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ABSTRACT

We propose a continuous optimization algorithm for the Column Subset Selection Problem (CSSP) and
Nyström approximation. The CSSP and Nyström method construct low-rank approximations of matrices
based on a predetermined subset of columns. It is well known that choosing the best column subset of size
k is a difficult combinatorial problem. In this work, we show how one can approximate the optimal solution
by defining a penalized continuous loss function that is minimized via stochastic gradient descent. We
show that the gradients of this loss function can be estimated efficiently using matrix-vector products with
a data matrix X in the case of the CSSP or a kernel matrix K in the case of the Nyström approximation.
We provide numerical results for a number of real datasets showing that this continuous optimization is
competitive against existing methods.

1 INTRODUCTION

Recent advances in the technological ability to capture and collect data have meant that high-dimensional
datasets are now ubiquitous in the fields of engineering, economics, finance, biology, and health sciences to
name a few. In the case where the data collected is not labeled it is often desirable to obtain an accurate
low-rank approximation for the data which is relatively low-cost to obtain and memory efficient. Such an
approximation is useful to speed up downstream matrix computations that are often required in large-scale
learning algorithms. The Column Subset Selection Problem (CSSP) and its popular variant Nyström method
are two such tools that generate low-rank approximations based on a subset of columns that typically
represent either data instances or features of a dataset. The chosen subset of columns are commonly
referred to as “landmark” points. The choice of landmark points determines how accurate the low-rank
approximation is.

The challenge in the CSSP is to select the best k columns of a data matrix X ∈ Rm×n that span its
column space. That is, for any binary vector sss ∈ {0,1}n, compute

argmin
s∈{0,1}n

∥X−PsX∥2
F , subject to ∥sss∥0 ≤ k, (1)

where ∥ · ∥F is the Frobenius matrix norm, ∥sss∥0 = ∑
n
j=1 I(s j = 1) and Ps is the projection matrix onto

span{xxx j : s j = 1, j = 1, . . . ,n} (xxx j being the j-th column of X).
Solving this combinatorial problem exactly is known to be NP-complete (Shitov 2021), and is practically

infeasible even when k is of moderate size. We propose a novel continuous optimization algorithm to
approximate the exact solution to this problem. While an optimization approach via Group Lasso exists
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for the convex relaxation of this problem (Bien et al. 2010), to the best of our knowledge, no continuous
optimization method has been developed to solve the highly non-convex combinatorial problem (1). To
introduce our approach for the CSSP, instead of searching over binary vectors sss ∈ {0,1}n, we consider the
hyper-cube [0,1]n and define for each ttt ∈ [0,1]n a matrix P̃(ttt) which allows the following well-defined
penalized continuous extension of the exact problem,

argmin
ttt∈[0,1]n

∥X− P̃(ttt)X∥2
F +λ

n

∑
j=1

t j.

The parameter λ > 0 plays an analogous role to that of the regularization parameter in regularized linear
regression methods (Tibshirani 1996) and controls the sparsity of the solution, that is, the size of k. Two
aspects of this continuous extension make it useful for approximating the exact solution. Firstly, the
continuous loss agrees with the discrete loss at every corner point sss ∈ {0,1}n of the hypercube [0,1]n, and
secondly, for large datasets the gradient can be estimated via an unbiased stochastic estimate. To obtain
an approximate solution to the exact problem, stochastic gradient descent (SGD) is implemented on the
penalized loss. After starting at an interior point of the hyper-cube, under SGD, the vector ttt moves towards
a corner point, and some of the ttt j’s exhibit shrinkage to zero. It is these values that indicate which columns
in X should not be selected as landmark points.

The Nyström approximation (Williams and Seeger 2000; Drineas et al. 2005) is a popular variant
of the CSSP for positive semi-definite kernel matrices. The Nyström method also constructs a low-rank
approximation K̂ ∈Rn×n to the true kernel matrix K ∈Rn×n using a subset of columns. Once the k columns
are selected, K̂ (in factored form) takes O(k3) additional time to compute, requires O(nk) space to store, and
can be manipulated quickly in downstream applications, e.g., inverting K̂ takes O(nk2) time. In addition to
the continuous extension for the CSSP, in this paper, we provide a continuous optimization algorithm that
can approximate the best k columns to be used to construct K̂

The continuous algorithm for the CSSP formulated in this paper utilizes SGD where at each iteration
one can estimate the gradient with a cost of O(mn). We show that the gradients of the penalized continuous
loss can be estimated via linear solves with random vectors that are approximated with the conjugate
gradient algorithm (CG) (Golub and Van Loan 1996), which itself is an iterative algorithm that only requires
matrix-vector multiplications (MVMs) with the m×n matrix X. Similarly, for the Nyström method we
show that at each step of the gradient descent, the gradient can be estimated in O(n2) time requiring only
matrix-vector multiplications with the kernel matrix K. This is especially useful in cases where we only
have access to a black-box MVM function. The fact that both these algorithms require only matrix-vector
multiplications to estimate the gradients lends itself to utilizing GPU hardware acceleration. Moreover, the
computations in the proposed algorithm can exploit the sparsity that is achieved by working only with the
columns of X that are selected by the algorithm at any given iteration. We refer the reader to (Mathur et al.
2023) for proofs of the results presented in this paper.

1.1 Related Work

There exists extensive literature on random sampling methods for the approximation of the exact CSSP
and Nyström problem. Sampling techniques such as adaptive sampling (Deshpande and Vempala 2006),
ridge leverage scores (Gittens and Mahoney 2013; Musco and Musco 2017; Alaoui and Mahoney 2015)
attempt to sample “important” and “diverse” columns. In particular, recent attention has been paid to
Determinantal Point Processes (DPPs) (Hough et al. 2006; Derezinski and Mahoney 2021). DPPs provide
strong theoretical guarantees (Derezinski et al. 2020) for the CSSP and Nyström approximation and are
amenable to efficient numerical implementation (Calandriello et al. 2020). Outside of sampling methods,
iterative methods such as Greedy selection (Farahat et al. 2011; Farahat et al. 2013) have been shown to
perform well in practice and exhibit provable guarantees (Altschuler et al. 2016).
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Column selection has been extensively studied in the supervised context of linear regression (more
commonly referred to as feature or variable selection). Penalized regression methods such as the Lasso
(Tibshirani 1996) have been widely applied to select columns of a predictor matrix that best explain
a response vector. The canonical k-best subset or l0-penalized regression problem is another penalized
regression method, where the goal is to find the best subset of k predictors that best fit a response yyy (Beale
et al. 1967; Hocking and Leslie 1967). The recently proposed Continuous Optimization Method Towards
Best Subset Selection (COMBSS) algorithm (Moka et al. 2022) attempts to solve the l0-penalized regression
problem, which falls under supervised learning, by minimizing a continuous loss that approximates the
exact solution. The algorithm we propose for the CSSP in this paper can be viewed as an adaptation of
COMBSS to the unsupervised setting. In this setting, the goal is to find the best subset of size k for a
multiple multivariate regression model where both the response and predictor matrix are X. Interestingly,
this framework can be extended to include a continuous selection loss for the Nyström approximation.

The rest of the paper is structured as follows. In Section 2 we describe the continuous extension for
the CSSP and the Nyström method. In Section 3 we provide steps for the efficient implementation of our
proposed continuous algorithm on large matrices and in Section 3.3 we provide numerical results on a
variety of real datasets.

2 CONTINUOUS LOSS FOR LANDMARK SELECTION

In this section, we formally define the CSSP and the best size k-Nyström approximation. Then, we provide
the mathematical setup for the continuous extension of the exact problem.

2.1 Column Subset Selection

Let X ∈ Rm×n and for any binary vector sss = (s1, . . . ,sn)
⊤ ∈ {0,1}n, let X[sss] denote the matrix of size

m×∥sss∥0 keeping only columns j of X where s j = 1, for j = 1, . . . ,n. Then for every integer k ≤ n the
CSSP finds the solution to (1) where Psss := X[sss]X

†
[sss] († denotes Moore–Penrose inverse) is the projection

matrix onto span{x j : s j = 1} and xxx j is the j-th column of X. By expanding the Frobenius norm it is easy
to see that the discrete problem (1) can be re-formulated as,

argmin
s∈{0,1}n

− tr
[
X⊤PsssX

]
, subject to ∥sss∥0 ≤ k.

We now define a new matrix function on ttt ∈ [0,1]n which acts as a continuous generalization of Psss.
Definition 1 For ttt = (t1, . . . , tn)⊤ ∈ [0,1]n, define T := Diag(ttt) as the diagonal matrix with diagonal elements
t1, . . . , tn and

P̃(ttt) := XT
[
TX⊤XT+δ (I−T2)

]†
TX⊤,

where δ > 0 is a fixed constant.
Although not explicitly stated in Moka et al. (2022), P̃(ttt) is used as the continuous generalization for

the hat matrix Psss to solve the l0-penalized regression problem.
The main difference between this definition and traditional sampling methods is that instead of multiplying

X by a sampling matrix to obtain a smaller matrix X[sss] we compute the matrix XT which weights column j
of X by the parameter t j ∈ [0,1]. This difference allows one to construct a generalized projection matrix
that has smooth transitions from one corner to another, thus allowing the use of continuous optimization
methods. Intuitively, the matrix TX⊤XT+δ (I−T2) can be viewed as a convex combination of the matrices
X⊤X and δ I.

From an evaluation standpoint, the pseudo-inverse need not be evaluated for any interior point in this
newly defined function. We remark that for any ttt ∈ [0,1)n the matrix inverse in Definition 1 exists and
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therefore,

P̃(ttt) = XT
[
TX⊤XT+δ (I−T2)

]−1
TX⊤.

We now state two results for the function P̃(ttt) and its relationship with the projection matrix Ps. The
following Lemmas (1 and 2) are extensions of the results stated in Moka et al. (2022).

Lemma 1 For any binary vector sss ∈ {0,1}n, P̃(sss) exists and

P̃(sss) = Psss = X[sss]X
†
[sss].

Lemma 2 P̃(ttt) is continuous element-wise over [0,1]n. Moreover, for any sequence ttt(1), ttt(2) · · · ∈ [0,1)n

converging to ttt ∈ [0,1]n, the limit liml→∞ P̃(ttt(l)) exists and

lim
l→∞

P̃(ttt(l)) = P̃(ttt).

We note that the proof of Lemma 2 follows identically to the proof of Theorem 3 in Moka et al. (2022)
where it is stated that the function ∥yyy− P̃(ttt)yyy∥2

2 is continuous over [0,1]n for any fixed vector yyy ∈ Rn.
Given P̃(ttt) is continuous on [0,1]n and agrees with Psss at every corner point we can define the continuous

generalization of the exact problem (1),

argmin
ttt∈[0,1]n

− tr
[
X⊤P̃(ttt)X

]
, subject to

n

∑
j=1

t j ≤ k.

Instead of solving this constrained problem, for a tunable parameter λ , we consider minimizing the
Lagrangian function,

argmin
ttt∈[0,1]n

fλ (ttt), fλ (ttt) :=− tr
[
X⊤P̃(ttt)X

]
+λ

n

∑
j=1

t j.

In Section 3 we reformulate this box-constrained problem into an equivalent unconstrained problem via a
nonlinear mapping ttt = ttt(www) for www∈Rn that forces ttt to be in the hypercube [0,1]n. We solve this optimization
via continuous gradient descent. To this end, we need to evaluate the gradient ∇ fλ (ttt) for any interior point.
Lemma 3 Let K = X⊤X, Z = K−δ I and Lttt = TZT+δδδ I. Then, for ttt ∈ (0,1)n,

∇ fλ (ttt) = 2Diag
[
L−1

ttt TK2 (TL−1
ttt TZ− I

)]
+λ111.

Evaluating ∇ fλ (ttt) has a computational complexity of O(n3) due to the required inversion of Lt .
In Section 3 we detail an unbiased estimate for ∇ fλ (ttt) which utilizes the CG algorithm, where the
most expensive operations involved are matrix-vector multiplications with X and X⊤, which reduces the
computational complexity to O(mn).

2.2 Nyström Method

We now turn our attention to defining a continuous objective for the landmark points in the Nyström
approximation. We consider optimizing the landmark points first with respect to the trace matrix norm and
then to the Frobenius matrix norm.

In many applications, we are interested in obtaining a low-rank approximation to a kernel matrix
K ∈Rn×n. Consider an input space X and a positive semi-definite kernel function h : X ×X →R. Given
a set of n input points xxx′1, ...,xxx

′
n ∈X , the kernel matrix K ∈ Rn×n is defined by Ki, j = h(xxx′i,xxx

′
j) and is

positive semi-definite.
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For any binary vector sss∈ {0,1}n let K[sss] be the n×∥sss∥0 matrix with columns indexed by { j : s j = 1} and
K[sss,sss] be the ∥sss∥0×∥sss∥0 principal sub-matrix indexed by { j : s j = 1}. The Nyström low-rank approximation
for K is given by,

K̂s := K[sss]K
†
[sss,sss]K

⊤
[sss].

The following observation appearing in Derezinski et al. (2020) connects the CSSP and the Nyström
approximation with respect to the trace matrix norm.

Suppose we have the decomposition of the kernel matrix K = X⊤X where X∈Rm×n. Then, the Nyström
approximation is given by K̂sss = (PsssX)⊤PsssX and

∥K− K̂sss∥∗ = ∥X−PsssX∥2
F .

where ∥A∥∗ = ∑
min{m,n}
i=1 σi(A) for A∈Rm×n is the trace matrix norm. This connection is used in (Derezinski

et al. 2020) to provide shared approximation bounds for both the CSSP and Nyström approximation. Given
that the kernel matrix is always positive semi-definite, the decomposition K = X⊤X always exists and one
can solve the CSSP for X to obtain the best k-landmark Nyström approximation with respect to the trace
norm. We note that such a decomposition is not unique, e.g., it can be the Cholesky decomposition or the
symmetric square-root decomposition.

The matrix X does not need explicit evaluation in order to perform CSSP as one can attain ∇ fλ (ttt) with
the matrix K instead (see, Lemma 3). Therefore, finding the decomposition K = X⊤X is not required, and
one can approximately solve the CSSP by minimizing ∇ fλ (ttt) with the kernel matrix K.

Suppose instead we want to use the Frobenius matrix norm to find the best choice of columns of the
matrix K to construct the Nyström approximation. This problem is formulated as

argmin
sss∈{0,1}n

∥K− K̂sss∥2
F , subject to ∥sss∥0 ≤ k. (2)

Similar to P̃(ttt) we can weight each column j of K by t j ∈ [0,1] instead of sampling the columns K[sss]
for the Nyström approximation. We define continuous generalization for the Nyström approximation,
Definition 2 For ttt = (t1, . . . , tn)⊤ ∈ [0,1]n let T := Diag(ttt) and

K̃(ttt) := KT
[
TKT+δ (I−T2)

]† TK,

where δ > 0 is a fixed constant.
Similar to P̃(ttt), for any ttt ∈ [0,1)n the matrix TKT+δ (I−T2) is invertible. In the following two results,

we state that K̃(ttt) is a continuous function on [0,1]n and agrees with the exact Nyström approximation at
every corner point.

Lemma 4 For any corner point sss ∈ {0,1}n, K̃(sss) exists and

K̃(sss) = K̂s = K[sss]K
†
[sss,sss]K

⊤
[sss].

Lemma 5 K̃(ttt) is continuous element-wise over [0,1]n. Moreover, for any sequence ttt(1), ttt(2) · · · ∈ [0,1)n

converging to ttt ∈ [0,1]n, the limit liml→∞ K̃(ttt(l)) exists and

lim
l→∞

K̃(ttt(l)) = K̃(ttt).

We therefore have the continuous generalization of the exact problem (2),

argmin
ttt∈[0,1]n

∥K− K̃(ttt)∥2
F , subject to

n

∑
j=1

t j ≤ k.
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Instead of solving this constrained problem, for a tunable parameter λ , we consider minimizing the
Lagrangian function,

argmin
ttt∈[0,1]n

gλ (ttt), gλ (ttt) := ∥K− K̃(ttt)∥2
F +λ

n

∑
j=1

t j.

As with the continuous extension for CSSP we use a gradient descent method to solve the above problem.
The following result provides an expression for ∇gλ (ttt) for ttt ∈ (0,1)n.

Lemma 6 Let Z = K−δ I, Lttt = TZT+δ I and D = K̃(ttt)−K. Then, for ttt ∈ (0,1)n,

∇gλ (ttt) = 4Diag
[
L−1

ttt TKDK
(
I−TL−1

ttt TZ
)]

+λ1.

Evaluating ∇gλ (ttt) has a computational complexity of O(n3) due to the required inversion of L and
evaluation of K(ttt). As with ∇ fλ (ttt) we detail an unbiased estimate for ∇gλ (ttt) in Section 3 which utilizes
matrix-vector multiplications with K and that helps in reducing the computational cost.

3 IMPLEMENTATION

In this section, we detail how to efficiently solve the continuous problems posed in Section 2. In particular,
we detail a non-linear transformation that was also used in Moka et al. (2022) to make both the CSSP and
Nyström approximation optimization problems unconstrained. We then show how one can estimate the
gradients using MVMs with X and K.

3.1 Handling Box Constraints

The continuous extension of the CSSP and Nyström approximation requires minimizing the functions fλ (ttt)
and gλ (ttt) over ttt ∈ [0,1]n. We now consider a non-linear transformation, as proposed in Moka et al. (2022),
to make both optimization problems unconstrained. Consider the mapping ttt = ttt(www) given by,

t j(w j) = 1− exp(−w2
j), j = 1, . . . ,n,

then if we consider the optimization of continuous CSSP,

www∗ = argmin
www∈Rp

fλ (ttt(www)),

we attain the solution to (2.1) by evaluating ttt(www∗). This is true because for any a,b ∈ R,

1− exp(−a2)< 1− exp(−b2) if and only if a2 < b2.

In vector form the transformation is ttt(www) = 1−exp(−www⊙www) (here ⊙ denotes element-wise multiplication)
and using the chain rule we obtain for www ∈ Rp,

∂ fλ (ttt(www))
∂www

=
∂ fλ (ttt(www))

∂ ttt
⊙ (2www⊙ exp(−www⊙www)).

We can now implement a gradient descent algorithm to approximately obtain ttt(www∗). Using this approximation
we can select an appropriate binary vector as a solution to the exact problem (1). The same transformation
can be applied to solve gλ (ttt(www)) over www ∈ Rn.

3.2 Stochastic Estimate for the Gradient

As discussed in Section 2, ∇ fλ (ttt) and ∇gλ (ttt) are problematic to compute for large n due to the O(n3)
complexity of inverting a matrix. Here we show that we can implement a stochastic gradient descent (SGD)
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which has strong theoretical guarantees (Robbins and Monro 1951) by using an unbiased estimate for
∇ fλ (ttt) and ∇gλ (ttt).

The method we employ is a factorized estimator ℓ̂ for the diagonal of a square matrix. Suppose we
wish to estimate the diagonal of the matrix A = BC⊤ where A,B,C ∈Rn×n. Let zzz ∈Rn be a random vector
sampled from the Rademacher distribution, whose entries are either −1 or 1, each with probability 1/2.
Then an unbiased estimate for Diag(A) is ℓ̂= Bzzz⊙Czzz, see Martens et al. (2012). Further analysis of its
properties including its variance can be found in Mathur et al. (2021). We note that when B = A and C = I,
this estimator reduces to the well-known Bekas et al. (2007) estimator for the diagonal.

The two following results provide an unbiased estimate for ∇ fλ (ttt) and ∇gλ (ttt) using the factorized
estimator for the diagonal of a matrix. As mentioned earlier, proofs are provided in Mathur et al. (2023).
Lemma 7 Recall that in the continuous CSSP optimization for X, we have the definitions T = Diag(ttt) for
t ∈ [0,1]n, K = X⊤X, Z = K−δ In and Lttt = TZT+δ In. Suppose zzz ∈Rn follows a Rademacher distribution
and let: (1)aaa = Kzzz, (2)bbb = L−1

ttt (ttt⊙aaa) and

φφφ = bbb⊙Z(ttt⊙bbb)−aaa⊙bbb.

Then for ttt ∈ (0,1)n,
∇ fλ (ttt) = 2E [φφφ ]+λ1.

Lemma 8 Recall that in the continuous Nyström optimization for a kernel matrix K, we have the definitions
T = Diag(ttt) for t ∈ [0,1]n, Z = K− δ I and Lttt = TZT+ δ I. Suppose zzz ∈ Rn follows a Rademacher
distribution and let: (1)aaa = Kzzz, (2)bbb = L−1

ttt (ttt⊙aaa), (3)ccc = K(ttt⊙bbb)−aaa, (4)ddd = Kccc, (5)eee = L−1
ttt (ttt⊙ddd)

and
ψψψ = bbb⊙ddd +aaa⊙ eee− eee⊙Z(ttt⊙bbb)−bbb⊙Z(ttt⊙ eee).

Then for ttt ∈ (0,1)n,
∇gλ (ttt) = 2E [ψψψ]+λ1.

Using these results, we can obtain for a Monte-Carlo size M, the approximations ∇ fλ (ttt)≈ 2
(

1
M ∑

M
i=1 φφφ

(i)
)
+

λ1 and ∇gλ (ttt)≈ 2
( 1

M ∑
M
i=1 ψψψ(i)

)
+λ1, where φφφ

(i) and ψψψ(i) are evaluated using a sample zzz(i) drawn from
the Rademacher distribution.

These results show that to evaluate stochastic gradients one needs to solve linear systems efficiently with
the matrix Lttt . These systems can be iteratively solved using the conjugate gradient (CG) algorithm (Golub
and Van Loan 1996) which uses a sequence of MVMs with Lttt . Multiplying a vector with Lttt can be reduced
to a single MVM with the matrix K and a sequence of element-wise vector multiplications and additions.

3.3 Obtaining a Solution

While we have re-framed both the CSSP and the Nyström problem as an optimization over ttt ∈ [0,1]n, the
priority remains to obtain an approximate solution sss ∈ {0,1}n to (1) and (2). To obtain such a binary vector,
we first initialize SGD from a starting point ttt(0) and return the final value ttt∗ after a termination condition
for SGD has been satisfied. Under SGD the iterative sequence {ttt(i)}i≥0 moves towards a corner point of
the hypercube. To obtain the closest corner point sss ∈ {0,1}n, we map the insignificant t∗j ’s to 0 and all the
other t∗j ’s to 1 for some tolerance parameter τ ∈ (0,1). This implementation is shown Algorithm 1. In
Figure 1 we provide example solution paths {ttt(i)}i≥0 under both batch gradient descent and SGD.

When choosing the value for ttt(0) it is important to consider the following true statements: t j = 0 if and
only if w j = 0 and

lim
w j→0

∂ fλ (ttt(www))
∂w j

= lim
w j→0

∂gλ (ttt(www))
∂w j

= 0.
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(a) Gradient Descent (b) Stochastic Gradient Descent

Figure 1: Convergence of ttt for continuous Column Subset Selection using the MNIST dataset. Blue
trajectories correspond to selected columns. Only a subset of 300 randomly chosen column trajectories (out
of 784) are displayed. For both (a) and (b), λ = 10 and δ = 10. In (b) the Monte-Carlo size is M = 5.

Algorithm 1 Continous Landmark Selection

1: input: Data matrix: X ∈ Rm×n (CSSP) or Kernel matrix: K ∈ Rn×n (Nyström method), Tuning
parameters: δ and λ , Monte Carlo size: M, Termination Condition: TermCond, Threshold value:
τ ∈ [0,1].

2: Set ttt(0) = (1/2, . . . 1/2)⊤

3: www(0)←
√
− ln(1− ttt(0))

4: www∗← SGD (www(0), M, X or K, TermCond)
5: ttt∗← 1− exp(−www∗⊙www∗)
6: for i = 1 to n do
7: s j← I(t∗j > τ)
8: end for
9: return: sss∗ = (s1, . . . ,sn)

⊤

These facts imply that if t j is set to zero during the course of the optimization it will remain unchanged
thereafter. Therefore, it is important to choose ttt(0) that is away from any corner point. It is for this reason,
we set ttt(0) = (1/2, . . . ,1/2)⊤ in all our experiments.

3.4 Complexity Analysis

The main computational cost of our algorithm is the complexity attributed to estimating the gradients at
each iteration of SGD. The cost to solve (2) and (5) in either Lemma 7 or 8 via CG is O(TmultMℓ) flops
where ℓ is the number of CG iterations and Tmult is the cost of computing a matrix-vector product with
either X⊤X (CSSP) or kernel matrix K (Nyström). Generally, only ℓ≪ n iterations of CG are required to
obtain an accurate solution to the linear system.

The cost Tmult is O(mn) and O(n2) via direct computation for X⊤X and K respectively. For kernel
matrices with specific structure, this cost can be reduced. For example, for Toeplitz matrices or for matrices
constructed from a kernel function that is analytic and isotropic, the cost can be reduced to quasi-linear
complexity (Dietrich and Newsam 1997). Utilizing GPU hardware for accelerating matrix computations
has gained significant recent attention and numerous software regimes (Charlier et al. 2021) have been
proposed to accelerate kernel MVMs. These methods can be implemented out-of-the-box and allow MVMs
to be feasible on very large datasets (n∼ 108). Another advantage of these algorithms is that, as long as the
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kernel function h(xxx′i,xxx
′
j) is given, MVMs can be computed directly without ever storing the kernel matrix

K. This is an advantage of our method when compared to other methods such as the greedy selection
method for the Nyström approximation in (Farahat et al. 2011), which has a cost of O(n2k) and requires
the full explicit matrix to be stored in memory.

3.5 Role of Parameters δ and λ

The tuning parameter λ controls the size of the penalty ∥ttt∥1 which is added to the Frobenius matrix loss. It
is intuitive then that for a larger value of λ a stronger shrinkage is applied to ttt during the course of the
continuous optimization. In terms of curvature, as λ increases so does the directional slope of fλ (ttt(www)) and
gλ (ttt(www)) in the region around w j = 0. For this reason, it is likelier that more w j’s will be pushed towards
zero when the value for λ is large. This behavior is similar to that of the parameter λ in the COMBSS
method (Moka et al. 2022) where a more formal analysis can be found. We note that the relationship
between λ and k is data dependent and it is suggested that the user apply an efficient grid search regime to
obtain an appropriate λ for their use.

With respect to the parameter δ we first note that Lemma 1 and Lemma 4 remain true regardless of the
choice of δ . Therefore, the value of δ affects the behavior of the penalized loss only at the interior points
ttt ∈ (0,1)n. We would like a choice of δ such that for all the interior ttt the functions fλ (ttt) and gλ (ttt) are
well-behaved. When δ is very small the linear systems that require solving at ttt ∈ (0,1)n may be close to
singular and numerical issues can arise more frequently. Moreover, when δ is large we observe large shifts
in the value of the objective approaching a corner point. Our simulations indicate that δ = 1 produces a
well-behaved function.

4 NUMERICAL EXPERIMENTS AND RESULTS

In this section, we provide numerical examples with real data designed to demonstrate that our proposed
continuous optimization method outperforms well-known sampling-based methods for small and large
datasets. Moreover, we demonstrate that when it is feasible to run greedy selection, our continuous method
exhibits very similar performance.

Numerical experiments were conducted on the small to medium-sized datasets: Residential and Building
dataset (m = 372, n = 109), MNIST1K (m = 1000, n = 784), Arrhythmia (m = 452, n = 279) and SECOM
(m = 1567, n = 591). Numerical experiments for Nyström landmark selection were also conducted on the
larger datasets: Power Plant dataset (m = 4, n = 9568), HTRU2 dataset (m = 8, n = 17898) and Protein
dataset (m = 9, n = 45730). All datasets except MNIST (LeCun et al. 1994) are downloaded from UCI ML
Repository (Asuncion and Newman 2007). All datasets were standardized such that all columns had mean
zero and variance equal to one.

For the small to medium-sized datasets, we use the best rank-k approximation factor to compare our
method to existing methods (see Figure 2 and Figure 3). The best rank-k approximation factor is given by

Approximation Factor :=
∥A− Âs∥2

F

∥A− Ĝ∥2
F

.

where Âs is either the Nyström or CSSP low-rank matrix and Ĝ is the best rank-k approximation computed
using the Singular Value Decomposition (SVD) of A.

In these experiments, we compare the proposed continuous landmark selection method executed with
SGD (M = 10) with the following four well-known methods: Uniform Sampling (Williams and Seeger
2000), Recursive RLS (Ridge Leverage Scores) - Nyström sampling (Musco and Musco 2017), k-DPP
sampling (Derezinski and Mahoney 2021) and Greedy selection (Farahat et al. 2011; Farahat et al. 2013).

For the experiments conducted on the larger datasets (see Figure 4) we exclude the k-DPP sampling
and greedy methods as it is either too costly to compute the choice of landmark points or too costly to store
the full kernel matrix on a GPU. In our implementation of continuous Nyström landmark selection, we use
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(a) Residential (σ = 1) (b) Residential (σ = 5) (c) MNIST1K (σ = 20)

Figure 2: The mean Nyström empirical approximation factor over 50 trials for the UCI Residential Building
and MNIST dataset where K is constructed using the Gaussian Radial Basis Function (RBF) kernel:
Ki, j = h(xxx′i,xxx

′
j) = exp

(
−∥xxx′i− xxx′j∥2

)
/σ2. Approximation factor is plotted on a logarithmic scale.

(a) Residential (b) Arrhythmia (c) SECOM

Figure 3: The mean CSSP empirical approximation factor over 50 trials for the MNIST dataset and three
UCI datasets for different methods. Approximation factor is plotted on a logarithmic scale.

the KeOps library (Charlier et al. 2021) to efficiently compute MVMs and linear solves on a GPU without
ever storing the matrix K, thus negating the need to store any O(n2) objects. These experiments were run
using an NVIDIA Tesla T4 GPU with 16GB memory.

In Figure 2 and Figure 3 we observe the approximation factor for Nyström and CSSP landmark
selection with different subset sizes k. A lower approximation factor indicates a better approximation and
an approximation factor close to one implies near-best-case performance for the given subset size k. The
results indicate that the continuous optimization method is better than every tested sampling method and is
very similar to greedy selection in performance (whenever the greedy selection is feasible). In most cases,
for the CSSP, as the proportion of selected columns increases the continuous method starts to marginally
outperform the greedy method.

In Figure 4, we observe for all three datasets (Power Plant, HTRU2 and Protein) that the continuous
landmark selection achieves better accuracy than the Recursive RLS (Ridge Leverage Scores) - Nyström
sampling and Uniform sampling methods. While Recursive RLS sampling (complexity: O(nk2)) and
uniform sampling are faster at selecting landmark points, for a fixed k the continuous method obtains a
more accurate Nyström approximation. For instance, in the Power Plant dataset experiment, when 50% of
the columns are selected as landmark points, the continuous method obtains a squared error that is six
orders of magnitude smaller than the uniform sampling method and a squared error that is four orders of
magnitude smaller than the Recursive RLS sampling method. Thus, if a memory budget for the size of
the Nyström approximation is given, as is often the case, the continuous method will compute a superior
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(a) Power Plant (b) HTRU2 (c) Protein

Figure 4: The mean empirical squared Frobenius error ∥K− K̂sss∗∥2
F over 10 trials for the UCI datasets

Power Plant, HTRU2 and Protein for different methods. The kernel matrix K for all datasets is constructed
using the RBF kernel function with σ = 0.5. Error is plotted on a logarithmic scale.

approximation. We note that in the most demanding experiment (Protein dataset, n = 45730), a single
gradient update was computed in 1 to 5 seconds.

5 CONCLUSION

In this paper, we have introduced a novel algorithm that exploits unconstrained continuous optimization
to select columns for both the CSSP and Nyström approximation. The algorithm selects columns by
minimizing an extended objective which is defined over the hypercube [0,1]n rather than iterating over the
corner points of the hypercube which correspond to all of the

(n
k

)
subsets. The extended objective for both

the CSSP and Nyström approximation can be minimized via SGD where the gradients are estimated with
an unbiased estimator which requires only MVMs with either X (CSSP) or K (Nyström). On the real-world
examples that we considered in this article, the proposed method has proven to be more accurate without
incurring higher computational cost.
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