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ABSTRACT

In this paper, we propose a simulation approach to mean-variance optimization for portfolios comprised
of derivative securities. The key of the proposed method is on the development of an unbiased and
consistent estimator of the covariance matrix of asset returns which do not admit closed-form formulas
but require Monte Carlo estimation, leading to a sample-based optimization problem that is easy to solve.
We characterize the asymptotic properties of the proposed covariance estimator, and the solution to and
the objective value of the sample-based optimization problem. Performance of the proposed approach is
demonstrated via numerical experiments.

1 INTRODUCTION

Portfolio optimization is one of the central problems in financial engineering, which aims to allocate the
wealth of a decision-maker among different assets, such as stocks, bonds, and derivatives, to earn the
highest possible future wealth and control the risk at the same time. The classical mean-variance (MV)
model developed by Markowitz (1952) has been serving as an important tool for this problem. In the
MV model, the risk is measured by the variance of the portfolio return, providing an efficient means for
investors to balance the trade-off between the risk and the expected return of the portfolio.

One of the limitations of the classical MV model in the existing literature is that it considers only
portfolios of primary assets (Jewell et al. 2013), while optimization of mixed portfolios with primary
and derivative instruments has received increasing attention in recent years. Rockafellar and Uryasev
(2000) introduced a technique for optimizing the CVaR (Conditional Value-at-Risk) of a portfolio that
includes both primary and derivative assets. Alexander et al. (2006) observed that CVaR minimization
for a portfolio of derivative securities is ill-posed. Furthermore, it has shown that this predicament can
be overcome by including transaction costs. Carr and Madan (2001) analyzed the optimal investment
and equilibrium pricing of primary and derivative instruments. Haugh and Lo (2001) considered portfolio
optimization with non-standard asset classes and showed how to approximate dynamic positions in options
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by minimizing the mean-squared error. Dert and Oldenkamp (2000) proposed a model that maximizes
the expected return of a portfolio consisting of a single index stock and several European options while
guaranteeing a maximum loss. Jewell et al. (2013) considered the MV optimization for a portfolio with
derivative assets using a quadratic program based on the delta-gamma approximation of portfolio losses.
Zymler et al. (2013) developed two conservative approximations for the Value-at-Risk (VaR) of a derivative
portfolio by evaluating the worst-case VaR, based on convex pircewise linear delta-gamma approximation
of the derivative returns.

The return of a portfolio with derivative securities is often represented as L(X) ≜ E[Y |X ], where the
random vector X denotes risk factors up to a given risk horizon, and Y is discounted portfolio return at
maturities dates of the derivative securities. To solve the MV optimization problem for such a portfolio, the
most challenging part stems from the fact that the functional form of L(·) is usually unknown, thus making
the estimation of the covariance matrix of L(X) a difficult task. In this paper, with a given simulation model
of (X ,Y ), we propose a simulation-based estimator of the covariance matrix, which is distribution-free,
and requires only two independent simulation outputs of Y for a given scenario of risk factors X . We
show the unbiasedness and consistency of the estimator, and study the incorporation of this estimator into
the sample-based MV portfolio optimization problem. We also characterze the asymptotic properties of
the solution to and the objective value of the sample-based optimization problem. Compared to existing
methods that rely on approximations of the unknown conditional expectation E[Y |X ] and estimate the
covariance of the approximation, our method provides an unbiased and efficient estimator without resorting
to approximations.

The rest of the paper is organized as follows. We formulate the problem in Section 2. The estimator of
the covariance matrix is proposed in Section 3, along with a theoretical analysis on the estimator and the
resulting sample-based optimization problem. We introduce a scaling method to transform the estimated
covariance matrix into a positive semi-definite matrix in Section 4. Numerical experiments are presented
in Section 5, followed by conclusions in Section 6. Lengthy proofs are provided in the appendix.

2 PROBLEM FORMULATION

Consider a portfolio comprised of a risk-free asset with known return r f and K risky assets that may include
derivative securities. Let rk

t , k = 1, · · · ,K be the anticipated return at time 0 ≤ t ≤ T per dollar invested in
the kth risky asset, where T denotes the maximum maturity date of all the derivative securities. The return
of each risky asset depends on its value at time t that relies on a collection of financial risk factors, such as
stock prices, stock indices, exchange rates and other tradable assets. Denote by Xt all relevant risk factors
up to time t that is sufficient to determine the values of all risky assets in the portfolio at time t. Then, the
return of the kth asset at time t is a function of Xt , and can be represented as

rk(Xt) =
E[Ck|Xt ]−V k

0

V k
0

= E
[

Ck −V k
0

V k
0

∣∣∣∣Xt

]
= E [Yk|Xt ] ,

where Ck denotes the cumulative cash flow for asset k from time zero to its maturity (weighted with
appropriate discounted factors), V k

0 is the initial price (the price at the current time) of asset k and is
a known constant, and Yk ≜ (Ck −V k

0 )/V k
0 . Here, the conditional expectation E[Ck|Xt ] is taken under a

martingale pricing measure and represents the price of asset k at time t (see Duffie 2010, Chapter 6).
Following the convention in the related literature, it is assumed that such a martingale pricing measure
exists throughout the paper.

Denoting vectors by bold letter, we let r(Xt) = (r1(X1), . . . ,rK(Xt))
⊤. Allocating a fraction z ∈ RK of

wealth to risky assets and the remainder (1−z⊤1K) to the risk-free asset, the return of the portfolio at time
t is written as

R(Xt) = z⊤e(Xt)+ r f ,
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where
e(Xt) = r(Xt)− r f 1K = (r1(Xt)− r f , · · · ,rK(Xt)− r f )

⊤

denotes the vector of excess returns, and 1K denotes a size-K column of ones.
The investor is seeking the best allocation of wealth among the portfolio (i.e., making a decision on z)

to earn the highest possible wealth up to a pre-specified time horizon τ , 0 < τ ≤ T . Under the framework
of the MV portfolio optimization model by Markowitz (1952), her objective is to determine an optimal
tradeoff between the expected return defined as E[R(Xτ)] and the risk that is measured by the variance of
the portfolio return denoted as Var(R(Xτ)) at time τ . The optimal portfolio can thus be determined by
solving the following MV optimization problem:

max
z∈Z

U(z) = max
z∈Z

E[R(Xτ)]−
γ

2
·Var(R(Xτ)), (1)

where the parameter γ ≥ 0 measures the level of relative risk aversion of the investor. The objective function
U(z) is referred to as the expected utility function. If short sale is not allowed, the set Z can be set as
Z = {z ∈ RK : z ≥ 0,z⊤1K ≤ 1}.

We further express the expected return E[R(Xτ)] in the form of

E[R(Xτ)] = z⊤E [e(Xτ)]+ r f = z⊤µτ + r f ,

while writing the variance of the portfolio return Var(R(Xτ)) as follows:

Var(R(Xτ)) = z⊤Cov(e(Xτ))z = z⊤Στz,

where Στ denotes the covariance matrix of assets’ returns at time τ , i.e.,

Στ = Cov(r(Xτ))

≜


Var(r1(Xτ)) Cov(r1(Xτ),r2(Xτ)) . . . Cov(r1(Xτ),rK(Xτ))

Cov(r2(Xτ),r1(Xτ)) Var(r2(Xτ)) . . . Cov(r2(Xτ),rK(Xτ))
. . . . . . . . . . . .

Cov(rK(Xτ),r1(Xτ)) . . . . . . Var(rK(Xτ))

 .

Hence, the MV optimization problem (1) can be rewritten as

max
z∈Z

U(z) = max
z∈Z

z⊤µτ + r f −
γ

2
· z⊤Στz. (2)

Note that in the case when short sale is allowed without any constraint, i.e., Z = RK , the optimal
portfolio weights of the problem in (2) has an explicit form as

z∗ =
1
γ

Σ
−1
τ µτ ,

and the optimal value is given by

u∗ =
1
γ

µ
⊤
τ Σ

−1
τ µτ + r f .

More generally, solving the portfolio optimization problem (2) requires to approximate two crucial
quantities, i.e., the mean vector µτ and the covariance matrix Στ . The challenge in approximating µτ and Στ

stems from the fact that the closed-form expression of rk(Xτ) may not be available for many commonly used
pricing models for derivative securities. In many financial applications, a portfolio may include complex
derivative securities, the valuation of which cannot be carried out analytically but may require Monte Carlo
simulation. In what follows, we propose a simulation method to solve the MV portfolio optimization model
by incorporating a new covariance estimator for the returns.
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3 A SIMULATION METHOD

3.1 Unbiased Estimators of Covariance Matrix and Mean Return

For any k, l = 1, . . . ,K, consider the estimation of each element (Στ)kl =Cov(rk(Xτ),rl(Xτ)) of the covariance
matrix. Let Y ′

k denote a random variable that follows the same distribution as Yk and is independent of Yk
conditional on Xτ , where in practical applications observations of Yk and Y ′

k can be obtained from real data
sets or simulated from a calibrated financial model. Inspired by Goda (2017), Cov(rk(Xτ),rl(Xτ)) can be
simply rewritten as follows:

Cov(rk(Xτ),rl(Xτ)) = Cov(E[Yk|Xτ ],E[Yl|Xτ ]) = E [E[Yk|Xτ ] ·E[Yl|Xτ ]]−E[Yk] ·E[Yl]

= E
[
E[Yk|Xτ ] ·E[Y ′

l |Xτ ]
]
−E[Yk] ·E[Yl] = E

[
E[Yk ·Y ′

l |Xτ ]
]
−E[Yk] ·E[Yl]

= E[Yk ·Y ′
l ]−E[Yk] ·E[Yl],

where Yk and Y ′
l are conditionally independent given Xτ . Notice that Cov(rk(Xτ),rk(Xτ)) = Var(rk(Xτ)).

Therefore, an estimator for the element (Στ)kl can be constructed as follows:

V̂kl ≜
1
n

n

∑
i=1

Y (i)
k ·Y ′(i)

l − 1
n

n

∑
i=1

Y (i)
k · 1

n

n

∑
i=1

Y ′(i)
l ,

where for each i, Y (i)
k and Y ′(i)

l are sampled independently from the conditional distribution of Yk and Yl

given X (i)
τ , respectively. The estimators V̂kl is biased in general, and a bias-corrected version is given by

Ṽkl ≜
n

n−1
V̂kl =

1
n−1

n

∑
i=1

(
Y (i)

k − Ȳk

)
·
(

Y ′(i)
l − Ȳ ′

l

)
.

Unbiasedness of the proposed estimator Ṽkl is summarized in the following theorem, whose proof is
provided in Section A.1 of the appendix.
Theorem 1 For any k, l = 1, . . . ,K, we have

E[Ṽkl] = Cov(rk(Xτ),rl(Xτ)) .

Moreover, with the simulated samples, the mean of the return µτ can be estimated in a straightforward
manner and an estimator is given by

µ̂τ ≜

(
1

2n

n

∑
i=1

(Y (i)
1 +Y ′(i)

1 ), · · · , 1
2n

n

∑
i=1

(Y (i)
K +Y ′(i)

K )

)⊤

− r f 1K .

Denote the unbiased estimator of the covariance matrix by Σ̃τ with Σ̃τ = (Ṽkl)K×K for any k, l = 1, . . . ,K.
Then, we propose to solve the following sample-based MV optimization problem:

max
z∈Z

Ûn(z) = max
z∈Z

z⊤µ̂τ + r f −
γ

2
· z⊤Σ̃τz. (3)

3.2 Asymptotic Analysis

Throughout the analysis, it is assumed that Yk (and Y ′
k) has finite fourth moment for any k = 1, . . . ,K. The

following proposition presents the consistency and central limit theorem for the covariance estimator Σ̃τ ,
whose proof is provided in Section A.2 of the appendix.

Proposition 1 For each element of Σ̃τ , as n → ∞,
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(a) Ṽkl −→ Cov(rk(Xτ),rl(Xτ)) w.p.1, and

(b)
√

n
(

Ṽkl −Cov(rk(Xτ),rl(Xτ))
)

d−→ N(0,σ2
kl), where “ d−→” denotes convergence in distribution,

and

σ
2
kl ≜ Var

(
(Yk −E[Yk]) ·

(
Y ′

l −E[Yl]
))

.

To facilitate the analysis for the sample-based optimization problem in (3), we make the following
regularity assumption.
Assumption 1 The feasible set Z is compact.

Since the decision set Z is compact, the original MV optimization problem in (2) and the approximating
problem in (3) have nonempty sets of optimal solutions, denoted by Z ∗ and Ẑn, respectively. Further let
u∗ and ûn denote their corresponding optimal values.

Denote the semi-approximate value as U(ẑ), where ẑ ∈ Ẑn. The following proposition characterizes
the asymptotic properties of the optimization problem in (3), whose proof is provided in Section A.3 of
the appendix.
Proposition 2 Under Assumption 1,

(a) ûn → u∗ w.p.1 as n → ∞;
(b) The event {Ẑn ⊂ Z ∗} occurs w.p.1 for sufficiently large n; and
(c) inf{U(z) : z ∈ Ẑn}→ u∗ w.p.1 as n → ∞.

Proposition 2(a) states that the optimal value of the sample-based problem in (3) converges to the true
optimal value with probability 1 as sample size increases. Proposition 2(b) guarantees the convergence of
the approximated solution set, and it follows that if Z ∗ = {z∗} is a singleton, then Ẑn = {z∗} w.p.1 for
sufficiently large n. In particular, if the original MV optimization problem (2) has a unique optimal solution
z∗, then w.p.1 for sufficiently large n the approximating problem (3) has a unique optimal solution ẑn and
ẑn = z∗. To measure the quality of the approximated solution set Ẑn, we compare the difference between
inf{U(z) : z ∈ Ẑn} and u∗. Proposition 2(c) shows that the difference converges to zero as n goes to infinity.
Furthermore, if the sample-based problem in (3) has a unique optimal solution ẑn, the corresponding utility
value U(ẑn) converges to the true optimal value w.p.1.

4 IMPLEMENTATION ISSUES OF COVARIANCE ESTIMATOR

Our proposed covariance estimator does not guarantee the symmetry of Σ̃τ . Thus an additional step is
needed to transform the estimator into a symmetric matrix. Notice that Ṽkl and Ṽlk, k ̸= l are both unbiased
and consistent estimators of the covariance Cov(rk(Xτ),rl(Xτ)), so is (Ṽkl + Ṽlk)/2. In this way, we can
easily transform Σ̃τ into a symmetric matrix by taking

Σ̄τ =
1
2

(
Σ̃τ + Σ̃

⊤
τ

)
.

We further transform Σ̄τ into a positive semi-definite (PSD) matrix by using a scaling method; see,
e.g., Rousseeuw and Molenberghs (1993). To do so, we first compute the corresponding correlation matrix
R̄ given by

R̄ ≜ DΣ̄τD,

where D is the diagonal matrix with diagonal elements 1/
√
(Σ̄τ)kk, k = 1, . . . ,K.

During practical implementation, the diagonal values of (Σ̄τ)kk, k = 1, . . . ,K may be non-positive,
especially when the sample size n is small. In this case, we propose a truncation by using max{ε,(Σ̄τ)kk}
instead of (Σ̄τ)kk, where ε is chosen to be a relatively small positive constant.

580



Wang, Cai, Yu, Liu, and Luo

Then, we transform the correlation matrix R̄ into a PSD pseudo-correlation matrix Ř via a scaling
method. By definition, a K-by-K matrix R will be called a pseudo-correlation matrix if R is symmetric,
Rkk = 1, and |Rkl| ≤ 1. Essentially, the scaling method solves the following optimization problem:

min
Ř∈S K

+

∥Ř− R̄∥2 (4)

s.t. Ř is a pseudo-correlation matrix,

where S K
+ ∈ RK denotes the PSD set and ∥A∥ denotes its Euclidean norm, i.e., ∥A∥= [tr(AA⊤)]1/2.

Slightly abusing the notation, we let Ř denote the solution to the above optimization problem. In this
way, Ř is the closest approximation to R̄ in the set of PSD pseudo-correlation matrices. Because the PSD
set is a compact and convex subset of RK×K , it follows that Ř always exists and is unique, and that the
transformation R̄ → Ř is a continuous mapping.

Obviously, the optimization problem in (4) is a semi-definite program, which can be exactly solved by
commonly used solvers. Then, we obtain the corresponding PSD covariance estimator Σ̌τ by computing

Σ̌τ ≜ D−1ŘD−1.

Therefore, during implementation, we propose to solve the following approximation optimization
problem:

max
z∈Z

Ǔn(z) = max
z∈Z

z⊤µ̂τ + r f −
γ

2
· z⊤Σ̌τz. (5)

5 NUMERICAL EXPERIMENTS

Consider a portfolio that comprised of ten derivative securities written on five underlying assets. We assume
that the dynamics of the asset prices are governed by the following multidimensional geometric Brownian
motion (GBM):

dSi(t) = µiSi(t)dt +σiSi(t)dWi(t), i = 1, . . . ,5

where Si(t) represents the price of ith asset at time t, i = 1, . . . ,5. Each Wi is a standard one-dimensional
Brownian motion (BM), with Wi(t) and Wj(t) having correlation ρi j.

The maturities of derivatives are the same, denoted as T . Detailed configuration of derivative securities
are summarized as follows.

• Derivatives 1, 2 are European vanilla call options written on the 1st asset, with payoffs (S1(T )−K1)
+

and (S1(T )−K2)
+ respectively, where K1 and K2 are strike prices.

• Derivatives 3, 4 are binary call options written on the 2nd asset, with payoffs
1{S2(T )> K1} and 1{S2(T )> K2} respectively, where the indicator function 1{A} takes value 1
if A occurs and 0 otherwise.

• Derivatives 5, 6 are up-and-out call options written on the 3rd asset, with payoffs
(S3(T )−K1)

+1{max0≤t≤T S3(t)≤U} and (S3(T )−K2)
+1{max0≤t≤T S3(t)≤U} respectively, where

U is barrier level.
• Derivatives 7, 8 are down-and-out call options written on the 4th asset, with payoffs

(S4(T )−K1)
+1{min0≤t≤T S4(t)≥ H} and (S4(T )−K2)

+1{min0≤t≤T S4(t)≥ H} respectively, where
H is barrier level.

• Derivatives 9, 10 are geometric Asian call options written on the 5th asset, with payoffs(
(Πp

k=1S5(tk))1/p −K1
)+

and
(
(Πp

k=1S5(tk))1/p −K2
)+

respectively, where p is the number of
observations in forming the geometric average.

Market parameters of the portfolio are specified as follows:
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• Set initial asset prices to be Si(0) = 100, and returns µi and volatilities σi are set to be 8% and
10% respectively for i = 1, . . . ,5. Correlation ρi j between ith and jth asset is set to be 0.5 if i ̸= j.

• Set strike prices to be K1 = 90 and K2 = 100, and interest rate as r = 5%, maturity as T = 1 and
time horizon τ = 2/24. For geometric Asian options, p = 24 and tk’s is evenly spaced in [0,T ]. For
barrier options, we set U = 120 and H = 85. When simulating max0≤t≤T S3(t) and min0≤t≤T S4(t),
24 time steps are used and Brownian bridge approximation is applied for any two adjacent time
points.

• The level of relative risk aversion is set as γ = 1/100, with r f = 0.5%. When truncating the diagonal
element of the estimated covariance matrix to ensure positivity, ε is set as 0.01.

Our goal is to allocate a fraction z ∈R10 of wealth to the ten derivative securities and the remainder to
the risk-free asset so as to maximize the mean-variance utility function at a future time τ . In this example,
the risk factors are given by

Xτ =

[
Si(τ), max

0≤t≤τ
S3(t), min

0≤t≤τ
S4(t), ∏

tk≤τ

S5(tk)

]
, i = 1, . . . ,5.

We examine the proposed method for the MV optimization problems with two different constraints:

Problem a. The feasible set is defined as Z = {z ∈ RK : z ≥ 0,z⊤1K ≤ 1} to exclude short sale.
Problem b. The feasible set is defined as Z = {z ∈RK : −1 ≤ z ≤ 1,−1 ≤ 1−z⊤1K ≤ 1} to allow short

sale to certain extent.

During implementation, we vary the sample size n within the range {103,103.25,103.5, ...,106} and
the number of replications is set to be 1,000 for each sample size. Due to unavailability of closed-form
solutions, we use simulation with a very large sample size (i.e., 108) to approximate the true values of
the optimal solutions and optimal objective values, which are then used as benchmarks in evaluating the
proposed method.

In this example, mean-variance portfolio optimization in (2) with both constraints specified in Problems
(a) and (b) has unique optimal solutions, denoted by z∗a and z∗b, respectively. The approximating problem in
(5) also produces unique solutions with different sample size n, denoted by ža

n and žb
n, and the approximated

utility values are denoted by Ǔn(ža
n) and Ǔn(žb

n). In addition, the semi-approximate utility values are given
by U(ža

n) and U(žb
n), respectively.

In Tables 1 and 2, approximated solutions ža
n and žb

n with different sample sizes n are compared to
optimal solutions z∗a and z∗b, where ža

n and žb
n are randomly drawn from 1000 replications. These tables

show that the approximated solution žn is the same as optimal one z∗ when sample size n is sufficiently
large, which is consistent with our asymptotic analysis.

Table 1: Holding ratio ža
n for Problem (a).

sample size
derivative index

1 2 3 4 5 6 7 8 9 10

103 0 1 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 1
105 0 0 0 0 0 0 0 0 0 1
106 0 0 0 0 0 0 0 0 0 1

optimal 0 0 0 0 0 0 0 0 0 1
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Table 2: Holding ratio žb
n for Problem (b).

sample size
derivative index

1 2 3 4 5 6 7 8 9 10

103 1 1 -1 1 -1 -1 1 1 -1 1
104 1 1 -1 -1 -1 -1 1 1 1 1
105 1 1 -1 -1 -1 -1 1 1 1 1
106 1 1 -1 -1 -1 -1 1 1 1 1

optimal 1 1 -1 -1 -1 -1 1 1 1 1

In Figure 1, we depict the bias squared, variance and mean squared error (MSE) of the estimated values
Ǔn(ža

n) and Ǔn(žb
n). As shown in Figure 1, as n increases, all the error measures decrease. Moreover, the

rate of convergence of the MSE is plotted in Figure 2, which decays approximately at a rate of n−1 for
both Problems (a) and (b). To measure the quality of the semi-approximated utility values, we estimate
bias squared, variance and MSE of U(ža

n) and U(žb
n) in Figure 3, showing that the MSE decreases and

converges to zero as the sample size increases, and a main part of the MSE comes from its bias while its
variance is relatively small.

103 104 105 106

Sample Size

0

1

2

3

4

5

6

7
10-4 MV Optimization Problem a.

MSE

Bias Squared

Variance

103 104 105 106

Sample Size

0

1

2

3

4

5

6

7

8
10-3 MV Optimization Problem b.

MSE

Bias Squared

Variance

Figure 1: Bias squared, variance, and MSE of Ǔn(ža
n) and Ǔn(žb

n) for Problems (a) and (b).
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3 3.5 4 4.5 5 5.5 6

Log of Sample Size

-6

-5.5

-5

-4.5

-4

-3.5

MV Optimization Problem a.

Log of MSE

Line with slope -1

3 3.5 4 4.5 5 5.5 6

Log of Sample Size

-5

-4.5

-4

-3.5

-3

-2.5

MV Optimization Problem b.

Log of MSE

Line with slope -1

Figure 2: Illustration of convergence rates of MSEs of Ǔn(ža
n) and Ǔn(žb

n).

103 104 105 106

Sample Size

0

0.5

1

1.5

2

2.5
10-4 MV Optimization Problem a.

MSE

Bias Squared

Variance

103 104 105 106

Sample Size

0

0.5

1

1.5

2

2.5
10-3 MV Optimization Problem b.

MSE

Bias Squared

Variance

Figure 3: Bias squared, variance, and MSE of U(ža
n) and U(žb

n) for Problems (a) and (b).

6 CONCLUSIONS

We have proposed a simulation method for solving the mean-variance optimization for portfolios that may
include derivative securities, at the heart of which is the development of an unbiased and consistent estimator
of the covariance matrix of the asset returns. The proposed method leads naturally to a sample-based mean-
variance optimizaton problem which is easy to solve. We have analyzed the asymptotic properties of
the solution to and the objective value of the sample-based mean-variance optimization problem, and
demonstrated its performances via a numerical example.
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A APPENDIX

A.1 Proof of Theorem 1

Note that

E
[
V̂kl
]
= E

[
Y (i)

k ·Y ′(i)
l

]
− 1

n2 E

[
n

∑
i=1

Y (i)
k ·

n

∑
i=1

Y ′(i)
l

]
.

By conditional independence of Y (i)
k and Y ′(i)

l given X (i)
τ , we have

E
[
Y (i)

k ·Y ′(i)
l

]
= E

[
E
[

Y (i)
k ·Y ′(i)

l

∣∣∣X (i)
τ

]]
= E

[
E
[

Y (i)
k

∣∣∣X (i)
τ

]
·E
[

Y ′(i)
l

∣∣∣X (i)
τ

]]
= E [E [Yk|Xτ ] ·E [Yl|Xτ ]] .

Moreover, this conditional independence also implies

1
n2 E

[
n

∑
i=1

Y (i)
k ·

n

∑
i=1

Y ′(i)
l

]
=

1
n2

n

∑
i=1

E
[
Y (i)

k ·Y ′(i)
l

]
+

1
n2 ∑

i̸= j
E
[
Y (i)

k ·Y ′( j)
l

]
=

1
n

E
[
Y (i)

k ·Y ′(i)
l

]
+

n−1
n

E
[
Y (i)

k

]
·E
[
Y ′( j)

l

]
=

1
n

E [E [Yk|Xτ ] ·E [Yl|Xτ ]]+
n−1

n
E [Yk] ·E [Yl] .

Thus, we have

E
[
V̂kl
]
=

n−1
n

(E [E [Yk|Xτ ] ·E [Yl|Xτ ]]−E [Yk] ·E [Yl]) =
n−1

n
Cov(rk(Xτ),rl(Xτ)) ,

and hence E
[
Ṽkl

]
= n

n−1 E
[
V̂kl
]
= Cov(rk(Xτ),rl(Xτ)).

A.2 Proof of Proposition 1

(a) Decompose V̂kl into two parts,

V̂kl =
1
n

n

∑
i=1

(
Y (i)

k − 1
n

n

∑
i=1

Y (i)
k

)
·

(
Y ′(i)

l − 1
n

n

∑
i=1

Y ′(i)
l

)

=
1
n

n

∑
i=1

(
Y (i)

k −E[Yk]
)
·
(

Y ′(i)
l −E[Yl]

)
−

(
1
n

n

∑
i=1

Y (i)
k −E[Yk]

)
·

(
1
n

n

∑
i=1

Y ′(i)
l −E[Yl]

)
≜V1n −V2n.

It follows from conditional independence of Y (i)
k and Y ′(i)

l that

E[V1n] = E
[(

Y (i)
k −E[Yk]

)
·
(

Y ′(i)
l −E[Yl]

)]
= E

[
Y (i)

k ·Y ′(i)
l

]
−E

[
Y (i)

k

]
·E[Yl]−E[Yk] ·E

[
Y ′(i)

l

]
+E[Yk] ·E[Yl]

= Cov(E[Yk|Xτ ],E[Yl|Xτ ]) = Cov(rk(Xτ),rl(Xτ)) .

Then, it follows from the strong law of large numbers (SLLN) that w.p.1, V1,n → Cov(rk(Xτ),rl(Xτ)) as
n → ∞. It can also be easily verified that V2,n → 0 w.p.1 as n → ∞. Combing this with the fact that
Ṽkl =

n
n−1V̂kl leads to the conclusion of part (a).

(b) Note that
√

n
(
V̂kl −Cov(rk(Xτ),rl(Xτ))

)
=

1√
n

n

∑
i=1

[(
Y (i)

k −E[Yk]
)
·
(

Y ′(i)
l −E[Yl]

)
−Cov

(
rk(Xτ),rl(Xτ)

)]
−
√

n ·

(
1
n

n

∑
i=1

Y (i)
k −E[Yk]

)
·

(
1
n

n

∑
i=1

Y ′(i)
l −E[Yl]

)
≜V3n −V4n.
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It follows from the central limit theorem and the fact E
[(

Y (i)
k −E[Yk]

)
·
(

Y ′(i)
l −E[Yl]

)]
=Cov(rk(Xτ),rl(Xτ))

that

V3n =
1√
n

n

∑
i=1

[(
Y (i)

k −E[Yk]
)
·
(

Y ′(i)
l −E[Yl]

)
−Cov(rk(Xτ),rl(Xτ))

]
d−→ N(0,σ2

kl),

where σ2
kl = Var

(
(Yk −E[Yk]) ·

(
Y ′

l −E[Yl]
))

.
Moreover, as n → ∞,

V4n =

(
1√
n

n

∑
i=1

(
Y (i)

k −E[Yk]
))

·

(
1
n

n

∑
i=1

(
Y ′(i)

l −E[Yl]
))

≜ S1n ·S2n
p−→ 0,

because S1n
d−→ N (0,Var(Yk)) and S2n

p−→ 0 by the central limit theorem and SLLN, respectively.

Therefore,
√

n
(
V̂kl −Cov(rk(Xτ),rl(Xτ))

) d−→ N(0,σ2
kl), and hence

√
n
(

Ṽkl −Cov(rk(Xτ),rl(Xτ))
)
=

n
n−1

·
√

n
(
V̂kl −Cov(rk(Xτ),rl(Xτ))

)
+

√
n

n−1
Cov(rk(Xτ),rl(Xτ))

d−→ N(0,σ2
kl).

A.3 Proof of Proposition 2

Note that w.p.1, as n → ∞,

sup
z∈Z

|Ûn(z)−U(z)|= sup
z∈Z

∣∣∣z⊤ (µ̂τ −µτ)−
γ

2
· z⊤

(
Σ̃τ −Στ

)
z
∣∣∣

≤ sup
z∈Z

∣∣∣z⊤ (µ̂τ −µτ)
∣∣∣+ γ

2
· sup

z∈Z

∣∣∣z⊤(Σ̃τ −Στ

)
z
∣∣∣

≤ sup
z∈Z

∣∣∣∣∣ K

∑
k=1

zk

(
1
n

n

∑
i=1

Y (i)
k −E[Yk]

)∣∣∣∣∣+ γ

2
· sup

z∈Z

∣∣∣∣∣ K

∑
k=1

K

∑
l=1

zkzl

(
Ṽkl −Cov(rk(Xτ),rl(Xτ))

)∣∣∣∣∣
≤

K

∑
k=1

sup
z∈Z

∣∣∣∣∣zk

(
1
n

n

∑
i=1

Y (i)
k −E[Yk]

)∣∣∣∣∣+ γ

2
·

K

∑
k=1

K

∑
l=1

sup
z∈Z

∣∣∣zkzl

(
Ṽkl −Cov(rk(Xτ),rl(Xτ))

)∣∣∣
=

K

∑
k=1

∣∣∣∣∣1n n

∑
i=1

Y (i)
k −E[Yk]

∣∣∣∣∣ sup
z∈Z

|zk|+
γ

2
·

K

∑
k=1

K

∑
l=1

∣∣∣Ṽkl −Cov(rk(Xτ),rl(Xτ))
∣∣∣ sup

z∈Z
|zkzl| −→ 0,

where the convergence is due to Proposition 1(a) and SLLN.
Define δn ≜ supz∈Z |Ûn(z)−U(z)|. Then, U(z)−δn ≤ Ûn(z)≤U(z)+δn, and hence by definition, for

ẑn ∈ Ẑn and z∗ ∈ Z ∗,

Ûn(ẑn)⩾ Ûn(z∗)⩾U(z∗)−δn, and Ûn(ẑn)⩽U(ẑn)+δn ⩽U(z∗)+δn,

implying that
|ûn −u∗| ≤ δn → 0

w.p.1, as n → ∞, which leads to the conclusion of part (a), and

u∗− inf{U(z) : z ∈ Ẑn} ≤ 2δn → 0

w.p.1, as n → ∞, which implies the conclusion of part (c).
Define ρ ≜ u∗−maxz∈Z \Z ∗ U(z). Because for any z ∈Z \Z ∗, u∗ >U(z) and Z is compact, we have

ρ > 0. Choose sufficiently large n such that δn < ρ/2. Then, |u∗− ûn| ≤ δn < ρ/2, implying u∗−ρ/2 < ûn.
Furthermore, because |Ûn(z)−U(z)| ≤ δn < ρ/2 and thus Ûn(z)<U(z)+ρ/2, and for any z ∈ Z \Z ∗,
U(z)< maxz∈Z \Z ∗ U(z) = u∗−ρ , it holds that Ûn(z)< u∗−ρ/2 for any z ∈ Z \Z ∗. Therefore, it can
be seen that if z ∈ Z \Z ∗, Ûn(z)< ûn and hence z ̸∈ Ẑn, which completes the proof of part (b).
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