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ABSTRACT

Competitiveness in the semiconductor industry requires continuous management of product rollovers, the
process of introducing new products and retiring older ones to maintain market share. This paper presents
a decentralized decision-making framework to coordinate product rollover decisions using Lagrangian
decomposition of a centralized model using quadratic coordination errors in the subproblem objectives,
and a decentralized heuristic that recovers the feasible solutions from the relaxed ones obtained from the
Lagrangian procedure. Experimental results show that this decentralized framework delivers promising
results, obtaining near-optimal solutions in modest CPU times.

1 INTRODUCTION

Semiconductor manufacturing firms are generally organized into Product Divisions (PD), each of which
manages the product portfolio for a particular market segment such as mobile devices, servers, etc. Each
PD is in charge of developing specifications for new products, forecasting their demand and estimating
a target date for their introduction by which time all development activities must be completed. The
forecast is presented to Corporate Management (CORP) to request financing. CORP represents the firm’s
overall interests, receiving the sales revenue and allocating operating budgets among the PDs to maximize
corporate profit. The PD’s demand forecast also serves to generate manufacturing orders for the firm’s
Manufacturing Group (MFG), which is responsible for producing the units to be sold in the market in
return for payment from the PDs’ operating budgets. A product can only be manufactured for sale if
its development has been completed by the firm’s Product Engineering Group (PEG), which converts the
product specifications developed by the PDs into manufacturable circuit designs, for which the PDs pay
PEG from their operating budget. Some development activities such as prototype and sample fabrication
require manufacturing capacity, for which PEG compensates MFG.

The highly competitive nature and rapid technological innovation in the semiconductor industry require
firms to continually introduce new products and retire old ones to maintain and grow market share. We
define a product rollover as the process by which a firm introduces new products and retires old ones serving
the same market segment over time (Billington et al. 1998). Several studies have shown that many product
introductions fail, wasting resources that can place the firm in significant financial difficulties (Billington
et al. 1998; Erhun et al. 2007). The successful management of product rollovers requires effective
coordination of all the different business units involved. Centralized decision-making is neither practical
nor desirable, as each unit has its own technological constraints knowledge which are not known outside
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the unit itself, as well as its own objectives. However, each agent needs resources allocated by another
unit in addition to its own local resources. For example, the capacity available for PD A to manufacture its
next generation product A1 will depend on both how much capacity is allocated to other PDS and PEG,
as well as the capacity division A is using to manufacture its current product A0 and for the development
of subsequent generations of its products. Furthermore, any agreed-upon plan between agents constantly
evolves over time due to uncertainty in the production, development, and demand processes. However, this
initial work focuses on deterministic problems to develop insight and solution techniques.

We first developed a centralized model (Leca et al. 2021) to capture the complex interactions between
mutually dependent units of the firm pursuing different objectives with shared resources. A Lagrangian
decomposition approach (Leca et al. 2022) suffered from subproblem degeneracy due to the linear nature
of the constraints and linear prices update (Jennergren 1973; Jose et al. 1997; Kutanoglu and Wu 1999),
rendering it computationally impractical. Motivated by the augmented tatonnement first proposed by
Jennergren (1973) and the later application by Kutanoglu and Wu (1999), we applied an Augmented
Lagrangian approach that yielded upper bounds but is no longer separable by agent, defeating our purpose
of obtaining a decentralized solution approach. In this paper, we modify the Augmented Lagrangian
approach with quadratic terms penalizing the deviation between solutions proposed by different agents.
Since the Lagrangian solution is generally not primal feasible, it is necessary to restore the feasibility of the
relaxed solution. Thus, we additionally develop a decentralized heuristic to recover a feasible (coordinated)
solution from the relaxed solution which can also be used to obtain an initial feasible solution.

2 LITERATURE REVIEW

In the semiconductor industry, supply chain management is challenging due to the technical intricacy of the
production process, which often possesses low overall yields compared to other industries (Mönch et al.
2018). Manufacturing complexity increases with the appearance of more advanced products, requiring new
manufacturing technologies that bring more uncertainties to the process (Manda and Uzsoy 2020). The
production process requires very costly, specialized equipment that is only available from a few suppliers,
increasing the lead time to add capacity (Kempf et al. 2013). Kim and Uzsoy (2013) discuss problems
arising from the competition between development and production activities for manufacturing capacity,
noting the variability of manufacturing throughput and the cycle times due to congestion, equipment failure,
and process engineering needs. In this environment, product rollovers can fail for a wide variety of reasons
(Erhun et al. 2007), and significant financial investment in the development of an unsuccessful product
can put the entire firm at risk (Billington et al. 1998).

Several studies examine capacity allocation in the context of a product rollover. Carrillo and Franza
(2006) study the relation between time-to-market and ramp-up time decisions using a non-linear dynamic
control model where time is treated as a continuous variable. Shen et al. (2014) consider how a capacity-
constrained firm prices products during new product introductions, considering both pricing and capacity.
Özer and Uncu (2015) present a dynamic programming model capturing the relationships between time-to-
market, sales channels, pricing, and production decisions. Schwarz and Tan (2021) explores how limited
production capacity affects the optimal unconstrained decision modifying the rollover strategy. Chung and
Jang (2022) develop a stochastic model to analyze how the flow speed of development lots affects starvation
of a bottleneck stage and the throughput of regular production lots in a semiconductor fabrication line.

In the papers discussed above, decision-making is centralized, and the firm acts as a single agent that
can control all the aspects of the rollover strategy. However, the information and operational capabilities
required for its execution lie within different units of the firm, such as PDs, MFG and PEG and are not
easily available outside the unit. Hence, a centralized framework is not implementable. Kutanoglu and
Wu (1999) were among the first researchers to develop a decentralized resource allocation model in the
semiconductor industry in the form of a combinatorial auction for job scheduling. They analyze their
mechanism from the perspectives of game theory and Lagrangian relaxation. An important element of this
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work is an augmented tatonnement to avoid subproblem degeneracy. The subproblem degeneracy problem
is discussed by Jennergren (1973) and Jose et al. (1997) in the context of decentralized optimization.

Karabuk and Wu (2002) develop a coordination scheme for a semiconductor firm involving marketing
and manufacturing agents, where the firm’s objective is the sum of the agents’ objectives. They propose a
decentralized coordination scheme based on transfer prices that are updated iteratively until the decisions
made by the different agents are consistent. They develop their mechanism using an augmented Lagrangian
relaxation that avoids linear price updates and subproblem degeneracy but is not separable, preventing
decentralization. To solve this problem they use auxiliary problem theory (Cohen 1980) to modify the
agent’s objective functions and recover separability. We follow the same approach in this paper.

3 CENTRALIZED MODEL

We first present the centralized model in order to describe the constraints and decision variables involved
in the different agents’ decisions and establish a mathematical point of departure from which alternative
decentralized models can be derived. The formulation, whose notation is defined in Table 1, seeks to
maximize corporate profit (1) subject to constraints describing the capabilities of each agent (CORP, PD,
MFG or PE).

Table 1: Model parameters and decision variables.

Parameters
ρpit Unit selling price of product p of PD i in period t.
cM

pit Unit production cost of product p of PD i in period t.
cD

pit Cost of one development stage of product p from PD i at period t.
τ tr

pit Transistor production capacity required to process one unit of product p for PD i in period t.
τmtl

pit Metal capacity required to process one unit of product p for PD i in period t.
ω tr

pit Transistor capacity required to process one unit of product (p, i, t) in the transistor’s development
stage.

ωmtl
pit Capacity required to process one unit of product (p, i, t) in the metal’s development stage.

Ctr
t Total capacity of transistor manufacturing process.

Cmtl
t Total capacity of the metal manufacturing process.

ε tr
pit Total engineering capacity that product (p, i, t) needs in the transistor’s development stage.

εmtl
pit Total engineering capacity that product (p, i, t) needs in the metal’s development stage.

ε
dbg
pit Total engineering capacity that product (p, i, t) needs in the debugging development stage.

ntr
pi Number of units used in the transistor development stage.

nmtl
pi Number of units used in the metal development stage.

Et Total amount of engineering capacity to work on any of the development stages.
rpi Number of development cycles required by product p for PD i to complete development.
S Initial budget available for the corporation at the beginning of the time horizon.
dpit Demand for product p that belongs to PD i market in period t.
hmtl

pit Inventory holding cost of one unit of final product.
hmtl

pit Inventory holding cost of one work in process unit.

Decision Variables
OCit Operation budget allocated by the corporation to PD i in period t.
Bcorp

t Available budget at the corporation at period t.
Bdiv

it Available budget at PD i in period t.
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xpit Number of units of final product p from PD i sold to the market at period t.
mpit Number of units of final product p from PD i produced at period t.
wtr

pit Number of units of product p for PD i processed at the transistor process in period t.
Ipit Inventory of final product (p, i, t) on inventory at the beginning of period t.
Imtl
pit Number of WIP units of product (p, i, t) between transistors and metal process.

ztr
pit Binary variable that takes the value of one if the transistor development stage of product (p, i)

was performed during period t.
zmtl

pit Binary variable that takes the value of one if the metal development stage of product (p, i)
was performed during period t.

zdbg
pit Binary variable that takes the value of one if the debugging development stage of product

(p, i) was performed during period t.
Rpit Binary variable that takes the value of one indicating that one entire cycle of the development

process of product p from PD i has finished at the end of period t.

maximize :

{
∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

ρpitxpit − hmtl
pit Ipit − htr

pitwpit − cM
pitmpit − cD

pit(z
tr
pit + zmtl

pit + zdbg
pit )

}
(1)

subject to:

Corporate Constraints:

Bcorp
t = Bcorp

t−1 − ∑
∀i∈I

OCit + ∑
∀i∈I

∑
∀p∈P

ρpitxpit ∀t ∈ T (2)

Bcorp
t ≥ 0 ; 0 ≤ xpit ≤ dpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (3)

CORP assigns each PD an operating budget OCit at the start of each planning period, and receives the
revenue ρpitxpit from that unit at its end. This allows CORP to subsidize temporarily unprofitable PDs to
obtain increased revenues in the future. Constraints (2) ensure that the firm’s expenditures do not exceed
its revenues, while (3) ensure a balanced corporate budget and sales remain bounded by the demand forecast.

Product Division Constraints:

Bdiv
it = OCit − [ ∑

∀p∈P
cM

pitmpit + cD
pit(z

tr
pit + zmtl

pit + zdbg
pit )] ∀i ∈ I;∀t ∈ T (4)

Ipit = Ip,i,t−1 +mpit − xpit ∀t ∈ T (5)

Bdiv
it ≥ 0 ; Ipit ≥ 0 ∀i ∈ I;∀p ∈ P;∀t ∈ T (6)

Each PD receives its operating budget (OCit) from CORP at the beginning of each period. From this
budget, it must pay MFG to produce its products for sale and PEG for any development work requested
per the constraints (4). Each PD is responsible for its products’ finished goods inventory holding costs
since it provides demand forecasts. Constraints (5) define each PD’s finished goods inventory, while (6)
enforces budget constraints for all PDs.
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Manufacturing Constraints:

∑
∀p∈P

∑
∀i∈I

τ
tr
pitwpit + ∑

∀p∈P
∑
∀i∈I

ntr
piω

tr
pitz

tr
pit ≤Ctr

t ∀t ∈ T (7)

∑
∀p∈P

∑
∀i∈I

τ
mtl
pit mpit + ∑

∀p∈P
∑
∀i∈I

nmtl
pi ω

mtl
pit zmtl

pit ≤Cmtl
t ∀t ∈ T (8)

mpit ≤ Imtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (9)

Imtl
p,i,t−1 +wpit −mpit = Imtl

pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (10)

M[
tp=t

∑
tp=0

Rpitp ]≥ wpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (11)

At the beginning of each period, MFG receives payment for production activities, which is used to pay
for its own operations. The production process has two stages, transistor fabrication and metal fabrication,
each requiring one planning period to complete. The primary constraints for MFG are capacity constraints
for each processing stage (7) and (8), consistency of shipments with available material (9), and material
balance constraints across planning periods (10). Constraints (11) ensure that MFG can only produce a
product for sale if the product has completed development.

Product Engineering Constraints:

∑
∀p∈P

∑
∀i∈I

ε
tr
pitz

tr
pit + ∑

∀p∈P
∑
∀i∈I

ε
mtl
pit zmtl

pit + ∑
∀p∈P

∑
∀i∈I

ε
dbg
pit zdbg

pit ≤ Et ∀t ∈ T (12)

tp=t

∑
tp=0

zdbg
pitp

≥ rpiRpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (13)

ztr
pit + zmtl

pit + zdbg
pit ≤ 1 ∀i ∈ I;∀p ∈ P;∀t ∈ T (14)

ztr
pit + ztr

p,i,t+1 + zmtl
p,i,t+1 + zmtl

p,i,t+2 + zdbg
p,i,t+2 + zdbg

p,i,t+3 = 3 ∀i ∈ I;∀p ∈ P;∀t ∈ T (15)

zmtl
p,i,t+1 + zmtl

p,i,t+2 ≥ ztr
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (16)

zdbg
p,i,t+1 + zdbg

p,i,t+2 ≥ zmtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (17)

tp=t

∑
tp=0

ztr
pitp

≥ zmtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (18)

tp=t

∑
tp=0

zmtl
pitp

≥ zdbg
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (19)

tp=t

∑
tp=0

Rp−1,i,tp ≥ ztr
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (20)

At the beginning of each period, PEG receives payment from each PD for its development work. A
development cycle comprises three different stages: transistor fabrication, which requires capacity from
both MFG and PEG for one period; metal fabrication, which also consumes MFG and PEG capacity for one
period and a debugging stage requiring only PEG resources for one period. Constraints (13) ensure that a
new product can only be produced for sale after rpi cycles, while (12) enforce resource capacity. (14) ensure
that PEG can only work on one development stage per product during a given period. Constraints (15) force
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the PEG to keep working on a product development project over consecutive cycles, allowing only one
period break between consecutive stages. Constraints (16) - (19) define precedence between development
stages of each product, while (20) allows PEG to develop a product only if its previous generation has
been developed (although it may not have been introduced into the market).

4 DECENTRALIZED MODELS

The objective function of the centralized formulation is separable by agents, and each constraint is associated
with one type of agent. However, some variables appear in constraints related to different agents. For
example, OCits appear in (2), which are associated with CORP, and also in (4), which involve the PDs. The
first step towards decentralization was to identify all variables shared by more than one agent and create
a copy of each variable for each of the agents involved, adding constraints requiring their values to be
consistent, an approach known as Lagrangian Decomposition (Guignard and Kim 1987). For example, the
variable OCit in the centralized model is replaced by OCCorp

it in set (2), and by OCDiv
it in (4), together with

a linking constraint OCDiv
it ≤ OCCorp

it ∀i ∈ I;∀t ∈ T ensuring that PD i cannot exceed the operating budget
allotted to it by CORP. The duplicated variables and linking constraints are summarized in Table 2.

Table 2: Summary of Lagrangian decomposition.

Original Variable New Variables Linking Constraints Lagrange Multiplier

OCit OCCorp
it and OCDiv

it OCDiv
it ≤ OCCorp

it
αp,i

xpit xCorp
pit and xDiv

pit xCorp
pit ≤ xDiv

pit
βpit

mpit mM f g
pit and mDiv

pit mDiv
pit ≤ mM f g

pit
γpit

ztr
pit ztr

pit
[Div] and ztr

pit
[Eng] ztr

pit
[Div] ≤ztr

pit
[Eng] θpit

ztr
pit ztr

pit
[M f g] and ztr

pit
[Eng] ztr

pit
[Eng] ≤ ztr

pit
[M f g] ηpit

zmtl
pit zmtl

pit
[Div] and zmtl

pit
[Eng] zmtl

pit
[Div] ≤ zmtl

pit
[Eng] λpit

zmtl
pit zmtl

pit
[M f g] and zmtl

pit
[Eng] zmtl

pit
[Eng] ≤zmtl

pit
[M f g] σpit

zdbg
pit zdbg

pit
[Div] and zdbg

pit
[Eng] zdbg

pit
[Div] ≤ zdbg

pit
[Eng] δpit

Rpit REng
pit and RM f g

pit RM f g
pit ≤ REng

pit
ψpit

Relaxing the linking constraints with associated Lagrange multipliers resulted in a fully separable model
that suffered from subproblem degeneracy (Jennergren 1973; Jose et al. 1997) due to the linear update of the
Lagrange multipliers. We attempted to address this issue with an Augmented Lagrangian approach (Nocedal
and Wright 2006) that includes quadratic penalties for violation of the relaxed constraints. However, the
quadratic terms destroy separability by agents. Hence, following Karabuk and Wu (2002), we modify
our objective function by duplicating our quadratic terms and then replacing one of the variables with the
average value of the variables of the agents related. For example, the term (OCDiv

it −OCCorp
it )2 in the Aug-

mented Lagrangian function is replaced by (OCDiv
it −OCParam

it )2 where OCParam
it = 1

2 [OCDiv
it and OCCorp

it ] in
the previous iteration. Thus in the new formulation the objective function of the CORP subproblem becomes:
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Corporation Problem:

maximize :

{
∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

ρpitx
Corp
pit + ∑

∀p∈P
∑
∀i∈I

αitOCCorp
it − ∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

βpitx
Corp
pit

− ∑
∀p∈P

∑
∀i∈I

µ(OCParam
it −OCCorp

it )2 − ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(xCorp
pit − xParam

pit )2

}

subject to constraints (2) and (3).

For additional illustration, the objective of the subproblem for PDi is given by

Product Division i Problem

maximize :

{
∑

∀p∈P
∑
∀t∈T

−hmtl
pit Ipit − ∑

∀p∈P
αitOCDiv

it + ∑
∀p∈P

∑
∀t∈T

βpitxDiv
pit

− ∑
∀p∈P

∑
∀t∈T

γpitmDiv
pit − ∑

∀p∈P
∑
∀t∈T

θpitz
tr[Div]
pit − ∑

∀p∈P
∑
∀t∈T

λpitz
mtl[Div]
pit − ∑

∀p∈P
∑
∀t∈T

δpitz
dbg[Div]
pit

− ∑
∀p∈P

µ(OCDiv
it −OC[Param]

it )2 − ∑
∀p∈P

∑
∀t∈T

µ(x[Param]
pit − xDiv

pit )
2

− ∑
∀p∈P

∑
∀t∈T

µ(mDiv
pit −m[Param]

pit )2 − ∑
∀p∈P

∑
∀t∈T

µ(z
tr[Div]
pit − z

tr[Param]

pit )2

− ∑
∀p∈P

∑
∀t∈T

µ(z
mtl[Div]
pit − z

mtl[Param]

pit )2 − ∑
∀p∈P

∑
∀t∈T

µ(z
dbg[Param]

pit − z
dbg[Div]
pit )2

}

subject the constraint sets (4) to (6).

The subproblems for MFG and PEG were derived using the same approach. This new formulation is
completely separable. The basic idea of the approach is to penalize the differences between the values of
shared decision variables and the average value of those variables obtained at the previous iteration of the
procedure, driving the algorithm towards a coordinated solution where shared variables take compatible
values. This introduces a new set of parameters related to the linking constraints that must be initialized at
the start of the solution procedure. This is accomplished with a constructive heuristic that solves a sequence
of modified subproblems of the agents using a conservative estimate of the raw demand as the sales target.
The same sequential feasibility routine explained in the next section is employed to recover the feasibility
of the relaxed solution, which is then used as a lower bound.

5 CONSTRUCTION OF A FEASIBLE SOLUTION

Figure 1 shows a simplified flow diagram of the feasibility routine. In Step 0, the sales targets for CORP
based on the PDs estimated sales XDiv

pit in the (infeasible) relaxed solution (or the raw demand if it is the
initial feasible solution). In Step 1, CORP then solves a modified subproblem including the constraints
2 to 20 whose objective is to minimize the squared deviation from the sales target. In the experiments
in this paper, we assume that CORP is able to parameterize these constraints with the same information
available to the various agents, although in general this is clearly not the case. A more accurate perspective
is that CORP takes input from the PDs as to what they believe they can sell, and uses its knowledge of the
constraints the other agents must obey to develop estimates of their actions given the budget allocations
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computed in this subproblem. The solution to this subproblem produces a budget allocation from CORP to
the PDs that minimizes deviations from the sales goals of the PDs and is consistent with all constraints the
different agents must observe. It is not unreasonable in practice to assume that CORP will be acquainted
with the basic forms of the agents’ principal constraints, although it is likely that the values of some
parameters in these constraints will be inaccurate to some degree. The impact of these inaccuracies on the
performance of the procedure will be explored in future work. The sales targets of the PDs are revised
to reflect the values consistent with the CORP budget allocations obtained from this subproblem. This
subproblem also computes an estimate of the MFG capacity that must be allocated to each PDs in each
period. When used to compute an initial feasible solution without running the fully separable approach,
the initial sales targets are set equal to a conservative estimate of the demand forecast provided by the PDs.

Given the budget allocations and revised sales targets, and tentative MFG capacity allocation computed
by CORP in Step 1, in Step 2 each PD solves its own subproblem with constraints 2 to 20 seeking to minimize
the squared deviation of their sales from the new sales targets. This solution yields revised sales targets for
the PDs, the orders that each PD will request from MFG, and the introduction dates for new products that
will be requested from PEG. In Step 3 PEG solves its subproblem seeking to minimize deviations from
the introduction dates requested by the PDs, assuming that the MFG capacity will be available to it for
development activities. Finally, in Step 4, MFG solves its subproblem seeking to minimize the squared
deviation between the quantities of product it can deliver for sale and those requested by the PDs. In
addition to constraints 2 to 20, the MFG subproblem is forced to match in its development estimated logic
the debugging development stages given by the PEG. In other words, the MFG capacity must be released
to the PEG such that the metal stage (the last development stage requiring MFG capacity) is one or at
most two periods before the PEG’s scheduled debugging stage given by the already solved PEG problem.
Since the PEG debugging schedule guarantees an introduction date that, due to the PEG objective function,
deviates minimally from the PDs introduction estimates, the rollover strategy coordinates through this new
constraint set. Note that each agent solves a subproblem that contains the constraints from the centralized
formulation. The subproblems are solved sequentially, starting with CORP, proceeding to the PDs, followed
by PEG and MFG. Each subproblem takes as input the decisions made at the previous step and seeks
to minimize deviations imposed by its own constraints. After each step of the algorithm, the sales target
can only be revised downwards, guaranteeing the feasibility of the solution relative to manufacturing and
development capacity. However, consecutive reductions in sales targets may reduce revenue to the point
that it cannot cover the costs incurred. In this situation, the PD subproblems are resolved with an extra
restriction on the number of units that MFG can produce, yielding the true operating budget allocation
OC required from CORP to produce this output. If this solution is not feasible due to reduced revenue,
the CORP subproblem is reoptimized to minimize deviations from the sales target while meeting the PDs
financial requests. If this CORP subproblem is infeasible, the firm does not have enough initial budget to
develop its sales plan, so we delay the introduction date of the least profitable product that is going to be
developed during the planning horizon. (We exclude generation zero from this delay).

6 EXPERIMENTAL RESULTS

For our computational experiments, we consider six problem configurations E1 through E6, whose charac-
teristics are summarized in Figure 2, varying the number of divisions, number of generations of each product,
number of periods in the planning horizon generations, and the timing of product introductions. Under
synchronous demand, new generations of different divisions must enter the market within an interval of
three periods, while under asynchronous demand, the new introductions are distributed over twelve periods.
The need to introduce multiple product generations for different divisions within a short interval ought
to result in more difficult problem instances. For each problem configuration, we consider eight capacity
profiles, as shown in Figure 3, varying the manufacturing capacity, development capacity, and the number of
development cycles required. For each combination of instance configuration and capacity profile, we solve
three randomly generated problem instances using the centralized formulation, the constructive heuristic,
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Figure 1: Flowchart of procedure for constructing a feasible solution.

and the fully separable model. We compare the solutions in terms of solution quality and computation time
in Figure 4, where each cell in the table represents the average of the quantity of interest over the instances
solved. Although we also solved most instances with the Augmented Lagrangian procedure we do not
report detailed results here for brevity. However, we note that the fully separable model yields solution
times two orders of magnitude faster than the Augmented Lagrangian (average CPU time of 1.06 minutes
as opposed to 255.15 minutes). We thus focus our discussion on the constructive heuristic and the fully
separable model.

In our experiments, we observe that the initial feasible solution does not deviate more than 25% from
the centralized solution; in 45.8% of all instances solved, the fully separable Lagrangian procedure yielded
no improvement over the initial solution. The fully separable model yields significant improvements in the
gap over the initial solution, with the worst average deviation from the centralized solution being of the order
of 14% for the difficult instances where MFG capacity is limited (80% of average demand), synchronous
product introductions and four development cycles. A few of these instances required extremely long
CPU times, as indicated by the difference between the average and maximum CPU times. In general, the
solution procedure behaves as expected, with increasing capacity (MFG capacity and no. of development
teams) yielding easier instances and increasing workload (number of development cycles and synchronous
introductions) yielding harder ones. Overall, the fully separable approach yields decentralized solutions
that are acceptably close to the centralized solution in quality; better choices of algorithm parameters, such
as stopping conditions appear likely to yield further improvements and more consistent solution times.
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Figure 2: Problem configurations summary.

Figure 3: Capacity profiles summary.

The main reason for the more efficient performance of the completely separable model is that it always
begins with a good initial feasible solution obtained after a run of our feasibility finder routine in which the
entire demand is used as the sales target. This initial solution not only provides a good initial lower bound,
but because it is also in the parameters of the quadratic terms, it drives all agents towards this solution.
It is important to notice that the initial feasible solution is obtained by solving sequentially special agent
problems, in which they make two vital assumptions. First, they assume that the rest of the agents will act
in the best interest of the company, truthfully reflecting their capabilities and limitations. Moreover, the
agents assume that they completely understand the other agent’s processes.

Figure 4: Summary of the experimental results.

From the computational time perspective, the instances that require four development cycles demand
significantly more time, with one experiment replica requiring almost twenty-one hours to solve. This
computational complexity is more intensive for instances E_5 and E_6, which are the ones that have three
divisions and four generations, increasing the number of variables and constraints.
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7 CONCLUSION

In this paper, we present a completely separable approach derived from previous centralized and semi-
decentralized models presented in Leca et al. (2021) and Leca et al. (2022). This separable formulation
achieves good solution quality relative to the centralized solution faster than the Augmented Lagrangian
approach. We also present a sequential decentralized heuristic that recovers a feasible solution from the
relaxed solution obtained by the fully separable approach and can also be used to construct an initial
feasible solution. The success of the fully separable approach is driven in large part by the good initial
solutions obtained since it incentivizes agents towards coordinated solutions that improve on the initial
solution. The fully separable approach represents a tradeoff between improving the objective function and
achieving coordinated solutions.

The decentralized, sequential heuristic proceeds by solving a sequence of agent subproblems in which
each agent is aware of the constraints other agents must satisfy, such as those governing the stages of
the product development process in Section 5. The main idea is that each agent solves a problem that
possesses the centralized model constraints in which the variables on its domain are treated as decision
variables, and the rest of the variables represent beliefs as to what other agents will do. Thus the constructive
heuristic makes two essential assumptions: that each agent will seek to achieve the goals communicated
to it by other agents preceding it in the solution sequence and that each agent has a basic knowledge of
the constraints governing the decisions of the others. In practice, agents may have incomplete (not all
constraints are known) or inaccurate (parameters such as the number of development cycles needed are
incorrect) knowledge of the constraints governing the decisions of others. Future work will examine the
behavior of the decentralized decision procedures in the presence of such information discrepancies and
different strategies agents may use to hedge against uncertainties in external parameters such as market
demand and the decisions of other agents.
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