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ABSTRACT 

Data-driven (DD) production planning formulations for semiconductor wafer fabrication facilities (wafer 
fabs) are studied in this paper. These formulations are based on a set of system states representing the 
congestion behavior of the wafer fab with work in process and resulting output levels. We establish two 
DD formulations with inventory considerations. The first variant is a shortfall-based chance-constrained 
formulation that considers safety stocks at the finished goods inventory level. The second variant is a simple 
scenario-based stochastic program where the objective function reflects the expected inventory holding and 
backlog cost under uncertainty. The two variants are compared with the conventional DD formulation in a 
rolling horizon environment using a simulation model of a large-scaled wafer fab. The simulation 
experiments demonstrate that the stochastic program achieves the largest profit under all experimental 
conditions. 

1 INTRODUCTION 

Integrated circuits (ICs) are produced layer by layer on silicon wafers using hundreds of expensive 
machines in wafer fabs. The machines are organized in work centers. The moving entities in wafer fabs are 
lots consisting of up to 50 wafers. Different types of processes, i.e. batch and serial, are common in wafer 
fabs. A batch is a group of lots that are processed at the same time on a machine (Mönch et al. 2013). 
Sequence-dependent set-up times, auxiliary resources, and tight customer due dates for a large number of 
products can be observed in wafer fabs (Mönch et al. 2013). The routes of the most advanced products can 
contain up to 800 process steps. The same work center is visited up to 40 times by a single lot, i.e., reentrant 
process flows occur. Cycle time (CT), defined as the time span between material being released into the 
wafer fab and its emergence as finished product is of the order of twelve weeks in modern wafer fabs. 

CTs have to be explicitly taken into account in production planning formulations of wafer fabs since 
they are long (Mönch et al. 2018). The CT increases nonlinearly with resource utilization as can be seen by 
queuing theory, experiments with discrete-event simulation, and industrial observations. The utilization, 
however, is determined by the release decisions made by production planning. Therefore, the CTs should 
be treated as endogenous to the production planning problem, i.e. workload-dependent lead times, estimates 
of the CTs, have to be taken into account in production planning formulations.  

In the present paper, we continue our study of data-driven (DD) formulations proposed by Omar et al. 
(2017). DD production planning formulations are based on a set of system states representing the congestion 
behavior of a wafer fab with work in progress (WIP) and resulting output levels. They can be seen as an 
alternative to clearing function (CF)-based production planning formulations (Missbauer and Uzsoy 2020). 
We establish DD production planning formulations that explicitly consider inventory and backlog subject 
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to process and demand uncertainty. We demonstrate by comparing the new DD formulations with the 
conventional one in a rolling horizon environment that it is worth to consider safety stocks and inventory 
and backlog uncertainty in DD formulations. 

The paper is organized as follows. In the next section, we will describe the problem setting and discuss 
related work. The different production planning formulations will be established in Section 3. 
Computational results of the planning formulations applied in a rolling horizon setting will be presented in 
Section 4. Conclusions and future research directions will be discussed in Section 5.  

2 DISCUSSION OF RELATED WORK AND PROBLEM STATEMENT 

Production planning formulation based on nonlinear CFs can be seen as a parameterized approach. 
However, DD approaches (Omar et al. 2017, Gopalswamy and Uzsoy 2018) make the parameterization 
efforts for CFs to some extent obsolete. DD formulations are a planning approach based on choosing system 
states. System states consider different products and their relations. They take an aggregated view on the 
resources and process steps of the wafer fab. DD formulations provide expected output values for discrete 
average WIP values of all products. It is assumed that the system is in steady state, i.e., the distributions of 
WIP and output are constant over time. 

The present authors have studied DD formulations in a series of papers. Approaches to determine an 
appropriate set of system states and different WIP-output relations in DD formulations are investigated by 
Völker and Mönch (2021) and (2023). Moreover, DD approaches are changed by Völker and Mönch (2022) 
in such a way that they are able to deal with situations where the period length in the planning model is 
smaller than the average CT. 

Production planning and inventory management is rarely discussed in an integrated manner. A multi-
stage stochastic programming model of a simplified wafer fab that includes a stochastic model of demand 
evolution over time is proposed by Higle and Kempf (2010). A production planning formulation subject to 
stochastic demand based on the additive martingale model of forecast evolution (MMFE) (Heath and 
Jackson 1994) that considers inventory, backorder, and shortfall costs using chance constraints to represent 
target service levels is established by Albey et al. (2015). Similar formulations are considered by Aouam 
and Uzsoy (2012), (2015), and Ravindran et al. (2011). Ziarnetzky et al. (2018), (2020) extend the 
formulation by Albey et al. (2015) for the additive MMFE towards the multiplicative one since technology 
improvements lead to new technology migrations that result in non-stationary demand for wafer fabs. 
Exogenous, fixed lead times that are an integer multiple of the period length and workload-dependent lead 
times based on CFs are used. The different formulations are tested in a rolling horizon environment using 
wafer fab simulation models of different sizes. The planning formulations with inventory considerations 
outperform the remaining ones under many experimental conditions.  

Inspired by the superior performance of planning formulations including safety stock, we are interested 
in modifying DD formulations by considering safety stock or the uncertainty of finished goods inventory 
(FGI) and backlog. These formulations have to be assessed in a rolling horizon environment to allow for a 
more realistic performance assessment. 

3 PRODUCTION PLANNING FORMULATIONS 

3.1 DD Models 

For the production planning problem, we assume a finite planning horizon consisting of 𝑇 discrete planning 
periods of equal length. Demand information for each product 𝑔 ∈ 𝐺 and planning period 𝑡 is available. In 
addition, the initial WIP, FGI, and backlog have to be considered in planning. 

DD planning models determine release schedules to satisfy demands based on a set of discrete system 
states 𝑟 ∈ 𝑅 that characterize the nonlinear behavior of the system under consideration. Each state describes 
the expected WIP and throughput (TH) levels for each product under steady-state conditions. By selecting 
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a state for each planning period 𝑡 = 1, … , 𝑇, the expected output levels over the planning horizon are 
adjusted. Release quantities are set to achieve the associated WIP levels.  

The accuracy of DD models depends on establishing an appropriate temporal relationship between WIP 
and expected TH of the system states. Völker and Mönch (2023) show that given sufficiently long CTs, 
especially in the case of 𝐶𝑇 ≥ 1 periods, modeling output as a function of the WIP at the beginning of the 
period yields better results as using the WIP at the end of the period. The basic DD formulation requires 
the following notation: 

Sets and indices 
𝑡: period index 
𝑔: product index  
𝐺: set of all products 𝑔 
𝑟: state index 
𝑅: set of all system states 𝑟 

Decision variables 
𝑌𝑔𝑡: output of product 𝑔 in period 𝑡 from the last operation of its routing 
𝑋𝑔𝑡: quantity of product 𝑔 released in period 𝑡 
𝑊𝑔𝑡: WIP of product 𝑔 at the end of period 𝑡 
𝐼𝑔𝑡: FGI of product 𝑔 at the end of period 𝑡 
𝐵𝑔𝑡: backlog of product 𝑔 at the end of period 𝑡 
Γ𝑟𝑡: binary variable taking on the value 1, if system state 𝑟 is selected in period 𝑡 and 0 otherwise 

Parameters 
𝜔𝑔𝑡: unit WIP cost for product 𝑔 in period 𝑡 
ℎ𝑔𝑡: unit FGI holding cost for product 𝑔 in period 𝑡 
𝑏𝑔𝑡: unit backlogging cost for product 𝑔 in period 𝑡 
𝐷𝑔𝑡: demand for product 𝑔 in period 𝑡 
𝑄𝑔𝑟: WIP level of product 𝑔 in system state 𝑟 
𝑂𝑔𝑟: expected output quantities of product 𝑔 in system state 𝑟. 

The DD formulation is given as follows: 

min ∑ ∑(𝜔𝑔𝑡𝑊𝑔𝑡 + ℎ𝑔𝑡𝐼𝑔𝑡 + 𝑏𝑔𝑡𝐵𝑔𝑡)

𝑇

𝑡=1𝑔∈𝐺

(1) 

subject to 

𝑊𝑔,𝑡−1 + 𝑋𝑔𝑡 − 𝑌𝑔𝑡 = 𝑊𝑔𝑡 ,  𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (2) 
𝐼𝑔,𝑡−1 − 𝐵𝑔,𝑡−1 + 𝑌𝑔𝑡 − 𝐷𝑔𝑡 = 𝐼𝑔𝑡 − 𝐵𝑔𝑡 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (3) 
∑ 𝑄𝑔𝑟Γ𝑟𝑡 ≤ 𝑊𝑔,𝑡−1𝑟∈𝑅 , 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (4) 
∑ 𝑂𝑔𝑟Γ𝑟𝑡 = 𝑌𝑔𝑡𝑟∈𝑅 , 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (5) 
∑ Γ𝑟𝑡 = 1𝑟∈𝑅 , 𝑡 = 1, … , 𝑇 (6) 
Γ𝑟𝑡 ∈ {0,1}, 𝑟 ∈ 𝑅, 𝑡 = 1, … , 𝑇 (7) 
𝑊𝑔𝑡 , 𝐼𝑔𝑡 , 𝐵𝑔𝑡 , 𝑋𝑔𝑡 , 𝑌𝑔𝑡 , ≥ 0, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇. (8) 
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The objective function (1) is the sum of WIP, FGI, and backlog costs. The material balance equations 
(2) and (3) model the changes in WIP, FGI and backlog over the planning horizon. Constraints (4) and (5) 
determine the WIP at the beginning of each period 𝑡 and the expected output during 𝑡 as a result of the 
selected system state. Constraint set (4) is modeled as an inequality to avoid infeasibility at high WIP levels 
during the rolling horizon planning. Due to equations (6) and the binary restriction (7), exactly one system 
state is selected for each period. The remaining decision variables are nonnegative due to constraint set (8). 

3.2 Model Extensions with Inventory Considerations 

The basic DD formulation (1)-(8) assumes deterministic output values 𝑌𝑔𝑡  and deterministic demand
quantities 𝐷𝑔𝑡 for each product 𝑔 and planning period 𝑡. However, if the computed release schedules are
implemented in a simulation model or a real production system, the output is stochastic. Therefore, at the 
time of planning, output must be modeled as a random variable 𝑌̃𝑔𝑡. Similarly, since demand information 
is updated over time, demand forecasts must also be considered as a random variable 𝐷̃𝑔𝑡. Inventory and 
backlog at the end of period 𝑡 can then be modeled based on the stochastic output and demand of previous 
periods. Using the material balance equations (2), we obtain: 

𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 = 𝐼𝑔0 + 𝐵𝑔0 + ∑ 𝑌̃𝑔𝜏
𝑡
𝜏=1 − ∑ 𝐷̃𝑔𝜏

𝑡
𝜏=1 , 

where 𝐼𝑔𝑡−𝐵̃𝑔𝑡 is a random variable. For a pair of realizations of both 𝐼𝑔𝑡 and 𝐵̃𝑔𝑡, only one of them can be
positive at the same time. Subtracting the deterministic planning values yields: 

𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 − (𝐼𝑔𝑡 − 𝐵𝑔𝑡) = ∑ (𝑌̃𝑔𝜏 − 𝑌𝑔𝑡)𝑡
𝜏=1 − ∑ (𝐷̃𝑔𝜏 − 𝐷𝑔𝑡)𝑡

𝜏=1 . 

To determine the distribution of 𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 − (𝐼𝑔𝑡 − 𝐵𝑔𝑡), we make the following assumptions:

1. The output predictions 𝑌𝑔𝑡 and demand forecasts 𝐷𝑔𝑡 in the planning and demand forecast models
are unbiased. As a result, we get 𝐸[𝑌̃𝑔𝑡] = 𝑌𝑔𝑡, 𝐸[𝐷̃𝑔𝑡] = 𝐷𝑔𝑡, and consequently 𝐸[𝐼𝑔𝑡 − 𝐵̃𝑔𝑡] =

𝐼𝑔𝑡 − 𝐵𝑔𝑡.
2. The sum of demand quantities ∑ 𝐷̃𝑔𝜏

𝑡
𝜏=1 are normally distributed with a standard deviation of 𝜎𝑔𝑡

(𝐷)

that depends on the demand forecast model. 
3. The cumulative output quantities ∑ 𝑌̃𝑔𝜏

𝑡
𝜏=1  are normally distributed as well. However, in this case, 

the distribution does not directly depend on 𝑡, but rather on the selected state 𝑟 in period 𝑡 with a 
standard deviation of 𝜎𝑔𝑟

(𝑌). 
4. The random variables ∑ (𝑌̃𝑔𝜏 − 𝑌𝑔𝜏)𝑡

𝜏=1 and ∑ (𝐷̃𝑔𝜏 − 𝐷𝑔𝜏)𝑡
𝜏=1 are independent, i.e., with 𝑌𝑔𝜏  and

𝐷𝑔𝜏 taking on constant values, we have 𝐶𝑜𝑣(∑ 𝑌̃𝑔𝜏
𝑡
𝜏=1 , ∑ 𝐷̃𝑔𝜏

𝑡
𝜏=1 ) = 0.

Given these assumptions, the distributions of the random variables that describe the deviation from the 
planned inventory and backlog quantities can be stated as: 

𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 − (𝐼𝑔𝑡 − 𝐵𝑔𝑡)~𝑁 (0, 𝜎𝑔𝑡𝑟
(𝐼−𝐵)2

)  (9) 

with 𝜎𝑔𝑡𝑟
(𝐼−𝐵)2

= 𝜎𝑔𝑟
(𝑌)2

+ 𝜎𝑔𝑡
(𝐷)2

if state 𝑟 is selected for period 𝑡 in the planning model (Γ𝑟𝑡 = 1).
Failing to consider the distributions of inventories and backlog in planning will result in an incorrect 

cost function and an overestimation of the achievable service levels, e.g. the probability of no backlog in a 
period or the fraction of demand that is not backlogged. While the assumptions made for the distributions 
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in (9) should be viewed critically, the added information could be sufficient to improve planning results, 
even if the assumptions are violated. Determining more accurate distributions would allow for further 
improvements. In the following, we propose two different extensions to the DD formulation to account for 
stochastic inventory and backlog values as a result of uncertainty in production and demand forecasting. 

In the first variant, we determine a safety stock level 𝑆𝑔𝑡 with 𝐼𝑔𝑡 − 𝐵𝑔𝑡 ≥ 𝑆𝑔𝑡 such that the probability
of a shortfall greater than 𝑆𝑔𝑡  is at most equal to a given value 1 − 𝜗 , i.e. we have 𝑃(𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 −

(𝐼𝑔𝑡 − 𝐵𝑔𝑡) ≤ −𝑆𝑔𝑡) = 1 − 𝜗  which is equivalent to 𝑃(𝐵̃𝑔𝑡 − 𝐼𝑔𝑡 − (𝐵𝑔𝑡 − 𝐼𝑔𝑡) ≤ 𝑆𝑔𝑡) = 𝜗 . The
parameter 𝜗 can be interpreted as the target service level. We calculate the appropriate stock level using:  

𝑆𝑔𝑡 = 𝐹𝐼𝑔𝑡−𝐵̃𝑔𝑡−(𝐼𝑔𝑡−𝐵𝑔𝑡)
−1 (𝜗) = 𝐹𝑁(0,1)

−1 (𝜗) 𝜎𝑔𝑡𝑟
(𝐼−𝐵)

, (10) 

where 𝐹𝑁(0,1)
−1 (⋅)  is the quantile function of the standard normal distribution. Without a closed form

representation, we use an approximation algorithm to determine its value (Acklam 2003). In a rolling 
horizon setting with unrestricted demand values and limited production capacities, we must allow for a 
planned shortfall 𝑈𝑔𝑡 to avoid infeasibility of the planning model, resulting in the chance constraint (CC)
𝐵𝑔𝑡 − 𝐼𝑔𝑡 + 𝑆𝑔𝑡 ≤ 𝑈𝑔𝑡 . To avoid the occurrence of positive values for 𝑈𝑔𝑡  unless necessary, it must be
penalized with an appropriate cost factor 𝑢𝑔𝑡 in the objective function (Albey et al. 2015). Note that the
actual shortfall is a random variable 𝑈̃𝑔𝑡 = max(0, 𝐵̃𝑔𝑡 − 𝐼𝑔𝑡 + 𝑆𝑔𝑡).

The resulting planning model considers safety stocks in a similar way as the simple rounding down 
with safety stock (SRD-SS) and allocated clearing function with safety stock (ACF-SS) formulations in 
Ziarnetzky et al. (2020) with CT-driven safety stock settings. However, the value of 𝑆𝑔𝑡 is determined by
the selected system state for period 𝑡. Consequently, the safety stock levels do not need to be a fixed fraction 
of the expected output based on the CT distribution. The DD-CC variant uses the following additional 
notation:  

Decision variables 
𝑆𝑔𝑡: target safety stock level for product 𝑔 at the end of period 𝑡 
𝑈𝑔𝑡: planned shortfall for product 𝑔 at the end of period 𝑡 

Parameters 
𝜗: target service level 
𝑢𝑔𝑡 unit shortfall cost for product 𝑔 in period 𝑡 
𝜎̂𝑔𝑟𝑡

(𝐼−𝐵)
: estimate for the standard deviation of the random variable 𝐼𝑔𝑡-𝐵̃𝑔𝑡 for product 𝑔 in period 𝑡

given system state 𝑟. 

The DD-CC formulation uses the objective function 

min ∑ ∑(𝜔𝑔𝑡𝑊𝑔𝑡 + ℎ𝑔𝑡𝐼𝑔𝑡 + 𝑏𝑔𝑡𝐵𝑔𝑡 + 𝑢𝑔𝑡𝑈𝑔𝑡)

𝑇

𝑡=1𝑔∈𝐺

(11) 

and additional or modified constraints 

𝐵𝑔𝑡 − 𝐼𝑔𝑡 + 𝑆𝑔𝑡 ≤ 𝑈𝑔𝑡 , 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (12) 

𝐹𝑁(0,1)
−1 (𝜗) ∑ 𝜎̂𝑔𝑟𝑡

(𝐼−𝐵)
Γ𝑟𝑡𝑟∈𝑅 = 𝑆𝑔𝑡 , 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (13) 

𝑊𝑔𝑡 , 𝐼𝑔𝑡 , 𝐵𝑔𝑡 , 𝑋𝑔𝑡 , 𝑌𝑔𝑡 , 𝑆𝑔𝑡 , 𝑈𝑔𝑡 ≥ 0, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇. (14) 
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The new objective function (11) includes the planned shortfall costs 𝑢𝑔𝑡𝑈𝑔𝑡 for each product 𝑔 and
period 𝑡. Constraints (12) determine the planned shortfall with respect to the safety stock level. Appropriate 
values for safety stocks are determined in constraint set (13) based on the estimated standard deviation for 
the normally distributed deviation from planned inventory and backlog values given the selected system 
state 𝑟  for period 𝑡  and the target service level. The decision variables 𝑆𝑔𝑡  and 𝑈𝑔𝑡  are added to the
nonnegative conditions in constraint set (14) which replaces (8). 

While the service level 𝜗  in (13) can be set to achieve a cost-minimal balance between expected 
inventory and backlog values, the objective function (11) itself is still not reflective of the true expected 
costs under uncertainty. The inventory and backlog costs are calculated as 

∑ ∑ (ℎ𝑔𝑡𝐼𝑔𝑡 + 𝑏𝑔𝑡𝐵𝑔𝑡)𝑇
𝑡=1𝑔∈𝐺 = ∑ ∑ (ℎ𝑔𝑡  max(0, 𝐸[𝐼𝑔𝑡 − 𝐵̃𝑔𝑡]) + 𝑏𝑔𝑡  max(0, 𝐸[𝐵̃𝑔𝑡 − 𝐼𝑔𝑡]))𝑇

𝑡=1𝑔∈𝐺 . 

However, the expected values of the random variables 𝐼𝑔𝑡 and 𝐵̃𝑔𝑡, where 𝐸[𝐼𝑔𝑡] and 𝐸[𝐵̃𝑔𝑡] can take
on a positive value at the same time, have to be considered separately: 

∑ ∑ (ℎ𝑔𝑡 𝐸[𝐼𝑔𝑡] + 𝑏𝑔𝑡  𝐸[𝐵̃𝑔𝑡])𝑇
𝑡=1𝑔∈𝐺 . 

The expected values can be approximated based on representative samples of 𝐼𝑔𝑡 and 𝐵̃𝑔𝑡. We generate
a set of probabilities  𝑃 = {

1

2𝑁
,

3

2𝑁
, … ,

2𝑁−1

2𝑁
}  with 𝑁  equidistant probability samples and use inverse 

transform sampling (Law 2007) to derive scenarios 𝐼𝑔𝑡
𝑝

− 𝐵𝑔𝑡
𝑝 with 𝐼𝑔𝑡

𝑝
, 𝐵𝑔𝑡

𝑝
≥ 0 such that 

𝑃(𝐼𝑔𝑡 − 𝐵̃𝑔𝑡 ≤ 𝐼𝑔𝑡
𝑝

− 𝐵𝑔𝑡
𝑝

) = 𝑝 ∈ 𝑃. 

Similar to the determination of safety stocks in (10), this can be implemented using an approximation 
algorithm for the quantile function of the standard normal distribution to determine the offset between the 
scenario variables 𝐼𝑔𝑡

𝑝 , 𝐵𝑔𝑡
𝑝  and the regular planning variables 𝐼𝑔𝑡, 𝐵𝑔𝑡:

𝐼𝑔𝑡
𝑝

− 𝐵𝑔𝑡
𝑝

− (𝐼𝑔𝑡 − 𝐵𝑔𝑡) = 𝐹𝐼𝑔𝑡−𝐵̃𝑔𝑡−(𝐼𝑔𝑡−𝐵𝑔𝑡)
−1 (𝑝) = 𝐹𝑁(0,1)

−1 (𝑝) 𝜎𝑔𝑡𝑟
(𝐼−𝐵). 

Considering the expected FGI and backlog values as the averages of all scenarios in the objective 
function yields a simple stochastic program (SP), where the scenarios 𝐼𝑔𝑡

𝑝
− 𝐵𝑔𝑡

𝑝  do not carry over to
subsequent periods via the material balance equation (3). This distinguishes the SP from the two-stage 
stochastic programming (2SP) formulation of Aouam and Uzsoy (2015) where the scenarios are modeled 
in the form of independent demand realizations for all periods with a separate material balance equation for 
each scenario. The DD-SP variant uses the objective function 

min ∑ ∑ (𝜔𝑔𝑡𝑊𝑔𝑡 +
1

|𝑃|
∑ (ℎ𝑔𝑡𝐼𝑔𝑡

(𝑝)
+ 𝑏𝑔𝑡𝐵𝑔𝑡

(𝑝)
)

𝑝∈𝑃

)

𝑇

𝑡=1𝑔∈𝐺

 (15) 

and additional or modified constraints 

𝐼𝑔𝑡
(𝑝)

− 𝐵𝑔𝑡
(𝑝)

− (𝐼𝑔𝑡 − 𝐵𝑔𝑡) = 𝐹𝑁(0,1)
−1 (𝑝) 𝜎̂𝑔𝑡

(𝐼−𝐵)
, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇, 𝑝 ∈ 𝑃 (16) 

∑ 𝜎̂𝑔𝑟𝑡
(𝐼−𝐵)

Γ𝑟𝑡𝑟∈𝑅 = 𝜎̂𝑔𝑡
(𝐼−𝐵), 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇 (17) 
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𝑊𝑔𝑡 , 𝐼𝑔𝑡 , 𝐵𝑔𝑡 , 𝑋𝑔𝑡 , 𝑌𝑔𝑡 , 𝐼𝑔𝑡
𝑝

, 𝐵𝑔𝑡
𝑝

≥ 0, 𝑔 ∈ 𝐺, 𝑡 = 1, … , 𝑇. (18) 

The objective function (15) is the sum of WIP and expected FGI and backlog costs. Constraints (16) 
offset the scenario variables from the regular planning variables for FGI and backlog. The standard 
deviation for the deviation from 𝐼𝑔𝑡 and 𝐵𝑔𝑡 is determined based on the active system state 𝑟 in period 𝑡 in
constraint set (17). The nonnegativity constraints (18) replace (8). 

The differences between the basic DD formulation (1)-(8), the DD-CC variant (2)-(7), (11)-(14) and 
the DD-SP variant (2)-(7), (15)-(18) can be described based on the cost function for FGI, backlog, and 
shortfall dependent on the target inventory level. Figure 1 shows the differences for different values of the 
standard deviation 𝜎𝑔𝑟𝑡

(𝐼−𝐵).

Figure 1: Total FGI, backlog and shortfall costs based on a target inventoy level 𝐼𝑔𝑡 − 𝐵𝑔𝑡 in the DD-CC
variant (left) and the DD-SP variant (right) using cost factors ℎ = 10, 𝑏 = 90, 𝑢 = 45, standard deviation 
levels 𝜎(𝐼−𝐵) = 0, 5, 10, 15, 20, and a target service level of 𝜗 = 0.9.

In the DD-CC variant, falling below the safety stock level results in a linear increase in costs. If the 
planned FGI is used up, additional costs are incurred for the backlog. The cost curves of the DD-SP variant 
are piecewise linear with |𝑃| + 1 segments. They reach their minimum approximately at the safety stock 
levels of the DD-CC variant with a service level of 𝜗 = 𝑏/(𝑏 + ℎ) where 𝑏 and ℎ represent backlog and 
FGI holding costs, respectively. Around these points, however, the costs initially remain at a similar level, 
allowing for greater planning flexibility.  

4 SIMULATION BASED PERFORMANCE ASSESSMENT 

4.1 Simulation Infrastructure and Simulation Model 

The simulation experiments are conducted using the simulation infrastructure proposed by Ziarnetzky et al. 
(2015). A blackboard-type data layer forms the interface between the planning, control, and execution level. 
The execution level is represented by the simulation model. The data layer contains business objects such 
as machines and lots and is updated in an even-driven manner using notification functions of the simulation 
engine AutoSched AP 11.3 to reflect the current simulation state. The DD formulations are implemented 
as part of the planning level in the C++ programming language using the commercial solver IBM ILOG 
CPLEX 12.7.1. To compute a new release schedule, the control level extracts relevant information from 
the data layer and instantiates a new instance of the planning model. After the model is solved, the plan is 
executed by the control level which releases the specified number of lots uniformly over the respective 
periods. For the experiments, we use a rolling horizon planning approach. At the beginning of each planning 
epoch, a new release schedule is created. Only the first period of the plan is executed before replanning 
takes place. 
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The MIMAC I simulation model (Fowler and Robinson 1995) used in the experiments represents a 
large-scale wafer fab with more than 200 machines organized in 69 work centers. The steppers of the 
lithography area serve as a planned bottleneck. Processing characteristics include batch processing 
machines, sequence-dependent setup times, and operators. Exponentially distributed machine breakdowns 
are the major contributor to variability. We differentiate between scenarios with short and long machine 
failure durations. For long durations, the mean time to repair (MTTR) and the mean time to failure (MTTF) 
are set to be twice as long as in the short duration case. Two products are considered, each requiring over 
200 process steps with highly reentrant process flows. First-In-First-Out (FIFO) dispatching is used. The 
processing times are deterministic. 

4.2 Demand Generation 

Demand is generated for two different demand types, each with planned bottleneck utilization (BNU) levels 
of 70% or 90% and a product mix (PM) of 1:1. First, using simulation, mean demand values are determined 
for the target BNU levels and the given product mix. These demand values are then modified depending on 
the demand type and BNU. For demand of type level load (ll), one of the products is selected with equal 
probability every three periods. For each of the next three periods, the mean demand for that product is 
increased by 5% at a target BNU of 90% or by 10% at a target BNU of 70%. Demand for the other product 
is reduced by 5% or 10%, respectively. As a result, the demand values for the two products are negatively 
correlated. For the time-varying load (tv) demand type, the mean demand for both products is randomly 
increased or decreased simultaneously for sets of three consecutive periods in a similar manner, resulting 
in positively correlated demand. Finally, normally distributed demand realizations around the modified 
mean demand values 𝑀𝑔𝑠 for every product 𝑔 and planning epoch 𝑠 are generated with a coefficient of
variation of 𝐶𝑉 = 0.25: 

𝐷𝑔𝑠 ≔ 𝑀𝑔𝑡(1 + 𝑟𝑔𝑠), 𝑔 ∈ 𝐺, 𝑠 = 1, … , 𝐻 + 𝑇 − 1,

where 𝑟𝑔𝑠 is a realization of the normally distributed random variable 𝑅~𝑁(0, 𝜎2) with 𝜎 = 𝐶𝑉 and 𝐻 is
the length of the simulation horizon in periods. The demand values are known in advance. Accordingly, the 
experiments do not consider uncertain demand forecasts and instead focus on production uncertainty.  

4.3 Determining System States 

System states describe the relationship between the expected WIP and TH values under steady-state 
conditions. We use long-term simulation runs with constant release rates equal to the desired TH levels to 
derive corresponding WIP values for all products. The TH values must be sampled from the set of feasible 
values given the systems production capacity. We follow the HC-ipt sampling procedure proposed in 
Völker and Mönch (2023). A summary of the procedure is given below. 

We start by creating a space-filling hypercube design using the intersite-proj-th method of Crombecq 
et al. (2011) with one sample 𝑧𝑟 ∈ [0,1]|𝐺| for each state 𝑟 ∈ 𝑅. The first component 𝑧𝑟

(1) of the sample is
used to determine the BNU and consequently mean release quantities 𝜇𝑟. The PM of 𝜇𝑟 is perturbed using
a BNU-invariant vector Δr based on the remaining components 𝑧𝑟

(2)
, … , 𝑧𝑟

(|𝐺|). The system state sample,
consisting of the release quantities 𝑋𝑟 ∈ ℝ|𝐺|, is then given by 𝑋𝑟 = 𝜇𝑟 + Δ𝑟.

We sample the BNU based on a triangular distribution with a lower limit of 0% and an upper limit and 
mode of 100%. The PM perturbation is normally distributed with a 𝐶𝑉 = 0.25, equal to the setting for the 
demand distribution. For both short and long machine breakdowns, |𝑅| = 200 system states are generated. 
The samples are simulated over ten years after one year of warmup time to reach steady state. Recorded 
statistics include the WIP 𝑄𝑔𝑟, the TH 𝑂𝑔𝑟, the CTs 𝐶𝑇𝑔𝑟 and the standard deviations of WIP 𝜎𝑔𝑟

(𝑊) and CT 
𝜎𝑔𝑟

(𝐶𝑇). Figure 2 (left) shows the distribution of the sampled states in terms of TH. The ratio of 𝑄𝑔𝑟/𝑂𝑔𝑟 can
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be interpreted as implied lead times (LTs), estimates for the expected CTs in each state. The LTs for short 
and long machine breakdowns are plotted as a function of the expected BNU in the center and on the right 
of Figure 2, respectively.  

Figure 2: Sampling distribution of system states by expected TH (left) and implied lead times derived from 
simulated WIP values relative to the bottleneck utilization for short (center) and long (right) machine failure 
durations. 

We estimate output uncertainty represented by 𝜎𝑔𝑟
(𝑌) based on the data gathered for the system states. 

During each simulation run, the input rate 𝑋𝑔𝑡 remains constant, while the WIP values 𝑊𝑔𝑡 and the output
quantities 𝑌𝑔𝑡 vary over time. As long as the system is stable, the expected output quantities per period are
equal to the input rate, i.e. 𝐸[𝑌𝑔𝑡] = 𝐸[𝑌𝑔] = 𝑋𝑔𝑡. We assume that the initial WIP differs from the expected
WIP by κ, i.e., 𝑊𝑔0 = 𝐸[𝑊𝑔𝑡] + κ = 𝐸[𝑊𝑔] + κ holds. Based on the WIP balance equation (2), we obtain
𝑊𝑔𝑡 − 𝑊𝑔0 = ∑ (𝑋𝑔𝜏 − 𝑌𝑔𝜏)𝑡

𝜏=1  from which 𝑊𝑔𝑡 − 𝐸[𝑊𝑔] − κ = 𝑡 ⋅ 𝐸[𝑌𝑔] − ∑ 𝑌𝑔𝜏
𝑡
𝜏=1  follows. The

deviation of the WIP from its expected value 𝑊𝑔𝑡 − 𝐸[𝑊𝑔𝑡] is therefore equal to the negative deviation of
the accumulated output quantities from their expected values, offset by the constant κ. Accordingly, the 
standard deviation of the WIP 𝜎𝑔

(𝑊) can be used as a proxy for the standard deviation of the accumulated
output quantities. We set 𝜎̂𝑔𝑟

(𝑌)
≔ 𝜎𝑔𝑟

(𝑊). Table 1 provides an overview of the average standard deviation
𝜎𝑔

(𝑊)  for all system states within given utilization level intervals with short and long machine failure
scenarios. Alternative measures of output uncertainty 𝜎𝑔

(𝐶𝑇)
𝑌𝑔 are provided for comparison.

Table 1: Measures for output uncertainty averaged over all system states in a bottleneck utilization interval. 

Utilization 
Interval 

Short Machine Failures Long Machine Failures 
𝜎1

(𝑊)
𝜎2

(𝑊)
𝜎1

(𝐶𝑇)
𝑌1 𝜎2

(𝐶𝑇)
𝑌2 𝜎1

(𝑊)
𝜎2

(𝑊)
𝜎1

(𝐶𝑇)
𝑌1 𝜎2

(𝐶𝑇)
𝑌2

(50%, 60%] 3.08 3.58 5.29 6.00 4.01 5.48 6.21 7.71 
(60%, 70%] 3.46 4.19 5.76 6.73 4.86 7.10 7.15 9.36 
(70%, 80%] 3.95 4.96 6.30 7.47 6.12 8.89 8.48 11.12 
(80%, 90%] 4.61 6.03 7.00 8.53 7.53 11.37 9.90 13.59 

(90%, 100%] 5.91 7.54 8.28 9.89 11.30 15.42 13.50 17.40 

4.4 Design of Experiments 

The simulation experiments are designed to determine whether the DD-CC and DD-SP extensions to the 
basic DD formulation can contribute to lower costs and higher profits under production uncertainty and 
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certain demand forecasts. The production-side uncertainty is determined in particular by the length of 
machine failures and the expected bottleneck utilization. Accordingly, we conduct experiments with short 
and long failure durations and low (70%) and high (90%) levels of BNU. Level load and time varying load 
demand types are intended to show the impact of changes in product mix and utilization over time on the 
planning performance. For each of the resulting eight scenarios, ten demand realizations are generated and 
replicated in five independent simulation runs. The design of experiments is summarized in Table 2. 

Table 2: Design of Experiments. 

Factor Level Count 
Planning models DD, DD-CC, DD-SP 3 

Demand type ll, tv 2 
Planned bottleneck utilization 70%, 90% 2 

Machine failure duration short, long 2 
Demand realizations 10 

Simulation replications 5 
Total simulation runs 1200 

The performance of the planning models is evaluated for simulation runs over 52 weeklong periods. 
Each simulation is initialized with a WIP snapshot, taken after one year of initial simulation time, that is 
unique to the respective scenario, demand realization and simulation replication. At the beginning of each 
planning epoch, the planning model is instantiated to calculate a new release schedule. The time to solve 
the models is limited to ten seconds, after which the best solution found will be returned. Each planning 
instance uses deterministic information on demand for twelve periods. Three additional periods with 
averaged demands serve to avoid end of horizon effects. The unit costs for WIP, FGI, backlog, and shortfall 
are set to 𝜔𝑔𝑡 = 60, ℎ𝑔𝑡 = 10, 𝑏𝑔𝑡 = 90, and 𝑢𝑔𝑡 = 45, respectively. A unit revenue of 450 is used to
calculate overall profits. We use a target service level of 𝜗 = 𝑏𝑔𝑡/(ℎ𝑔𝑡 + 𝑏𝑔𝑡) = 0.9  for the DD-CC
variant. For DD-SP, 𝑁 = 20 scenarios for FGI and backlog are used. The experiments are executed on an 
Intel® Core™ i7-8700 CPU 3.20GHz PC with 16GB RAM. 

4.5 Computational Results 

The results of the experiments are presented in Table 3. By taking into account stochastic FGIs and 
backlogs, both the DD-CC and the DD-SP variants can substantially reduce the sum of the corresponding 
costs by 13% to 30%, depending on the scenario, with higher levels of reduction at lower BNU. The reason 
for the reduction lies in the shift towards higher FGI levels, which reduces the occurrence of backlog at a 
much higher cost. The ratio of FGI to backlog costs is very similar for both variants. This can be explained 
by the fact that, despite the different objective functions and constraints, the resulting cost functions are 
also similar, as can be seen in Figure 1, since they reach their minimum at approximately the same inventory 
level. Although DD-SP tends to accumulate slightly more backlog than DD-CC, the sum of FGI and 
backlog costs are the lowest in six out of eight scenarios. 

Smaller relative differences are found for WIP costs. However, since WIP is the dominant cost factor, 
the absolute differences are relevant. WIP costs for the DD-CC variant are generally higher than for the DD 
model. The requirement for higher safety stocks at higher utilization levels can cause larger fluctuations in 
the planned WIP, resulting in an increase of the average WIP due to the nonlinear relationship between 
WIP and TH. For the DD-SP variant, WIP costs are generally lower than for DD and DD-CC. Due to the 
shape of the cost function shown in Figure 1 (right), inventory levels can be varied around the cost minimum 
with only small differences in expected costs. As a result, capacity can be utilized more efficiently with 
respect to the expected WIP cost. Inventories are built in periods with otherwise low utilization and lowered 
in periods with high demand at little additional cost relative to the cost-optimal inventory level. 
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Overall, DD-CC achieves an increase in profit in all scenarios. However, the costs saved for FGI and 
backlog are partially offset by the higher WIP costs. DD-SP reduces FGI and backlog costs as well as the 
WIP costs, resulting in correspondingly higher profits. The increase in profits seems to be closely related 
to the degree of production-side uncertainty, with the largest differences being observed for long machine 
downtimes and a high BNU.  

Table 3: Results of computational experiments. 

Machine 
Failures 

Demand 
Type 

Bottleneck 
Utilization 

Planning 
Model 

Costs Profit 
WIP FGI Backlog Total Change 

short ll 70% DD 420,760.8 5,244.8 19,606.6 722,551.7 0.00% 
DD-CC 422,938.8 8,334.8 9,607.5 731,197.9 1.20% 
DD-SP 418,880.4 7,494.6 9,976.2 734,494.8 1.65% 

90% DD 594,201.6 7,307.3 35,091.7 865,724.3 0.00% 
DD-CC 601,188.0 10,537.1 26,082.3 869,971.6 0.49% 
DD-SP 593,205.6 9,198.4 27,561.4 875,932.5 1.18% 

tv 70% DD 421,412.4 5,786.8 19,462.1 713,825.6 0.00% 
DD-CC 422,178.0 9,012.8 9,565.8 724,482.4 1.49% 
DD-SP 419,494.8 7,940.5 10,189.2 726,894.5 1.83% 

90% DD 595,183.2 7,232.1 35,054.2 860,796.4 0.00% 
DD-CC 601,666.8 10,700.5 23,462.1 868,286.6 0.87% 
DD-SP 593,304.0 9,203.6 24,780.5 874,163.9 1.55% 

long ll 70% DD 441,421.2 6,090.4 26,196.0 693,655.4 0.00% 
DD-CC 443,898.0 11,429.2 11,589.3 708,204.5 2.10% 
DD-SP 439,465.2 10,202.6 12,471.0 711,794.3 2.61% 

90% DD 667,563.6 7,218.6 76,748.1 747,086.6 0.00% 
DD-CC 677,944.8 12,071.2 60,140.9 756,083.0 1.20% 
DD-SP 660,180.0 9,797.7 55,946.3 777,058.0 4.01% 

tv 70% DD 441,748.8 6,928.1 25,541.8 688,275.3 0.00% 
DD-CC 443,353.2 12,209.6 11,725.9 702,108.4 2.01% 
DD-SP 439,532.4 10,683.9 13,529.9 704,291.8 2.33% 

90% DD 664,387.2 7,409.8 88,188.6 730,531.4 0.00% 
DD-CC 680,101.2 11,621.4 63,943.0 743,887.4 1.83% 
DD-SP 658,615.2 9,967.5 63,997.6 764,164.7 4.60% 

5 CONCLUSION AND FUTURE RESEARCH 

In this paper, we studied the performance of DD production planning models with inventory considerations. 
The proposed models were assessed in a rolling horizon environment that was provided by a simulation 
model of a large-scaled wafer fab. They were only confronted with production uncertainty which arises 
from machine breakdowns. The simulation experiments demonstrated that explicit inventory considerations 
in DD planning models lead to higher profits under all experimental conditions explored in the paper. 

There are several directions for future research. First of all, we are interested in relaxing the assumptions 
made for the random variable that represents the difference of inventory and backlog. For instance, we are 
interested in applying the approaches to demand that follow the additive or multiplicative MMFE. It seems 
also interesting to extend the proposed models towards the generalized DD planning formulation proposed 
by Völker and Mönch (2022). Finally, it seems worthwhile to apply more advanced stochastic programming 
techniques to the DD planning formulations. 
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