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ABSTRACT 

This study aims to optimize the order fulfillment process in a Robotic Mobile Fulfilment System warehouse 
by improving the order batching and the pick order assignment in order-picking activities using a simulation 
approach. The order-to-station assignment considers the association between the new order and the in-
progress order at the station instead of random assignment. The proposed model aims to maximize the total 
throughput, maximize the pile-on value, and minimize the required number of pods. The proposed model 
is compared with a baseline scenario. The result shows that the proposed model significantly decreases the 
number of required pods by 40 %, increases the pile-on by 60 %, and increases the throughput by 4 %. This 
result proves that the proposed strategy can improve the efficiency of the order-picking process by ensuring 
every order and/or batch of orders always goes to the picking station with the most similar order.  

1 INTRODUCTION 

During the recent decade, the online shopping trend has grown year by year, particularly during the 
pandemic. To fulfill a huge number of orders, the warehouse has a critical role in the whole supply chain, 
since all of the warehouse’s internal operations need to be conducted effectively and efficiently. The 
warehousing operations activities consist of several divisions, such as receiving and storing the product, 
order picking, replenishing, and shipping the order. The order-picking activities contribute about 55 % of 
the total cost of warehousing activity (Tompkins et al. 2010). Currently, many warehouses have already 
employed and developed an automatic parts-to-picker method (Li et al. 2022). Many companies are trying 
to invest in automation and robotic technologies that increase their company’s competitiveness (Zhiwen 
2003). Automation in a warehouse might improve the order fulfillment process in a warehouse. One of the 
automation implementations in the order-picking process uses a Robotic Mobile Fulfillment System 
(RMFS) (Weidinger et al. 2018). 

RMFS is an automated parts-to-picker system that uses an autonomous robot to carry the movable racks 
(pod) from the storage to the picking/replenishment station or vice versa (Merschformann et al. 2019). It 
utilizes an Automated Guided Vehicle (AGV) or Kiva robot to bring pods containing ordered items to the 
picking station to fulfill an order, bring the pods back to the storage for storing the pods, or bring them to 
the replenishment station for replenishing the SKU inside a pod (da Costa Barros and Nascimento 2021). 
The RMFS has developed in well-known companies like Amazon, Geek+, and Fetch Robotics (Yildirim et 
al. 2023). The use of RMFS is promising, because this system can help to increase the picking rates by 
reducing the picker walking time compared to the picker-to-parts system (Merschformann et al. 2019). 
Implementing RMFS also improves the order fulfillment speed by 50 % compared to traditional warehouses 
(Lamballais et al. 2017). However, several issues must be addressed by a company to implement RMFS: 
layout and facility (Li et al. 2021; Zhu and Li 2022), warehousing activities such as order assignment (Xie 
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et al. 2021), product storage assignment (Yuan et al. 2021), pod storage allocation (Yuan et al. 2021), and 
robot routing problem (Cai et al. 2021). The total completed orders per unit of time (total throughput) 
usually is a measure for the efficiency of the warehouse. Therefore, optimization from all warehousing 
processes is needed to achieve higher throughput.  

Pick Order Assignment (POA) is an activity to fulfill all orders in the warehouse, including the decision 
how to assign the order to a pod and a particular picking station. Fulfilling more orders with a lower number 
of robots or a lower number of pods to be picked is one of the crucial issues for optimizing the order-picking 
process in RMFS. The system needs an effective and efficient assignment model to pick more items from 
one pod. The pile-on value is a performance measure representing the average number of items picked from 
one pod. With a higher pile-on value, fewer pods are required to be delivered to the station. Order batching 
is used to process all orders effectively, where several orders are grouped in the same pick order to reduce 
the traveling time and order completion time.  

This study focuses on the order-picking process or POA in the RMFS. The study aims to increase the 
total throughput by maximizing the pile-on and minimizing the number of pods needed to fulfill the order. 
This study applies order batching to the order assignment based on specific rules. The proposed strategy is 
evaluated using a simulation approach. 

2 LITERATURE REVIEW 

A robotic mobile fulfillment system is an automated parts-to-picker material handling system designed to 
fulfill e-commerce orders effectively. The system consists of pods, AGVs, and picking and replenishment 
stations. The process of RMFS starts when orders arrive in the system. After particular orders arrive, the 
system assigns each order to a specific picking station. Every picking station can fulfill several orders 
simultaneously, depending on the available capacity in each picking station. If an order arrives when there 
is no capacity available in the station, that order will be added to the order pool containing unassigned 
orders. 

On the other hand, every pod stored in the warehouse can include multiple items depending on the item 
assignment and replenishment policy. Each pod only can serve or go to one station at a time. So, the system 
will search for possible pods containing the specific item for fulfilling current active orders in the picking 
station (Yang et al. 2021). In RMFS, order assignment and pod selection are crucial elements affecting the 
order-picking efficiency. The wrong decision for them may lead to the inefficiency of the order-picking 
process. Therefore, many studies have discussed this problem (Jaghbeer et al. 2020; Zhang et al. 2022).  

The first decision that should be made in this system is to which station an order should be assigned. 
An operator or picker at a picking station can process several orders at once. If the on-progress orders have 
similar SKUs, the picker can fulfill more than one order at once time to save time. Therefore, assigning an 
order to the picking station also might influence the overall order fulfillment time. One key metric for 
measuring the efficiency of pick order assignment is pile-on, defined as the average number of SKUs 
collected from a storage pod during each visit to a picking station (Yang et al. 2021). Generally, a higher 
pile-on is preferable as it indicates that pickers can collect more units from each pod during their visits to a 
picking station, reducing the number of times pods need to be moved between picking stations and storage 
areas.  

There are several approaches that previous studies have proposed. Xie et al. (2021) solve the pick order 
assignment problem with a mixed integer programming approach. Zhang et al. (2022) also represent the 
order-picking problem as mixed-integer non-linear programming and solve it using a variable neighborhood 
search algorithm. Teck et al. (2023) evaluate a decentral single-item auction mechanism, greedy look-ahead 
heuristic, regret-based task selection, and Lin-Kernighan-Helsgaun heuristics using a simulation approach 
to find the best order-picking mechanism. Despite various approaches that have been proposed, the decision 
in the order picking problem should be made based on the order data. Therefore, this study considers a data-
driven approach to solve this problem and evaluates the proposed mechanism using simulation. Some 
previous studies in RMFS that are also based on a data-driven approach are included (Keung et al. 2021; 
Keung et al. 2022; Zhuang et al. 2022). 
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3 METHODOLOGY 

3.1 System Process Flow 

This study focuses on the order-picking process in the RMFS warehouse. In this system, a set of AGV 
robots are pickers bringing the products to the picking stations. An order triggers the picking process. When 
an order is received, the order picking system assigns the order to a picking station, determines pods that 
should be delivered to the designated picking station, and assign an available AGV robot to move the pod 
from the storage area to the picking station and back again to the storage area. Figure 1 illustrates the order-
picking process in the RMFS.  

 

Figure 1: Order picking process in robotic mobile fulfillment system process flow. 

The elements of the model in the RMFS are as follows: 
 
 The input of the RMFS warehouse system is the order. The order arrival time and the list of SKUs 

in each order are the stochastic part of this system. In this simulation, the order arrival and list of 
SKUs in each order are generated based on a Poisson distribution.  

 SKU-to-pod assignment means assigning and storing the SKUs inside different pods to maximize 
the pod’s utility. This inventory strategy task involves dividing and classifying the SKUs based on 
the chosen rule. In this study, the inventory strategy applies the ABC rule classification to store the 
SKUs in the warehouse. The proportion of the number of units is 60 % class A, 25 % class B, and 
15 % class C. The storage arrangement follows a mixed-storage sharing policy, so each pod has 
different SKUs and types.  

 After orders have arrived in the system, an order to pod assignment is performed, assigning the 
orders to picking stations and generating a list of pods that can fulfill the order. A pod might satisfy 
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more than one order. In terms of assigning the order to the pod, the most pile-on rule is implemented 
in this system.  

 After receiving orders, the system assigns the order to a specific picking station and generates a 
pod sequence to fulfill the orders. One pod can be assigned to fulfill more than one order. Likewise, 
one or more pods can complete one order. Regarding several pods needing to fulfill one order, the 
sequence of the selected pods indicates the pod priorities to be picked to fulfill the order.  

 In the robot to pod assignment, AGVs will be allocated to the chosen pods based on proximity and 
earliest due date. Twice as many available AGVs are taken from the list of chosen pods and 
assigned to selected pods. However, the distance between the AGV and the chosen pod is computed 
using the Manhattan distance, and the Hungarian method is used to determine the assignment. 

 The robot routing policy employs a simple routing with a traffic control policy as proposed in 
(Zhang et al. 2018) The traffic policy used is congestion and collision avoidance. This primary 
method in AGV routing allows for having a minimal route without path planning to reduce the 
calculation time. 

 The robot to workstation assignment (picking/replenishment station) is determined by the minimal 
number of AGVs waiting in a line. It is related to how many AGVs need to be processed when the 
robot reaches the highway in the storage area before traveling to the picking station.  

 After a pod finishes its task in the order picking or replenishment station, a robot to storage 
assignment has to performed to place it within the storage area in the nearest available empty 
location. 

 After the pod finishes its task in a specific order-picking station, the system will check the pod 
inventory level. If the inventory level falls below the minimum inventory limit, it requires a pod 
replenishment. Then, the designated AGV will directly carry this pod to the replenishment station.  

 
In the RMFS warehouse, the picking station has a given bin capacity. Each bin can only be used for 

one order. In this study, the system also utilizes an order batching system based on batching time. At every 
batching time, the orders in the order pool will be released and assigned to the picking station. This study 
improves the order batching process and order-to-pod scenarios for a more efficient order-picking process.  

3.1.1 Order Batching and Order Assignment for the Proposed Model 

In the proposed model, the order grouping model classifies orders into batches based on the similarity of 
SKU types, as measured using the Jaccard Index as shown in Equation (1), where 𝐽 is the similarity 
between order A and B, 𝐴 is a set of SKU in order A, and 𝐵 is a set of SKU in order B (Tan et al. 2013). 
After calculating the similarity of the orders, the model follows a clustering approach to group orders into 
batches, with the number of picking stations serving as the number of batches required. 

 

 𝐽 ൌ
|∩|

|∪|
 (1) 

 
In the proposed model, the number of batches will be the same as the number of picking stations in the 

warehouse. All orders that arrive in the system during a specific period will be grouped based on their 
SKU’s similarity to a picking station. The number of batches will be adjusted based on the number of idle 
picking stations at a given time, and the number of orders assigned to each batch will be adjusted based on 
the available capacity of the slot-picking stations. This approach represents the actual situation in the RMFS 
warehouse, where orders are immediately processed and exit the system after being picked. Additionally, 
this approach increases the system’s utilisation by avoiding idle slots and allowing for continuous 
processing of orders rather than waiting for all orders to be completed before moving on to the next 
assignment. The proposed model allows the system to adjust the number of batches and the number of 
orders in each batch as needed. 
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The system starts when it receives an order and then checks if there is sufficient inventory for each 
order. If the order can be fulfilled with the current system inventory, the system can process the order for 
the assignment part. Otherwise, if there is an insufficient quantity of SKU in the pod for an order, the order 
will be kept in the order pool. Then, the system will identify which picking station is available for the new 
assignment, how many picking stations are free, and how much capacity is available for placing a new order 
assignment. Then, the system will identify the bin and station availability in the assignment process. Figure 
2 gives the flowchart for the proposed model. 

 

Figure 2: System flowchart for the proposed model. 

3.1.2 Order Batching and Order Assignment for the Baseline Model 

For the baseline model, the order batching will apply the random rule to allocate the order into the same 
batch. This random rule is used as a baseline for comparison with the proposed model that uses the similarity 
rule. The baseline model uses an arbitrary rule to assign the order to the designated picking station. Then, 
the system assigns the most pile-on pods to fulfill the order and deliver it to the designated picking station. 
Figure 3 defines the flowchart for the baseline model. 
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Figure 3: System flowchart for the baseline model. 
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3.2 Simulation Configuration 

This study develops the simulation in NetLogo and Python. The main input in this simulation includes the 
warehouse layout, AGVs, pods, order, picking, and replenishment station configuration. Table 1 lists the 
parameters used in the simulation, while Figure 4 shows the simulation layout used in this study. The 
warehouse layout includes picking stations, a storage area, and replenishment stations. Picking stations with 
pickers and queue lines are at the top of the layout. There is a storage room holding pods carrying SKUs in 
the central part. A pod with a distinctive color indicates that it has been allocated to orders that an AGV 
will pick in the future. The vacant storage space with the blank square inside the pods means that the AGV 
might return the pod to that spot once it has been selected. An AGV can operate in a one-way aisle and go 
underneath the pod without direction. Within the aisle, the AGV can only move forward or stop. When it 
reaches a junction, it might turn towards the next aisle. Near the workstations, two-lane highways provide 
many routes to and from the workstations. According to their roles, there are two kinds of AGVs, which 
may be categorized as picking AGVs and replenishment AGVs. At the bottom of the layout, there are 
replenishment stations and queue tracks.  

 

Figure 4: Simulation layout. 

Table 1: Simulation parameter setting. 

Parameter Value 
Inventory Area 1,050 locations 
Inventory Capacity 999 pods 
Empty Storage Area 51 locations 
Pod Batch 2 x 5 blocks 
Aisles 16 vertical aisles; 8 horizontal aisles 
Stations 5 picking stations; 2 replenishment stations; 7 charging stations 
Order Line Multi-line orders 
Initial Orders 100 orders 
Capacity 100 units 

SKU Distribution 
Class A = 0-893 (10 %) SKUs; Class B = 894-3575 (30 %) SKUs; 
Class C = 3576-8938 (60 %) SKUs 

SKUs/pod 20 SKUs (ABC mixed class storage policy) 
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Parameter Value 
Number of AGVs 50 AGVs 
AGV Speed 1.5 m/s (load), 2 m/s (no load) 
AGVAcceleration/Deceleration 1 m/s 
Time to Lift and Store Pod 4 s 
AGV to Pod Policy Shortest pod 
Queuing per Station 12 AGVs 
Picking Time 10 
Picking Policy  Random; similarity-based order batching and order assignment 
Replication  30 replications for each scenario 
Replenishment Time 20 
Warehouse Inventory Level 60 % 
Pod Inventory Level 90 % 

3.3 Performance Analysis  

The system performance evaluation involves comparing simulation results of different scenarios using a 
statistical test. Furthermore, a sensitivity analysis experiment with several parameter changes is conducted 
to examine the best scenario’s robustness. In order to evaluate the performance of the warehouse simulation, 
this study uses several indicators to compare the impacts of different scenarios resulting from the simu-
lation. The performance criteria used in this study are the pile-on value, the percentage of the number of 
pods transported in a specific period , and the throughput efficiency. 

The pile-on ሺ𝑝𝑜ሻ value is the average number of order items picked in one pod. It is calculated by the 
throughput rate (𝑇𝑅௧) and the number of picked pods (𝑛𝑝௧) in period t (Equ. 2). 

 

  𝑝𝑜 ൌ  
்ோ


  (2) 

 
As defined in (3), the percentage of the number of pods transported in a specific period t  (𝑃) is the 

number of pods picked (𝑛𝑝௧) divided by the total number of pods (𝑃).  
 

 𝑃 ൌ  



 𝑥 100  (3) 

 
The throughput efficiency at period 𝑡 ሺ𝑇𝐸𝑡ሻ can be calculated by dividing the order rate (𝑂𝑅௧) and 

throughput rate (𝑇𝑅௧) in period t, as shown in (Equ. 4). The order rate is the total number of arriving orders 
in the system at period t, while the throughput shows how many orders can be fulfilled in period t. Based 
on this statement, the throughput efficiency represents how effectively the orders can be finished within the 
period t.  

 

 𝑇𝐸௧ ൌ  
்ோ
ைோ

 (4) 

 
This study aims to increase the total throughput by maximizing the pile-on and minimizing the total 

number of pods needed for fulfilling the order. The pile-on number represents a pod’s levels of utility since 
a high pile-on value indicates that a pod can fill more SKUs in a single trip. The better the pile-on value, 
the more likely the order list can be fulfilled fast. Generally, the pile-on value is also related to the number 
of pods required to satisfy orders, because the larger the pile-on number, the fewer pods will be needed to 
finish the order list. As a result, there are fewer pods transported to the picking station and the AGVs do 
not have to move as much throughout the warehouse. Also, fewer pods delivered must optimize pod use to 
ensure warehouse throughput efficiency. 
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4 EXPERIMENTAL RESULTS 

This study generates a dataset including the orders and pods for the simulation. There are 1,803 orders and 
8,939 SKUs. The results in Table 2 show that the proposed model needs fewer pods to fulfill the order. The 
proposed model outperforms and is competitive compared with the baseline scenario. Using similarity-
based order batching and the order assignment model can decrease the average number of pods needed by 
40 %. These results are in line with the pods’ utilization percentage, i.e., the number of pods needed divided 
by the total number of pods in the warehouse.  

Furthermore, putting the order with the highest similarity into the same batch has proven to increase 
the pile-on value of the system, since it allows the simulation to achieve an almost 70 % better pile-on 
compared with the baseline scenario. The proposed model also sequences the order assignment to the station 
based on the similarity, with a higher chance of similar orders being processed concurrently. This strategy 
helped the system achieve a higher throughput of around 3 % by assigning similar orders concurrently 
within the batch and considering the active order in the picking station before assigning the batch. This 
order assignment strategy increases the possibility that every order or batch of orders goes to the picking 
station with the most similar order. It helps to maximize the pile-on, minimize the pod movement, and 
decrease the service time for each order fulfillment.  

In addition, this study applies a statistical test to analyze the differences between the proposed and the 
baseline model. The normality test result using the Shapio-Wilk and Komogorov-Smirnov tests (Table 3) 
shows that most simulation results follow the normal distribution except for the throughput efficiency. 
Therefore, a mean comparison analysis for the percentage number of pods and pile-on is conducted using 
the Wilcoxon sum-ranked test, while the throughput efficiency uses the T-test. The results show that the 
proposed model significantly differs for all evaluation criteria from the baseline.  

Table 2: Experiment result for the baseline (Base) and the proposed (Prop) model.  

Metric 
  

Performance Measure 
Number of pods 

(𝒏𝒑𝒕) 
% Number of 

pods (𝑷𝒏𝒑) 
Throughput 

efficiency (𝑻𝑬𝒕) 
Pile-on (𝒑𝒐) 

Base Prop Base Prop Base Prop Base Prop 
Average 543 323.5 54.351 32.379 92.754 95.710 2.387 4.044 
Standard 
deviation 

6.074 23.238 0.609 2.325 1.438 1.385 0.023 0.443 

Min 531 215 53.15 21.52 89.29 93.3 2.33 3.57 
Max 558 349 55.86 34.93 94.76 99.28 2.44 6.2 
Gap 40.33 % 40.42 % -3.19 % -69.03 % 

Table 3: Statistic test result (P-value). 

Data Shapiro-Wilk Kolmogorov-Smirnov Levene-Test 

Percentage number of pods (baseline) > 0.10 > 0.15 
0.085 

Percentage number of pods (proposed) < 0.01 < 0.01 

Throughput efficiency (baseline) > 0.10 > 0.15 
0.021 

Throughput efficiency (proposed)    0.09  0.128 

Pile-on (baseline) > 0.10 < 0.01 
0.077 

Pile-on (proposed) < 0.01 < 0.01 
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This study conducts a further analysis to evaluate different parameter settings to the results. The 
sensitivity analysis is conducted for four different parameters: the number of picking stations, picking 
station capacity, batching time, and number of AGVs. The detailed results are listed in Table 4.  

Table 4: Sensitivity analysis results comparison. 

Parameter Value 
Performance Measure 

Number of 
pods (𝒏𝒑𝒕) 

% Number of 
pods (𝑷𝒏𝒑)  

Throughput 
efficiency (𝑻𝑬𝒕) 

Pile-on 
(𝒑𝒐) 

Picking station 

2 250 25.03 57.89 3.72 
3 295 29.53 69.38 3.64 
4 328 32.83 93.30 2.39 
5 543 32.43 95.93 4.01 
6 326 32.63 96.41 4.00 

Station capacity 

8 323 32.33 94.50 4.04 
12 332 33.23 93.30 3.90 
16 543 32.43 95.93 4.01 
20 326 32.63 94.26 3.98 
24 320 32.03 96.41 4.08 

Batching time 

5 324 32.43 95.93 4.01 
10 315 31.53 80.38 3.76 
15 240 24.02 48.09 3.75 
20 259 25.93 44.74 3.47 
25 225 22.52 33.73 3.34 

Number of 
AGVs 

25 323 32.33 96.89 4.02 
40 323 32.33 94.50 4.04 
50 324 32.43 95.93 4.01 
75 326 32.63 93.54 3.98 

100 317 31.73 84.21 3.83 
 
Based on the results in Table 4, increasing the number of picking stations increases the percentage of 

throughput efficiency significantly. However, adding picking stations without significant improvement may 
increase investments and operational cost. Furthermore, the percentage of pods needed for all numbers of 
picking stations is not significantly different. In terms of the pile-on value, five picking stations achieve the 
highest pile-on.  

A higher picking station capacity allows the station to process more orders concurrently and increase 
the total warehouse throughput. The results show that changing the station capacity affects the warehouse’s 
performance. The throughput efficiency increase is aligned with the increase in picking station capacity. 
The highest station capacity achieves the highest pile-on.  

Table 4 shows that shorter batching times can increase the order-picking efficiency in an RMFS 
warehouse. A longer batching time allows the system to gather more orders before assigning them to the 
picking station. However, a longer picking time might lead the picking station to idle longer. 

A high total number of AGVs in the warehouse allows the system to undergo more tasks and finish 
more orders. However, a high total number of AGVs may cause traffic congestion. Table 4 shows that the 
throughput efficiency, pile-on value, and percentage number of pods needed with different numbers of 
AGVs have slight differences. The results show that the number of AGVs will increase the system’s 
performance until a specific point. Behind this point, adding robots does not always have a positive impact. 
The management should critically assess adding AGVs in the warehouse, since higher AGVs lead to high 
investment, operational, and maintenance cost.  
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5 CONCLUSION  

Order picking is a critical operation that significantly impacts the overall efficiency and productivity of the 
RMFS warehouse. Managing the order-picking assignment is one of the most challenging problems of 
implementing RMFS for the order-picking warehouse. POA is the decision problem related to assigning 
orders to the picking station. This study proposes a POA strategy and evaluates the proposed model using 
a simulation approach. The proposed model uses a similarity-based order batching rule to improve the 
system’s performance. The order grouping rule uses the Jaccard index as a similarity measurement for 
assigning the most similar order in the same batch.  

The simulation shows that the proposed model outperforms the baseline model. The similarity grouping 
and order assignment rule proposed in this study are competitive enough to capture the real warehouse with 
its dynamic environment. Based on the statistical test, it is 95 % proven that there is a significant difference 
between the baseline and the proposed model for all evaluation criteria. The simulation results also show 
that the proposed model could reduce the pods needed for fulfilling orders by around 40 %. Also, it can 
increase the throughput by around 4 % by maximizing the pile-on to almost 60 % higher than the baseline 
results. 

Furthermore, the sensitivity results show that increasing the number of picking stations can increase 
the performance significantly. However, after a certain number of picking stations, the improvement might 
not be significant anymore. In this study, increasing the number of picking stations from three to four 
improves the performance significantly. Conversely, increasing the number of picking stations from four 
to five does not improve the performance significantly. Increasing the station capacity positively influences 
performance, because higher station capacities allow more orders to be processed concurrently. Besides, 
the number of batching times is sensitive to the system’s performance. Finally, the number of AGVs 
increases the performance within a limit. Adding more of them might not affect the performance 
significantly, since the system has already reached convergence.  

To enhance the analysis, further studies should consider batching the orders and considering the SKUs 
in pod affinity. Other evaluation criteria should be considered, e.g., the number of tasks or service level 
criteria, since the company also needs to maintain customer satisfaction to compete with other companies. 
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