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ABSTRACT

Large deviations theory has a long history of providing powerful machinery for designing efficient rare-
event simulation techniques. However, traditional large deviations theory fails to provide useful bounds in
heavy-tailed contexts, and designing efficient rare-event simulation algorithms for heavy-tailed systems has
been considered challenging. Recent developments in the theory of heavy-tailed large deviations enable
designing a strongly efficient importance sampling scheme that is universally applicable to a wide range
of rare events. This tutorial aims to provide an accessible overview of the recent developments in the
large deviations theory for heavy-tailed stochastic processes, which is followed by a detailed account of
the design principle behind the strongly efficient importance sampling scheme for such processes. The
implementations of the general principle are demonstrated through a few specific heavy-tailed rare events
that arise in stochastic approximation, finance, and queueing theory contexts.

1 INTRODUCTION

Heavy-tailed phenomena are prevalent in a broad class of stochastic dynamics, ranging from the spread of
pandemics (Cohen et al. 2022) and the fluctuations in actuarial and financial assets (Embrechts et al. 2013)
to the training of machine learning models (Gurbuzbalaban et al. 2021). Precisely evaluating the risks
associated with rare events is crucial in many critical applications. This task typically involves estimating
probabilities of the form p = P(X ∈ A), where X is a stochastic process with heavy-tailed components,
and A is a set of unusual scenarios so that p is close to 0. The crude Monte Carlo estimator I{X ∈ A}
provides a straightforward means to estimate the probability p, but its standard error is of order

√
p, and

hence, the number of samples required to attain a given level of relative accuracy is of order
√

1/p. For
small p’s, this can be prohibitively expensive.

When the underlying uncertainties are light-tailed, the importance sampling strategy has been one of the
major success stories in rare-event simulation literature (Bucklew et al. 1990; Boxma et al. 2019; Torrisi
2004; Dupuis et al. 2007). Importance sampling involves generating samples of X from an alternative
probability measure Q, i.e., importance distribution, instead of the nominal distribution P. Of course,
I{X ∈ A} is a biased estimator of p under Q. To adjust the bias, one calibrates the importance sampling
estimator with the likelihood ratio dP/dQ between the nominal distribution P and the importance sampling
distribution Q. The resulting importance sampling estimator I{X ∈ A} dP

dQ is valid (i.e., unbiased) in great
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generality regardless of the choice of the importance distribution Q:

EQ

[
1{X ∈ A} dP

dQ

]
=

∫
1{X ∈ A} dP

dQ
dQ =

∫
1{X ∈ A}dP = P(X ∈ A).

However, for the importance sampling scheme to be useful, an appropriate choice of the importance
distribution Q is crucial. In principle, Q(·) =∆ P( · |X ∈ A) is the optimal choice in the sense that such
Q minimizes the variance of the importance sampling estimator I{X ∈ A} dP

dQ . However, this theoretically
optimal strategy is not implementable because it requires computation of the exact value of dP/dQ = P(X ∈
A), which is the target quantity of our original task. Nonetheless, the ideal importance sampling distribution
provides a guideline for designing the importance distribution. That is, one wants to pick Q in such a way
that dP/dQ is computable, and Q(·)≈ P( · |X ∈ A) in some sense. On the other hand, it is well known that,
without principled approach, seemingly plausible choices of Q can not only fail to reduce the estimator’s
variance but also result in infinite variance; see, for instance, Glasserman and Wang (1997) and Glasserman
and Kou (1995). Moreover, ill-designed importance samplers can appear to be deceptively robust giving
false confidence to wrong answers. In view of these, principled approaches with theoretical guarantee
are required in designing importance sampling algorithms. For light-tailed dynamical systems, general
principles for constructing provably efficient importance samplers have been established based on large
deviations bounds (Dupuis and Wang 2004; Dupuis and Wang 2005; Dupuis and Wang 2009). However,
designing provably efficient rare-event simulation algorithms for heavy-tailed rare events has been much
more obscure (see, for example, Bassamboo et al. 2007) due to the fundamentally different mechanism
through which the system-wide rare events arise and the lack of the heavy-tailed large deviations theory
at the sample-path level. Although some importance sampling (e.g., Blanchet and Glynn 2008; Dupuis
et al. 2007; Blanchet et al. 2008; Blanchet and Liu 2008; Murthy et al. 2014; Blanchet et al. 2013) and
other variance reduction techniques such as conditional Monte Carlo (e.g., Asmussen and Kroese 2006;
Hult et al. 2016) and Markov Chain Monte Carlo (e.g., Gudmundsson and Hult 2014) have been designed
successfully to address heavy-tailed problems, these works are typically tailored for specific processes and
specific rare events, or the generalization of their approaches (such as the Lyapunov inequality technique
in Blanchet and Glynn 2008) becomes highly non-trivial beyond relatively simple settings.

Recent developments of heavy-tailed large deviations such as Rhee et al. (2019) and Wang and
Rhee (2023) offer critical insights into designing efficient and universal importance sampling schemes
for heavy-tailed systems. At the core of this development is the discrete hierarchy of heavy-tailed rare
events that is characterized by catastrophe principle. Roughly speaking, catastrophe principle dictates that
the system-wide rare events in heavy-tailed systems arise due to catastrophic failures of a small number
of system components, and the number of such components governs the asymptotic rate at which the
associated rare events occur. This creates a discrete hierarchy in heavy-tailed rare events. (Note also
that this implies that the most likely scenarios associated with the heavy-tailed rare events are singular
to any exponentially tilted measures which are typically the most likely scenarios in light-tailed contexts,
thus explaining why the light-tailed approaches fail to provide efficient heavy-tailed importance sampling
estimators.) Combining the defensive importance sampling idea with such hierarchy, strongly efficient
samplers can be designed for a variety of rare events associated with random walks, compound Poisson
processes (Chen et al. 2019), and Lévy processes with infinite activities (Wang and Rhee 2020). The same
principle can be applied to more general stochastic processes such as Lévy driven stochastic differential
equations and stochastic difference equations.

The goal of this tutorial is to provide an accessible overview of the heavy-tailed large deviations theory
(Section 2) and streamlined account of the general principle and intuition behind the universal importance
sampling scheme (Section 3). We then illustrate the implementation of the general principle in option
pricing, stochastic approximation, fluid queueing networks, and multiple-server queues (Section 4).
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2 LARGE DEVIATIONS THEORY FOR HEAVY-TAILED SYSTEMS

This section reviews the sample-path large deviations for heavy-tailed stochastic processes, which is central
to the design and analysis of the importance sampling algorithms we will discuss in Section 3. In particular,
the theory establishes the catastrophe principle that characterizes the most likely cause and the probabilities
of the rare events in a variety of heavy-tailed systems.

2.1 Random Walks

We start with the simplest set up and focus on the most fundamental aspect of the catastrophe principle.
To facilitate the presentation, we introduce the following notations. Let Z be the set containing all integers
and Z+ = {0,1,2, · · ·} be the set of non-negative integers. For positive integer k, let [k] = {1,2, · · · ,k}.
For x ∈ R, let ⌊x⌋ =∆ max{n ∈ Z : n ≤ x} and ⌈x⌉ =∆ min{n ∈ Z : n ≥ x} denote the floor and ceiling of
x. Given any x,y ∈ R, let x∧ y =∆ min{x,y} and x∨ y =∆ max{x,y}. Let (D[0,1],R,ddd) be the metric space of
D = D[0,1],R, the space of all real-valued RCLL functions with domain [0,1]. The Skorokhod J1 metric
ddd is defined as ddd(x,y) =∆ infλ∈Λ supt∈[0,1] |λ (t)− t|∨ |x(λ (t))− y(t)| with Λ being the set of all increasing
homeomorphisms from [0,1] to itself. For Borel measurable sets A,B⊂ D, we say A and B are bounded
away from each other if ddd(A,B) = infx∈A,y∈B ddd(x,y)> 0. For all l ≥ 0, let Dl be the subset of D containing
all the non-decreasing step functions that have exactly l jumps and vanish at the origin. Note that D0 =

∆ {000}
where 000(t)≡ 0 is the zero function. Set D<l =

∆
⋃l−1

j=0Dl .
Next, we review the concept of regular variation, which is by far the most commonly used tool to

model the heavy-tailed distributions. A measurable function φ : (0,∞)→ (0,∞) is regularly varying (at
+∞) with index β if limx→∞ φ(tx)/φ(x) = tβ for all t > 0, and we write φ(x) ∈RVβ (x). If φ(x) ∈RV0(x),
we say that φ(·) is slowly varying. It is well known that for any φ(·) ∈RVβ , there is some slowly varying
L(·) such that φ(x) = xβ L(x). For the purpose of understanding this tutorial, one can consider L(·) more
or less as a constant function. See chapter 2 of Resnick (2007) for a standard treatment of this topic.

Now, consider a centered random walk Sn = Z1 + · · ·+Zn in R whose increments Zi’s are heavy-tailed
on the positive side. That is, EZi = 0, and P(Z1 ≥ x) ∈ RV−α(x) as x→ ∞ for some α > 1. We assume
that Zi’s have a light tail on the negative side so that P(−Z1 ≥ x) decays at an exponential (or faster) rate
as x→∞. Let S̄n(t) = 1

n S⌊nt⌋ so that S̄n = {S̄n(t) : t ∈ [0,1]} is a scaled random walk embedded in D. Note
that due to the functional law of large numbers, the scaled path S̄n will converge to a flat straight line 000.
As an one-sided adaptation of Theorem 4.1 of Rhee et al. (2019), the following result characterizes the
probability that S̄n deviates from its nomial behavior 000.
Theorem 1 There exists a family of measures {Cl

α : l ≥ 0} with each Cl
α supported on Dl such that

the following claim holds. Given any measurable A ⊂ D, let l∗ = l∗(A) =∆ min{l ∈ Z+ : Dl ∩A ̸= /0}. If
ddd(A,D<l∗)> 0, then

Cl∗
α (A

◦)≤ liminf
n→∞

P(S̄n ∈ A)
(nP(Z1 ≥ n))l∗ ≤ limsup

n→∞

P(S̄n ∈ A)
(nP(Z1 ≥ n))l∗ ≤ Cl∗

α (A
−)< ∞

where A◦, A− are the interior and closure of A respectively.
For the specific form of Cl

α , see Theorem 4.1 of Rhee et al. (2019). Note that this is a precise
asymptotics as opposed to log-asymptotics as in the traditional (light-tailed) large deviations theory, and l∗,
as a function of A, plays the role of the rate function. Due to the precise nature, one can, in fact, prove that
the conditional distribution L (S̄n|S̄n ∈ A) given the rare-event of interest converges to the law of random
functions that are piece-wise constant with l∗ jumps that are bounded from below; see Corollary 4.1 of
Rhee et al. (2019) for more details. This is a crisp characterization of the catastrophe principle. Indeed,
the index l∗—the minimum number of jumps that needs to be added to a step function to make it fall
into set A—not only determines the rate of decay for P(S̄n ∈ A), but also dictates the way the rare events
occur: that is, through exactly l∗ of Zi’s that catastrophically deviate from its typical value 0 = EZi, while
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the whole process S̄n behaves nominally (i.e., resemble 000) everywhere else. In particular, for large n, the
path of S̄n closely resembles a step function with exactly l∗ upward jumps when conditioned on the event
{S̄n ∈ A}.

Theorem 1 takes a more subtle form when there are multiple sources of heavy-tails with different
power indices. In such cases, the catastrophe principle minimizes the “cost” of the jumps rather than the
number of jumps. For example, suppose that Zi’s have different regular variation indices on negative and
positive sides. Specifically, suppose that Zi is still centered (i.e., EZi = 0), but P(−Z1 ≥ x) ∈ RV−α(x)
and P(Z1 ≥ x) ∈ RV−β (x) as x→ ∞ for some α,β > 1. Analogous to Dl and D<l defined previously,
we introduce a few notions to describe piece-wise step functions in D that make both upward and
downward jumps. For i, j ∈ Z+, let Di, j be the subset of D containing all step functions that vanish at the
origin and have exactly i downward jumps and j upwards jumps. Let D<l−,l+ =

⋃
(i, j)∈I<l−,l+

Di, j where
I<l−,l+ = {(i, j) ∈ Z2

+\(l−, l+) : (α − 1) · i+(β − 1) · j ≤ (α − 1) · l−+(β − 1) · l+}, which is the set of
indices associated with the combination of jumps with equal or less cost compared to (l−, l+).

Below, we present Theorem 4.1 of Rhee et al. (2019). Here, the key is to determine the combination
of catastrophes that trigger the target event with the minimum cost. Specifically, by solving for (l∗−, l

∗
+),

i.e., the minimizer of the cost function (α−1)l−+(β −1)l+ over all (l−, l+) with A∩Dl−,l+ ̸= /0, we gain
important insights into the rare events {S̄n ∈ A}: first, P(S̄n ∈ A) is roughly of order n−(α−1)l∗−−(β−1)l∗+ for
large n; next, the most likely cause of {X̄n ∈ A} is dictated by (l∗−, l

∗
+), i.e., through exactly l∗− large negative

jumps and l∗+ positive jumps while X̄n resembles 000 everywhere else. As in Theorem 1, Ci, j
α,β are explicitly

identified in Theorem 4.1 of Rhee et al. (2019).
Theorem 2 Suppose that a measurable set A ⊆ D is bounded away from D<l∗−,l

∗
+

where (l∗−, l
∗
+) =

∆

argmin
(l−,l+)∈Z2

+: A∩Dl−,l+ ̸= /0
(α−1)l−+(β −1)l+, then

Cl∗−,l
∗
+

α,β (A◦)≤ liminf
n→∞

P(S̄n ∈ A)(
nP(−Z1 ≥ n)

)l∗− ·
(
nP(Z1 ≥ n)

)l∗+

≤ limsup
n→∞

P(S̄n ∈ A)(
nP(−Z1 ≥ n)

)l∗− ·
(
nP(Z1 ≥ n)

)l∗+
≤ Cl∗−,l

∗
+

α,β (A−)< ∞,

where, for each i, j ∈ Z+, the measure Ci, j
α,β is supported on Di, j.

2.2 Stochastic Difference and Differential Equations

Next, we discuss the sample-path large deviations for stochastic difference and differential equations under
heavy-tailed perturbations (Wang and Rhee 2023). Consider an iid sequence Zi satisfying the following
assumptions: P(|Z1| > x) ∈ RV−α(x) as x → ∞ for some α > 1; there exist p(+), p(−) ∈ (0,1) with
p(+)+ p(−) = 1 such that

lim
x→∞

P(Z1 > x)/P(|Z1|> x) = p(+), lim
x→∞

P(−Z1 > x)/P(|Z1|> x) = p(−). (1)

For any c > 0, let ϕc(x) = (x∧ c)∨ (−c) be the projection operator from R to [−c,c]. Let C 1(R) be the
set of mappings from R to R that have continuous derivatives. Given a ∈ C 1(R) and σ ∈ C 1(R), let(
Y n|b( j)

)
j≥0 solves

Y n|b(0) = 0, Y n|b( j) = Y n|b( j−1)+ϕb

(1
n

a
(
Y n|b( j−1)

)
+

1
n

σ
(
Y n|b( j−1)

)
·Z j

)
∀ j ≥ 1. (2)

Here,
(
Y n|b( j)

)
j≥0 can be considered as the truncated counterpart of the stochastic difference equation

Y n(0) = 0, Y n( j) = Y n( j−1)+
1
n

a
(
Y n( j−1)

)
+

1
n

σ
(
Y n( j−1)

)
·Z j ∀ j ≥ 1 (3)
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as the distance traveled at each step in Y n|b( j) is truncated under the threshold b > 0, and it makes sense
to denote Y n|∞( j) = Y n( j). Next, for any A ⊆ R and positive integer k, let Ak↑ = {(t1, · · · , tk) ∈ Ak : t1 <
t2 < · · · < tk} be the set of strictly increasing sequence of length k over A. For any b ∈ (0,∞) and any
positive integer k, define the mapping h(k)|b : Rk× (0,1]k↑→ D as follows. Given www = (w1, · · · ,wk) ∈ Rk

and ttt = (t1, · · · , tk) ∈ (0,1]k↑, let ξ = h(k)|b(www, ttt) solves

dξ (t)/dt = a
(
ξ (t−)

)
∀t ∈ [0,1], t /∈ {t1, · · · , tk}, ξ (t j) = ξ (t j−)+ϕb

(
σ
(
ξ (t j−)

)
·w j

)
∀ j ∈ [k] (4)

under initial value ξ (0) = 0. Here, h(k)|b(www, ttt) produces the ODE path with perturbations w1, · · · ,wk (with
size modulated by the drift coefficient σ(·) and truncated under b > 0) at times t1, · · · , tk, respectively. Let
D(k)|b

h = h(k)|b
(
Rk× (0,1]k↑

)
be the set containing all such ODE paths with k (modulated and truncated)

perturbations. More generally, we use ϕ∞ to denote the identity mapping on R, and we let h(k) = h(k)|∞

and D(k)
h = D(k)|∞

h be the untruncated counterparts of h(k)|b and D(k)|b
h .

Given any measurable B⊆D, one can see that J∗b (A) =
∆ min{k≥ 0 : D(k)|b

h ∩A ̸= /0} gives the minimum
number of perturbations needed for the ODE path to fall into set A. Let Ȳ n|b(t) = Yn

(
⌊nt⌋

)
and Ȳ n|b =

{Ȳ n|b(t) : t ∈ [0,1]} be the time-scaled version of Y n|b( j). As illustrated in Theorem 3, J∗b (A) dictates the
rate of decay for events {Ȳn ∈ A}.
Theorem 3 Suppose that supx∈R |a(x)| ∨σ(x) < ∞ and infx∈R σ(x) > 0. Given measurable A ⊆ D and
b ∈ (0,∞], if A is bounded away from D(J∗b (A)−1)|b

h , then

C(J∗b (A))|b
h (A◦)≤ liminf

n→∞

P(Ȳ n|b ∈ A)(
nP(|Z1|> n)

)J∗b (A)
≤ limsup

n→∞

P(Ȳ n|b ∈ A)(
nP(|Z1|> n)

)J∗b (A)
≤ C(J∗b (A))|b

h (A−)< ∞

where, for each k ∈ Z+, C(k)|b
h is a measure supported on D(k)|b

h .
Lastly, we mention that sample-path large deviation results of the same form can be developed for

stochastic differential equations driven by heavy-tailed Lévy processes and the truncated counterparts. To
avoid repetitions we omit the details and refer the interested readers to Wang and Rhee (2023).

2.3 Lévy Processes

Lévy processes can be viewed as the continuous-time analog of random walks. Any Lévy process X(t) can
decomposed into the sum of Brownian motion and the limit of a sequence of compound Poisson processes
with drift; see, e.g., Sato et al. (1999) for details. In particular, each Lévy process X(t) is associated
with a Lévy measure ν that indicates the intensity of jumps. Given any open set O, any jump with sizes
∆X(t) ∈ O will arrive according to a Poisson process with rate ν(O), where the size of each jump is iid
with law ν( ·∩O)/ν(O). Therefore, the heavy-tailedness in the increments of X(t) is captured by the tail
behavior of its Lévy measure ν .

We first consider the one-dimensional case where a Lévy process X(t) is centered (i.e., EX(t) = 0 for
all t ≥ 0) with Lévy measure ν supported on (0,∞). In other words, any jump in X(t) will be positive.
Suppose that the function ν [x,∞) ∈ RVα(x) for some α > 1, which captures the heavy-tailedness in the
increments of X(t). Let X̄n(t) = 1

n X(⌊nt⌋) and X̄n = {X̄n(t) : t ∈ [0,1]}. Below, we present Theorem 3.1
of Rhee et al. (2019). Analogous to Theorem 1, the result embodies the catastrophe principle and shows
that the key step in characterizing the sharp asymptotics of P(X̄n ∈ A) is to determine l∗, the minimum
number of catastrophes required for {X̄n ∈ A} to occur.
Theorem 4 There exists a family of measures {Cl

α : l ≥ 0} with each Cl
α supported on Dl such that the

following claim holds. Given any measurable A ⊂ D such that ddd(A,D<l∗) > 0 where l∗ =∆ min{l ∈ Z+ :
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Dl ∩A ̸= /0},

Cl∗
α (A

◦)≤ liminf
n→∞

P(X̄n ∈ A)
(nν [n,∞))l∗ ≤ limsup

n→∞

P(X̄n ∈ A)
(nν [n,∞))l∗ ≤ Cl∗

α (A
−)< ∞.

To conclude, we consider X (1), · · · ,X (d) that are independent and centered Lévy processes in R with
spectrally positive (i.e., restricted on (0,∞)) Lévy measures ν(1), · · · ,ν(d), respectively. For each i ∈ [d],
suppose that ν(i)[x,∞) ∈ RV−βi(x) fopr some βi > 1. Here, we provide an intuitive interpretation of the
catastrophe principle in the current setup. The “cost” of observing a large jump (i.e., catastrophe) along
the i-th dimension is βi−1, and the most likely cause of a rare event is the one with li large jumps along
dimension i that minimizes the cost function

J (l1, · · · , ld) =∆
d

∑
i=1

li · (βi−1). (5)

LetDk be the k-fold product space ofD. Given any (l∗1 , · · · , l∗d)∈Zd
+, letD<(l∗1 ,··· ,l∗d)=

∆
⋃

(l1,··· ,ld)∈I<(l∗1 ,··· ,l
∗
d )

∏
d
j=1Dl j

where I<(l∗1 ,··· ,l∗d) =
∆
{
(l1, · · · , ld)∈Zd

+\(l∗1 , · · · , l∗d) : J (l1, · · · , ld)≤J (l∗1 , · · · , l∗d)
}

. Also, set the maximum
metric on the product space Dd as dddd

(
(x1, · · · ,xd),(y1, · · · ,yd)

)
= maxi∈[d] ddd(xi,yi), and we say that A⊆Dd

is bounded away from B⊆Dd if dddd(A,B)> 0. We present Theorem 3.6 of Rhee et al. (2017) that embodies
the catastrophe principle in the multi-dimensional setting. Let X̄n(t) =

(
X (1)(⌊nt⌋)/n, · · · ,X (d)(⌊nt⌋)/n

)
and X̄n = {X̄n(t) : t ∈ [0,1]}.
Theorem 5 There exists a family of measures {C(l1,··· ,ld)

β1,··· ,βd
: ik ≥ 0 ∀k ∈ [d]}where each C(l1,··· ,ld)

β1,··· ,βd
is supported

on ∏
d
k=1Dlk such that the following claim holds. Suppose that a measurable set A⊆ Dd is bounded away

from D<(l∗1 ,··· ,l∗d) where

(l∗1 , · · · , l∗d) = argmin
(l1,··· ,ld)∈Zd

+: A∩∏
d
j=1 Dl j ̸= /0

J (l1, · · · , ld),

then (let A◦, A− be the interior and closure of A, respectively)

C(l∗1 ,··· ,l∗d)
β1,··· ,βd

(A◦)≤ liminf
n→∞

P(X̄n ∈ A)

∏
d
i=1

(
nν(i)[n,∞)

)l∗i
≤ limsup

n→∞

P(X̄n ∈ A)

∏
d
i=1

(
nν(i)[n,∞)

)l∗i
≤ C(l∗1 ,··· ,l∗d)

β1,··· ,βd
(A−)< ∞.

3 ALGORITHM

This section discusses the general principle for designing importance sampling algorithms for heavy-tailed
systems based on the sample-path large deviations reviewed in Section 2. The importance sampling algorithm
is both readily implementable and universally applicable to a broad class of rare events in heavy-tailed
systems. Moreover, this algorithm attains strong efficiency in the following sense. Given two sequences
of non-negative real numbers xn,yn, we say xn = O(yn) if limsupn→∞ xn/yn < ∞, and we say xn = o(yn)
of limn→∞ xn/yn = 0. For sequences of events (An)n≥1 and random variables (Ln)n≥1, we say that the
estimators (Ln)n≥1 are unbiased and strongly efficient for (P(An))n≥1 if

ELn = P(An) ∀n≥ 1; EL2
n = O

(
P(An)

2) as n→ ∞. (6)

It is worth emphasizing that the strongly efficient estimators (Ln)n≥1 achieve uniformly bounded relative
errors for all n ≥ 1, meaning that the number of samples required to achieve a given level of relative
accuracy is uniformly bounded, regardless of how small the target probability P(An) is.
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3.1 Importance Sampling Distribution Qn

For simplicity and clarity of the presentation, we start with the simplest case. Recall S̄n(t) = S⌊nt⌋/n defined
in Section 2.1. In particular, we assumed that P(Z1 ≥ x) ∈RV−α(x) as x→∞ for some α > 1, whereas the
left tail decayed at least at an exponential rate. Let An =

∆ {S̄n ∈ A} for some A⊂ D. This section explains
a strongly efficient rare event simulation algorithm for P(An). In Section 3.3, we will discuss how this
principle can be generalized to the rare events associated with different classes of heavy-tailed systems.

Recall l∗(A) = min{l ∈ Z+ : Dl ∩A ̸= /0} in Theorem 1. Note that Theorem 1 dictates that P(S̄n ∈ A)
is of order (nP(Z1 ≥ n))l∗(A). Furthermore, any other rare events that require l∗(A) jumps have the same
asymptotic rate as An. In view of this, a natural approach is to consider an importance distribution of the
form P(·|S̄n ∈ B) for some B, which is tractable and satisfies l∗(B) = l∗(A). It turns out that the following
defensive importance sampling mixture strikes the right balance:

Qn(·) =∆ wP(·)+(1−w)P( · |Bγ
n) (7)

with some prefixed constant w ∈ (0,1) and γ ∈ (0,∞). Here, we set Bγ
n = {S̄n ∈ Bγ} with

Bγ =
{

ξ ∈ D : #
{

t ∈ [0,1] : ξ (t)−ξ (t−)≥ γ
}
≥ l∗(A)

}
. (8)

The choice of γ is crucial and will be discussed in the next subsection. Note that by its construction, we
have l∗(Bγ) = l∗(A) as desired. If we define

Ln =
∆
1An ·dP/dQn (9)

where dP/dQn is the likelihood ratio of P and Qn, then Ln is obviously an unbiased estimator for P(S̄n ∈ A)
under Qn(·). In the next subsection, we will see that Ln is strongly efficient. Here, we just mention that the
first term in (7) prevents dP/dQn from blowing up, whereas the second term makes sure that Qn resembles
the ideal (but unimplementable) zero-variance importance distribution P(·|S̄n ∈ A).

For Ln to be implementable, one should be able to sample from P( · |Bγ
n) efficiently. To do so,

first, let Binom(n, p) be the count of success trials among n Bernoulli trials with success rate p, and let
pn,γ = P(Z1 ≥ γ/n). Let k be sampled from the law of Binom(n, pn), conditioning on Binom(n, pn)≥ l∗(A).
Then we uniformly randomly pick indices 1≤ i1 < i2 < · · · , ik≤ n among {1, · · · ,n}. For each i /∈{i1, · · · , ik},
we sample Zi from P( · |Zi ≤ γ/n), which can be done via straighforward acceptance-rejection. For each
i∈ {i1, · · · , ik}, we instead sample Zi from P( · |Zi≥ γ/n). This can be done through the inverse of P(Zi≥ x),
i.e., Q←n (y) =∆ inf{s > 0 : P(Z1 ≥ s) < y}. Specifically, one can sample Γ1, · · · ,Γk

iid∼ Unif
(
0,P(Z1 ≥ nγ)

)
and set Zi j = Q←n (Γ j) for each j ∈ [k]. See Wang and Rhee (2020) for details.

3.2 Strong Efficiency of Ln and the Choice of γ

This section examines the strong efficiency of Ln and the choice of γ on the performance of the estimator
Ln. For a given probability measure µ , let Eµ denote the expectation operator under µ . Note that, from the
definition of Qn in (7), dP/dQn ≤ 1/w on set (Bγ

n)c and dP/dQn ≤ P(Bγ
n)/(1−w) on set Bγ

n. Therefore,

EQn [L2
n] = EQn

[
1An ·

dP
dQn
· dP

dQn

]
= E

[
1An ·

dP
dQn

]
= E

[
1An∩Bγ

n
· dP

dQn

]
+E

[
1An\Bγ

n
· dP

dQn

]
≤ P(Bγ

n)

1−w
·P(An)+

1
w
·P(An\Bγ

n). (10)

Note that since l∗(Bγ) = l∗(A) by design, we have P(Bγ
n) = O(P(An)) from Theorem 1, and hence, the first

term of (10) is O
(
P(An)

2
)
. For the second term, it turns out that we can pick γ > 0 small enough so that
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(A \Bγ)∩Dl = /0 for all l ≤ 2l∗(A), and hence, from Theorem 1 again, we obtain l∗(A \Bγ) > 2 · l∗(A).
Therefore,

P(An\Bγ
n) = O

((
nP(Z1 ≥ n)

)l∗(A\Bγ )
)
= o

((
nP(Z1 ≥ n)

)2l∗(A)
)
= o

(
P(An)

2) as n→ ∞ (11)

under the mild condition that A\Bγ is bounded away from D<l∗(A\Bγ ). We conclude that the second moment
of L2

n is O
(
P(An)

2
)
, establishing the strong efficiency of Ln. In summary, we arrive at the following unified

framework to determine the appropriate importance sampling algorithm that ensures strong efficiency.

1. Solve for l∗ = min{l ∈ Z+ : Dl ∩A ̸= /0}
2. Find γ > 0 such that A∩ (Dl\Bγ) = /0 holds for all l ≤ 2l∗.

3.3 Extension to Other Heavy-tailed Processes

Next, we discuss how to apply the importance sampling strategy in Section 3.1 and 3.2 to the processes
beyond the one-sided random walk. By repeating the derivations in (10) and (11) using the sample-path
large deviation results stated in Section 2, a framework analogous to the one developed in Section 3.2 can
be obtained for other heavy-tailed stochastic processes. Here, we omit the technical details and focus on
highlighting the differences therein.

We start from random walks in R1 with heavy-tailed increments on both sides. Let Sn = Z1 + · · ·+Zn
be a centered random walk where P(−Z1 ≥ x) ∈ RV−α(x) and P(Z1 ≥ x) ∈ RVβ (x) as x→ ∞ for some
α,β > 1. To efficiently estimate P(An) with An = {S̄n ∈ A}, we adopt the design of the importance
sampling estimator Ln = 1An ·dP/dQn but with a slightly different choice of Bγ

n = {S̄n ∈ Bγ}. Specifically,
for technical reasons we set Bγ =∆

⋃
(i, j)∈∂ I(l∗−,l∗+) Bγ;i, j where Bγ;i, j = {ξ ∈D : #{t ∈ [0,1] : ξ (t−)−ξ (t)≥

γ} ≥ i, #{t ∈ [0,1] : ξ (t)−ξ (t−)≥ γ} ≥ j} and (recall the definition of I<(l1,··· ,ld) in Section 2.3)

∂ I( j1, · · · , jd)

=∆
{
(l1, · · · , ld) ∈ Zd

+\I<( j1,··· , jd) : (m1, · · · ,md)≺ (l1, · · · , ld) implies (m1, · · · ,md) ∈ I<( j1,··· , jd)

}
.

Here, we define a partial order on Zd
+ such that (l1, · · · , ld)≺ (m1, · · · ,md) if and only if li ≤ mi ∀i ∈ [d]

and there exists some j ∈ [d] such that l j < m j. The set ∂ I(l∗1 , · · · , l∗d) can be viewed as the boundary set or
dominating set that “envelopes” the set I<(l∗1 ,··· ,l∗d). By repeating the derivation in Section 3.2 with Theorem
2, we arrive at following procedure to determine γ:

1. Solve for (l∗−, l
∗
+), the minimizer of min{(α−1)l−+(β −1)l+ : A∩Dl−,l+ ̸= /0};

2. Find γ such that A∩ (Dl−,l+\Bγ) = /0 holds for all (l−, l+) with (α − 1)l−+(β − 1)l+ ≤ 2(α −
1)l∗−+2(β −1)l∗+.

Analogously, we propose a universal framework for rare event simulation in heavy-tailed stochastic
difference/differential equations. We focus on the R1 case for the simplicity of the presentation, but
the method can be easily extended to Rd settings. Suppose that Zi are iid RVs such that EZi = 0,
P(|Z1|> x) ∈RV−α(x) for some α > 1 and the limits in (1) hold. Given b ∈ (0,∞], let Y n|b( j) be defined
under the recursion (2). In case that b = ∞, the recursion coincides with the one defined in (3) for Y n( j).
Let Ȳ n|b(t) =Yn

(
⌊nt⌋

)
and Ȳ n|b = {Ȳ n|b(t) : t ∈ [0,1]} be the time-scaled version of Y n|b( j). By repeating

the analysis in Sections 3.1 and 3.2 with Theorem 3, we obtain a strongly efficient algorithm for the
estimation of P(Ȳ n|b ∈ A). Specifically, by determining J∗b (A) =

∆ min{k ≥ 0 : D(k)|b
h ∩A ̸= /0}, we define

Bγ =
{

ξ ∈D : #{t ∈ [0,1] : |∆ξ (t)| ≥ γ} ≥ J∗b (A)
}

as the set of RCLL paths with at least J∗b (A) jumps of
size larger than γ . Then in (7), we set Bγ

n = {Ȳ n|b ∈ Bγ}. In summary, we obtain the following procedure.

1. Solve for J∗b (A) =
∆ min{k ≥ 0 : D(k)|b

h ∩A ̸= /0};
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2. Find γ such that A∩ (D(k)|b\Bγ) = /0 holds for all k ≤ 2J∗b (A).

To avoid repetitions, we omit the details and mention that a strongly efficient importance sampling algorithm
can be designed analogously for heavy-tailed stochastic differential equations and the truncated counterparts.

Lastly, we describe the importance sampling scheme for (multi-dimensional) Lévy processes with
heavy-tailed increments. Recall X̄n(t) =

(
X (1)(⌊nt⌋)/n, · · · ,X (d)(⌊nt⌋)/n

)
and X̄n = {X̄n(t) : t ∈ [0,1]}

defined in Section 2.3. Specifically, for the spectrally positive Lévy measures ν(1), · · · ,ν(d) we have,
for each i ∈ [d], that ν(i)[x,∞) ∈ RV−βi(x) for some βi > 1. Our goal is to estimate P(X̄n ∈ A). In the
importance sampling estimator Ln, we set Bγ

n = {X̄n ∈ Bγ} with Bγ =∆
⋃

lll∈∂ I(l∗1 ,··· ,l∗d) Bγ;lll where Bγ;(l1,··· ,ld) =∆{
(ξ (1), · · · ,ξ (d)) ∈ Dd : #{t ∈ [0,1] : ξ (i)(t)− ξ (i)(t−) ≥ γ} ≥ li ∀i ∈ [d]

}
. By repeating the analysis

in Sections 3.1 and 3.2 using Theorem 5, we provide the following unified framework to determine the
strongly efficient importance sampling scheme. See (5) for the definition of J (l1, · · · , ld).

1. Solve for lll∗ = (l∗1 , · · · , l∗d), the minimizer of min{J (l1, · · · , ld) : A∩∏
d
i Dli ̸= /0};

2. Find γ such that A∩ (∏d
i Dli\Bγ) = /0 holds for all (l1, · · · , ld) with J (l1, · · · , ld)≤ 2J (l∗1 , · · · , l∗d).

To conclude, we note that the sampling of Lévy process X̄n from P( · |Bγ
n) has been addressed in both

Chen et al. (2019) and Wang and Rhee (2020) and can be understood as a compound Poisson version of
the sampling for S̄n discussed at the end of Section 3.1.

3.4 Dealing with Infinite Activities in Lévy Processes

This section revisits one implicit assumption in the previous sections that the indicator function 1{X ∈ A}
for a given A⊆D and some process X = {X(t) : t ∈ [0,T ]} can be evaluated directly, which may not be the
case for all heavy-tailed stochastic processes. In this subsection, we focus on Lévy process with infinite
activities. For the rigorous definition of infinite activities and a general approach to rare-event simulation
in heavy-tailed Lévy processes with infinite activities, we refer the readers to Wang and Rhee (2020).

Consider the following example. Let X(t) =B(t)+∑
N(t)
i=1 (Wi−EWi)where B(t) is the standard Brownian

motion in R, N is a Poisson process with rate λ > 0, and (Wi)i≥1 are iid Pareto RVs with law P(W1 > x) =
1/max{1,x}α for some α > 1. Let X̄n(t) = 1

n X(nt) and X̄n = {X̄n(t) : t ∈ [0,1]} be the time-scaled version of
X(t). The goal is to estimate P(X̄n ∈ A) where A =

{
ξ ∈D : supt∈[0,1] ξ (t)≥ a, supt∈[0,1] ξ (t)−ξ (t−)≤ b

}
for some 0 < b < a. Due to the presence of the Brownian motion term, the exact evaluation of 1{X̄n ∈ A}
is computationally challenging under the proposed importance sampling strategy, which prevents us from
directly implementing the importance sampling estimator Ln = 1{X̄n ∈ A} ·dP/dQn.

To address this issue, we construct a sequence of approximations for 1{X̄n ∈ A}. First, we introduce
a decomposition of the Lévy process X(t). Let X⩾c(t) = ∑s∈[0,t] ∆X(t)1{∆X(t) ≥ c}, where ∆X(t) =
X(t)−X(t−) denotes the jump at time t. For a chosen value γ ∈ (0,b), we define Jn(t) = X⩾nγ(t) and set
X<nγ(t) =X(t)−X⩾nγ(t) as the remaining part of X(t). Now, let E = {ξ ∈D : supt∈[0,1] : ξ (t)−ξ (t−)≤ b},
A′ = {ξ ∈D : supt∈[0,1] ξ (t)≥ a} and note that A = A′∩E. Also, define the scaled process J̄n = {1

n Jn(nt) :
t ∈ [0,1]} and X̃n(t) = {1

n X<nγ(nt) : t ∈ [0,1]}. We have (due to γ ∈ (0,b))

Ln = 1

{
J̄n + X̃n ∈ A

}
· dP

dQ
= 1

{
J̄n + X̃n ∈ A′

}
·1

{
J̄n ∈ E

}
· dP

dQ
=

1
{

J̄n + X̃n ∈ A′
}
·1

{
J̄n ∈ E

}
w+ 1−w

P(Bγ
n)
·1

{
J̄n ∈ Bγ

n
} .

Due to the infinite activities in X̃n, accurately evaluating 1
{

J̄n + X̃n ∈ A′
}

is computationally challeng-
ing. Therefore, we construct an unbiased estimator Ẑn(ξ ) that satisfies EẐn(ξ ) = P

(
X̃n + ξ ∈ A′

)
=

P
(

supt∈[0,1] X̃n(t)+ξ (t)≥ a
)
, and replace 1

{
X̃n + J̄n ∈ A′

}
with Ẑn(J̄n) in our algorithm.
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The first key component is the debiasing technique introduced in Rhee and Glynn (2015). Specifically, for
Zn(ξ ) = 1

{
supt∈[0,1] X̃n(t)+ξ (t)≥ a

}
, suppose that we can construct a sequence of approximators Zn,m(ξ )

supported on the same probability space such that the squared error E|Zn,m(ξ )−Zn(ξ )|2 quickly approaches 0
as m→∞. Then the debiasing technique allows us to show that Ẑn(ξ ) =∑

τ
m=1

(
Zn,m(ξ )−Zn,m−1(ξ )

)/
P(τ ≥

m) satisfies EẐn(ξ ) = Zn(ξ ), where τ is independent of everything else.
To construct such Zn,m(ξ ) for some ξ (t) = ∑

k
i=1 zi1[ui,1](t), we introduce the second key component.

First, we partition the timeline [0,n] into k+1 disjoint intervals [0,u1), [u1,u2), · · · , [uk−1,uk), and [uk,1].
We adopt the convention u0 = 0,uk+1 = 1 and set Ii = [ui−1,ui) for i ∈ [k] and Ik+1 = [uk,1]. Observe that

Zn(ξ ) = 1

{
sup

t∈[0,1]
X̃n(t)+ξ (t)≥ a

}
= 1

{
max

i∈[k+1]

[
ξ (ui−1)+ X̃n(ui−1)+ sup

t∈Ii

X̃n(t)− X̃n(ui−1)
]
≥ a

}
.

The Zn,m(ξ )’s are constructed by approximating supt∈Ii
X̃n(t)− X̃n(ui−1) using the stick-breaking represen-

tation in Pitman and Bravo (2012), i.e., an intriguing characterization of the joint law of some Lévy process
X(t) with infinite activities and its running supremum M(t) = sups∈[0,t] X(s). Here, we fix some i ∈ [k+1].

Let (U (i)
j ) j≥1 be iid Unif(0,1). Let l(i)0 = ui− ui−1, and l(i)j = U (i)

j · (l
(i)
0 − l(i)1 −·· ·− l(i)j−1) for all j ≥ 1.

Conditioning on (l(i)j ) j≥1, we generate ζ
(i)
j as an independent copy of X̃n(l

(i)
j ). Now we set

Zn,m(ξ ) = 1

{
max

i∈[k+1]

[
ξ (ui−1)+

i−1

∑
l=1

∑
j≥1

ξ
(l)
j +

⌈log2(n
2)⌉+m

∑
j=1

max{ζ (i)
j ,0}

]
≥ a

}
and let Ẑn(ξ ) = ∑

τ
m=1

(
Zn,m(ξ )−Zn,m−1(ξ )

)/
P(τ ≥ m), where P(τ ≥ m) = ρm is the law of a geometric

random variable with success rate ρ ∈ (0,1). Notably, the proposed algorithm achieves unbiasedness and
strong efficiency under any γ ∈ (0,b) and any ρ sufficiently close to 1. Besides, thanks to the finite termination
threshold τ , infinite sum ∑ j>τ ξ

(i)
j can be simply simulated as an independent copy of X(l(i)0 −∑ j≤τ l(i)j ),

so Ẑn(ξ ) can be simulated exactly within finite time. For details on the implementation and efficiency of
this algorithm, we refer the readers to Wang and Rhee (2020).

4 EXAMPLES

4.1 Barrier Option Pricing

Let Sk = Z1 + · · ·+Zk be a centered random walk with iid increments Zk such that P(Z1 ≥ x) ∈ RV−β (x)
and P(−Z1 ≥ x) ∈RV−α(x) some α,β > 1. Let S̄n(t) = S⌊nt⌋/n and S̄n = {S̄n(t) : t ∈ [0,1]} be the scaled
version of Sn. Our goal is to estimate P(S̄n ∈ A) where A =∆ {ξ ∈ D : ξ (1)≥ b, inft∈[0,1] ξ (t)+ ct ≤−a}
for some a,b,c > 0. This problem is adapted from Section 5 of Chen et al. (2019) and concerns the chance
of exercising a down-in barrier option.

According to the framework outlined in Section 3.3, the first step is to identify the solution (l∗−, l
∗
+) to the

minimization problem min(l−,l+)∈Z2
+: A∩Dl−,l+ ̸= /0(α−1)l−+(β−1)l+. First, for some piece-wise step function

ξ ∈Di, j to fall into set A, it needs at least one downward jump (otherwise ξ (t)+ct is an increasing function,
implying inft∈[0,t] ξ (t)+ct = ξ (0) = 0) and at least one upward jump (otherwise ξ (t) is a decreasing function
so ξ (1)≤ ξ (0) = 0). In other words, Di, j∩A ̸= /0 only if i≥ 1 and j≥ 1. Now, to show that (l∗−, l

∗
+) = (1,1),

it suffices to find ξ ∈D1,1 such that ξ ∈ A. Indeed, for ξ (t) =−(a+c)1[0.1,1](t)+(a+b+c)1[0.5,1](t), at
t = 0.1 we have ξ (t)+ct =−(a+c)+0.1c <−a, and at t = 1 we have ξ (1) =−(a+c)+(a+b+c) = b.
This confirms that ξ ∈ A∩D1,1 and hence (l∗−, l

∗
+) = (1,1).

We move onto the second step of the framework developed in Section 3.3 and identify γ such that the
claim A∩ (Dl−,l+\Bγ) = /0 holds for all (l−, l+) with (α−1)l−+(β −1)l+ ≤ 2(α−1)+2(β −1). Here,
recall that in the definition of Bγ =

⋃
(i, j)∈∂ I(1,1) Bγ;i, j, where

Bγ;i, j =
{

ξ ∈ D : #{t ∈ [0,1] : ξ (t−)−ξ (t)≥ γ} ≥ i, #{t ∈ [0,1] : ξ (t)−ξ (t−)≥ γ} ≥ j
}
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and the index set ∂I(l∗−, l
∗
+) contains at least (l∗−, l

∗
+). In other words, Dl−,l+\Bγ ⊆ Dl−,l+\Bγ;1,1. Next, for

any ξ ∈ Di, j\Bγ;1,1, all the i upward jumps and j downward jumps in ξ are bounded by γ , and hence

sup
t∈[0,1]

ξ (t)< j · γ or inf
t∈[0,1]

ξ (t)>−i · γ. (12)

Note that for all (l−, l+) satisfying (α−1)l−+(β −1)l+ ≤ 2(α−1)+2(β −1), we must have l− ≤ i∗ =∆

⌈
(
2(α−1)+2(β −1)

)
/(α−1)⌉ and l+ ≤ j∗ =∆ ⌈

(
2(α−1)+2(β −1)

)
/(β −1)⌉. Set γ to be small enough

such that j∗ ·γ < b and i∗ ·γ < a. Then for any (l−, l+) satisfying (α−1)l−+(β−1)l+≤ 2(α−1)+2(β−1)
and any ξ ∈ Di, j\Bγ;1,1, in light of observation (12) we must have either ξ (1)≤ supt∈[0,1] < j∗ · γ < b or
inft∈[0,1] ξ (t) + ct ≥ inft∈[0,1] ξ (t) > −i∗ · γ > −a, which confirms that ξ /∈ A. In summary, by picking
γ ∈ (0, b

j∗ ∧
a
i∗ ) we obtain a strongly efficient importance sampling algorithm for P(S̄n ∈ A).

4.2 First Exit Time of Stochastic Gradient Descents

Consider the potential function U : R→ R and interval I = [sleft,sright] where sleft < 0 < sright such that
(i) U ′(·) is Lipschitz continuous, (ii) U ′(0) = 0, and (iii) U ′(x) < 0 for x ∈ [sleft,0) and U ′(x) > 0 for
x ∈ (0,sright]. The origin is the unique stable point of U(·) over I in the sense that the path xxxt(x), which
solves dxxx(t)/dt =−U ′(xxxt(x)) under initial condition xxx0(x) = x, converges to 0 as t→ ∞ for all x ∈ I. In
contrast, the stochastic gradient descent (SGD) iterates (under initial condition Y n|b(0)≡ 0)

Y n|b(k) =∆ Y n|b(k−1)+ϕb

(
− 1

n
U ′

(
Y n|b(k−1)

)
+

1
n

Zk

)
∀k ≥ 1

will inevitably exit I, where ϕb(w) =
∆ (w∧ b)∨ (−b) represents the standard gradient clipping technique

in SGD, and Zk are iid RVs such that P(|Z1| > x) ∈ RV−α(x) as x→ ∞ for some α > 1 and (1) holds.
Denote the first exit time as τn =

∆ min{k ≥ 0 : Yn(k) /∈ I}. We are interested in estimating P(τn ≤ n) as it
indicates the frequency of transitions between different modes and provides important insights about the
local and global stability of SGD. We impose the assumptions that |sleft|

b ,
sright

b /∈ Z. Also, due to the nature
of the first exit time problem, by modifying U(·) outside of the compact set I we can assume without loss
of generality that supx∈R |U ′(x)|< ∞.

Let Ȳ n|b(t) =Yn
(
⌊nt⌋

)
and Ȳ n|b = {Ȳ n|b(t) : t ∈ [0,1]}. Let A = {ξ ∈D : ξ (t) /∈ I for some t ∈ [0,1]}.

Note that P(τn ≤ n) = P(Ȳ n|b ∈ A). As a result, we are at the framework developed in Section 3.3
for stochastic difference equations under the choice of a(·) = −U ′(·). The first step is to determine
J∗b (A) =

∆ min{k ≥ 0 : D(k)|b
h ∩A ̸= /0} with D(k)|b

h = h(k)|b
(
Rk× (0,1]k↑

)
and the perturbed ODE mapping

h(k)|b defined in (4). In other words, we need to know the number of perturbations required for the ODE
under gradient field−U ′(·) and initialized at the origin to exit from I. To this end, we develop the following
intuition. To cross the right boundary point (i.e., sright), any leftward jump would send the iterates further
from the destination, defeating the purpose. Moreover, due to the constant attraction back to the origin
under gradient field −U ′(·), to cross sright with rightward jumps bounded by b we need to make at least
l+(b) = ⌈sright/b⌉ jumps. Similarly, to cross the left boundary point sleft, we need at least l−(b) = ⌈|sleft|/b⌉
leftward jumps. The intuition can be made rigorous with the following bound: Given any ξ = h(k)|b(www, ttt),

sup
t∈[0,1]

ξ (t)≤
k

∑
j=1

ϕb

(
w j ·1(w j > 0)

)
, inf

t∈[0,1]
ξ (t)≥

k

∑
j=1

ϕb

(
w j ·1(w j < 0)

)
. (13)

Hence, for any ξ ∈D(k)|b with k < l−(b)∧ l+(b), we have supt∈[0,1] ξ (t)≤⌊sright/b⌋·b< b and inft∈[0,1] ξ (t)>
−⌊|sleft|/b⌋ · b > sleft, which means D(k)|b∩A = /0. On the other hand, by setting the arrival times of all
rightward (resp., leftward) jumps arbitrarily close to 0 and jumps sizes large enough, one can construct
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ξ ∈D(l+(b))|b (resp., D(l−(b))|b) such that supt∈[0,1] ξ (t)> sright (resp., inft∈[0,1] ξ (t)< sleft) and hence ξ (t) /∈ I
for some t ∈ [0,1]. To conclude, we obtain J∗b (A) = l−(b)∧ l+(b).

Under the choice of Bγ =
{

ξ ∈D : #{t ∈ [0,1] : |∆ξ (t)| ≥ γ}≥ J∗b (A)
}
, we are now at the second step of

the framework in Section 3.3 and need to determine the range of γ such that A∩(D(k)|b\Bγ) = /0 ∀k≤ 2J∗b (A).
For any ξ ∈ D(k)|b\Bγ , the count of jumps with size in [γ,b] is at most J∗b (A)−1, and the count of jumps
with size < γ is at most k. In light of the bound (13), we then get supt∈[0,1] ξ (t) ≤ (l+(b)− 1) · b+ k · γ
and inft∈[0,1] ξ (t)≥−(l−(b)−1) ·b−k · γ. Therefore, for any γ ∈

(
0, |sleft|−(l−(b)−1)·b

2J∗b (A)
∧ sright−(l+(b)−1)·b

2J∗b (A)

)
, we

have supt∈[0,1] ξ (t)< sright and inft∈[0,1] ξ (t)> sleft and hence A∩ (D(k)|b \Bγ) = /0 for all k≤ 2J∗b (A). Such
γ ensures the strong efficiency when estimating P(τn ≤ n).

4.3 Multiple-Server Queues with Heavy-tailed Service Times

Consider a first-come-first-serve GI/GI/d queueing model with d servers where the inter-arrival times of
customers are iid copies of some random variable V > 0 and the service times are iid copies of some random
variable S > 0. We assume that V is light-tailed and there exists some t > 0 such that Eexp(tV ) < ∞.
Additionally, we assume that S is heavy-tailed and P(S≥ x) ∈ RV−α(x) for some α > 1. Without loss of
generality, we set ES = 1 and denote the arrival rate by λ = 1/EV . Let Q(t) be the length of the queue
at time t with initial condition Q(0) = 0. We are interested in estimating the probability of observing an
extreme queue length at time n, i.e., P(Q(n)> nθ), for some θ > 0. This estimation is carried out under
the stability condition λ < d. We impose the mild condition that λ −θ /∈ Z and focus on the case where
θ < λ : otherwise, for event {Q(n)> nθ} to occur there needs to be more than nθ jobs arriving by time n
even though the arrival rate of jobs is λ < θ ; therefore, observing such an event would require exponentially
rare behavior in the light-tailed arrival process of jobs, which is beyond the scope of this tutorial.

Henceforth in Section 4.3, we focus on providing the intuition behind the typical behavior of the
queueing system, and we note that the arguments can be made rigorous by adapting the technical tools in
Bazhba et al. (2019) to the regularly varying setting at hand.

The first step is to understand the rate of decay for P(Q(n)> nθ) as n→ ∞. Let l∗ = ⌈d− (λ −θ)⌉,
and suppose that l∗ out of the d servers are completely blocked over the period [0,n]. In other words, each
of these l∗ servers is busy serving some job with extremely high workload and is unable to serve any other
jobs. Then in the long run, the jobs arrive at rate λ while each of the remaining d− l∗ servers completes
jobs at rate 1. As a result, Q(n) should roughly increase at rate λ − (d− l∗)> λ − [d−d +(λ −θ)] = θ ,
leading to Q(n)> nθ . In summary, the occurrence of Q(n)> nθ requires l∗ catastrophes (i.e., jobs with
extremely high workload), and we expect P(Q(n)> nθ) to be of order (nP(S≥ n))l∗ .

Next, we determine the choice of event Bγ
n in the importance sampling estimator. Considering the

calculations in (10), it only remains to find Bγ
n such that P(Bγ

n) = O
(
(nP(S ≥ n))l∗

)
and P({Q(n) >

nθ}\Bγ
n) = o

(
(nP(S ≥ n))2l∗

)
as n→ ∞. Let S(i)j be iid copies of S, representing the service time of

the j-th customer arrived at the i-th server. Let S(i)(t) = S(i)1 + · · ·+ S(i)⌊t⌋. Let S̄(i)n (t) = S(i)(nt)/n and

S̄(i)n = {S(i)n (t) : t ∈ [0,1]} be the scaled version of S(i)(t). Let Bγ
n =∆ {(S̄(1)n , · · · , S̄(d)n ) ∈ Bγ} with Bγ ={

(ξ (1), · · · ,ξ (d)) ∈Dd : ∑
d
i=1 #{t ∈ [0,1] : ξ (t)−ξ (t−)≥ γ} ≥ l∗

}
. That is, at least l∗ of the service times

S(i)j ∀i ∈ [d], j ∈ [n] are larger than nγ . Obviously, we have P(Bγ
n) = O

(
(nP(S≥ n))l∗

)
due to the l∗-jump

nature of the set Bγ . Now, our goal is to find γ such that P({Q(n)> nθ}\Bγ
n) = o

(
(nP(S≥ n))2l∗

)
.

To proceed, we provide the intuition of the typical behavior of the scaled queue Q̄n(t) =Q(nt)/n on event
(Bγ

n)c. On event (Bγ
n)c there are at most l∗−1 jobs with service time longer than nγ , and the most extreme

case is that these jobs completely block l∗−1 servers. Suppose that during the time period [0,n] there are
also j jobs with workload bounded by nγ handled by the remaining d− l∗+1 servers. Then under the scaling
of Q̄n(t), each of these j jobs amounts can block one server by time γ at most. In summary, on event (Bγ

n)c,
with l∗−1+ j catastrophes (i.e., jobs with workload of scale O(n)), we expect Q̄n(1) to be upper bounded
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by q(γ, j) = λ −
[
d− (l∗−1)− jγ

]
. To ensure P({Q(n)> nθ}\Bγ

n) = o
(
(nP(S≥ n))2l∗

)
, it suffices to find

γ small enough such that even with 2l∗ catastrophes (that is, with j = l∗+1) we still have q(γ, l∗+1)< θ .
Now observe that λ − (d− l∗+ 1) = λ − d− 1+ ⌈d− (λ − θ)⌉ < λ − d− 1+ d− (λ − θ)+ 1 < θ . By
setting ∆ = θ − [λ − (d− l∗+ 1)] > 0 and picking γ ∈ (0, ∆

l∗+1), we identify the construction of Bγ that
ensures the strong efficiency of the importance sampling algorithm for the multiple-server queue.

4.4 Fluid Queueing Networks

Consider a fluid queueing network with d stations where jobs arrive independently to the i-th station
according to a Poisson process (denoted by N(i)(t)) with unit rate. For the i-th station, let W (i)(k) be
the workload of the k-th job and suppose the law of (W (i)(k))k≥1 are iid and P(W (i)(k)≥ x) ∈ RV−βi(x)
for some βi > 1 (as x→ ∞). The total amount of external work arrived at station i by time t is given

by J(i)(t) = ∑
N(i)(t)
j=1 W (i)( j). Let J(t) = (J(1)(t), · · · ,J(d)(t)), and we use vector ρ =∆ EJ(1) to denote the

expected amount of work of a job at different stations. Each station processes the workload as fluid with
rate ri, and a proportion Qi, j ∈ [0,1] of the processed fluid will be routed to the j-th station. Let Z(i)(t) be
the remaining workload at the i-th station with initial condition Z(i)(0) = 0 ∀i ∈ [d]. We are interested in
estimating the probability that an extreme amount of workload accumulates in certain parts of the network.
To be specific, we set d = 3, ρ = (0.8,0.8,1), r = (1,1,2.5), and

Q =

 0 0.1 0.8
0.1 0 0.8
0 0 0


and suppose that β1 +β2−2 < β3−1. Our goal is to estimate P(Z(3)(n)> na) with a = 0.05. Henceforth
in Section 4.4 we focus on the insights in this example. We refer the readers to Section 6 of Chen et al.
(2019) for a thorough and rigorous analysis in the more general setting.

We start by analyzing P(Z(3)(n)> an). The most obvious cause of Z(3)(n)> na is that a job with high
workload arrived at station 3 during the [0,n] period. Using Theorem 5, the probability of this occurrence
is approximately of order n−(β3−1) as n→ ∞. However, note that fluid processed by the first and second
stations is partially routed to the third station, which may also lead to the accumulation of fluid at station
3. Therefore, determining the probability of this case is the key step in analyzing P(Z(3)(n)> na).

Let Z̄(i)
n (t) = Z(i)(nt)/n ∀t ≥ 0 and Z̄n(t) = (Z̄(1)

n (t), Z̄(2)
n (t), Z̄(3)

n (t)) be the scaled version of the queue
length process. Typically, the scaled process Z̄n(t) resembles a fluid network where external fluid arrives
constantly at each station with rate ρi. By considering the recursive routing Q1,2 = 10% and Q2,1 = 10%
between stations 1 and 2, the essential arrival rate of fluid at these two stations should be multiplied by
10/9 and is equal to 0.8 ·10/9 = 8/9. Given the routing ratio Q1,3 = Q2,3 = 80% and the external arrival
rate ρ3 = 1, fluid enters station 3 with rate 1+ 2 · 0.8 · 8/9 = 2.42. Since the (maximal) service rate is
r3 = 2.5, fluid should not accumulate at the third station.

However, if a large job with workload nc arrives at station 1 while station 2 funcitons normally,
then under the scaling of Z̄n station 1 will remain busy and process fluid at rate r1 = 1 for at least
time c. A similar calculation can show that, during such periods, the fluid enters station 3 at a rate of
1+0.8 ·1+0.8 · 0.9 = 2.52. Since the (maximal) service rate at station 3 is r3 = 2.5, the fluid can only
accumulate with rate 2.52− 2.5 = 0.02. The same conclusion applies if a large job occupies station 2
while station 1 functions normally, due to the symmetry between stations 1 and 2. In comparison, if both
station 1 and station 2 are occupied by jobs with extreme workload, then fluid enters station 3 at a rate of
ρ3 + r1 ·Q1,3 + r2 ·Q2,3 = 2.6 under the scaling of Z̄n. During this busy period, the fluid would typically
accumulate with rate 2.6− 2.5 = 0.1 at station 3, which eventually leads to Z̄(3)

n (1) ≈ 0.1 > a = 0.05.
Applying Theorem 5 and recalling the assumption β1 +β2−2 < β3−1, we conclude that P(Z̄(3)

n (1)> a)
is of order

(
n ·P(W (1)(1)≥ n)

)
·
(
n ·P(W (2)(1)≥ n)

)
∈ RV−(β1+β2−2)(n).
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Next, we determine the choice of event Bγ
n in the importance sampling estimator. Recall that the process

J(i)(t) = ∑
N(i)(t)
j=1 W (i)( j) denotes the amount of external work arrived at station i by time t, and define

J̄(i)n (t) = J(i)(nt)/n ∀t ∈ [0,1]. In the importance sampling distribution we set Bγ
n = {(J̄(1)n , J̄(2)n , J̄(3)n ) ∈ Bγ}

where (let Dγ(ξ ) = #{t ∈ [0,1] : ∆ξ (t)≥ γ} for ξ ∈ D)

Bγ =
{
(ξ (1),ξ (2),ξ (3)) ∈ D3 : Dγ(ξ

(3))≥ 1 or min{Dγ(ξ
(1)),Dγ(ξ

(2))} ≥ 1
}
.

Note that Bγ
n captures the two different causes of {Z(3)(n)> na} identified earlier. Using Theorem 5, we see

that P(Bγ
n) = O(P(Z(3)(n)> na)) as n→ ∞. Considering the calculations in (10), we reduce the problem

to finding γ small enough such that P({Z(3)(n) > na}\Bγ
n) = o(P2(Z(3)(n) > na)). Through an in-depth

analysis of the corresponding Skorokhod problem, one can show that it suffices to pick γ > 0 such that

min
{
⌈ 1

20
/γ⌉(β3−1), ⌈ 3

20
/γ⌉(β1−1)+(β2−1), ⌈ 3

20
/γ⌉(β2−1)+(β1−1)

}
> 2(β1 +β2−1).

Here, we briefly describe the intuition and refer the interested readers to Section 6.3 of Chen et al. (2019)
for details. Let li be the number of large jobs (i.e., with workload of scale O(n)) that arrived at station i
by time n. On event (Bγ

n)c, station 3 received no job with workload ≥ nγ by time n, and at least one of
stations 1 and 2 received no job with workload ≥ nγ by time n. Consider an extreme case where station 1
is completely occupied due to some job (with workload ≥ nγ) during period [0,n]. Then stations 2 and 3
receive l2 and l3 large jobs respectively by time n, with workload bounded by nγ . First, the contribution
of the l3 jobs at station 3 to Z̄(3)

n (1) is bounded by l3 · γ . For γ > 0 small enough, we have a− l3 · γ > 0.02.
Next, to cover the remaining a− l3 · γ gap, we haven shown that Z̄(3)

n (1) increases at rate 0.02 < a− l3 · γ
when station 1 is blocked and station 2 works normally, and it increases at rate 0.1 when both station 1
and station 2 are blocked. The latter only happens when station 2 is also processing the l2 large jobs.
In particular, the smaller γ is, the shorter such busy periods would be. By picking γ > 0 small enough
we ensure that Z̄(3)

n (1)< a for all J (l1, l2, l3)≤ 2(β1 +β2−2) with the cost function J (·) in (5), thus
implying P({Z(3)(n)> na}\Bγ

n) = o(P2(Z(3)(n)> na)).
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