may lead to a bad choice of η
and further enlarge the estimation error.
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