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ABSTRACT

This paper estimates the intensity function of a nonhomogeneous Poisson process (NHPP) using a spline-
based method with constrained quadratic programming (CQP). Based on the property of B-splines, we
transform the estimation problem into an optimization problem and apply CQP to obtain the estimated
intensity function with low computational expense. Numerical experiments are conducted to verify the
performance of our method. In addition, the impacts of the number of intervals from event-count data and
the number of knots in B-splines are also discussed to explore the properties of spline-based models.

1 INTRODUCTION

Nonhomogeneous Poisson processes (NHPP) are widely used for modeling stochastic systems that exhibit
non-steady event occurrences that are time-dependent. Their advantages over simple Poisson processes
with constant rates are preferred in various scenarios, such as modeling incoming traffic stream (Bowman
and Miller 2016) and simulating call center and hospital arrivals (Kim and Whitt 2014). An NHPP can be
generalized from a homogeneous Poisson process by replacing the invariant arrival rate λ with an intensity
function λ (t) that varies with time t. Its integral function Λ(t) =

∫ t
0 λ (s)ds where t > 0 represents the

nondecreasing cumulative intensity function. The number of events that occur during the time interval
(t, t +∆t] follows a Poisson distribution with expected mean of Λ(t +∆t)−Λ(t).

Building a realistic model necessitates the utilization of data-based stochastic simulations that strike a
delicate balance between achieving high accuracy and minimizing computational costs. These simulations
leverage extensive datasets to accurately capture the complexities and stochastic nature of real-world
systems, allowing for the generation of realistic and representative models. By carefully optimizing the
simulation techniques, researchers can obtain accurate results while ensuring computational efficiency,
enabling practical implementation and analysis of the model. In order to improve the performance of
simulation methods, efficient estimation strategies for the intensify function are necessary and have been
extensive investigated. Parametric estimations for NHPP mainly relies on the maximum likelihood and
least-squares approaches (Lee et al. 1991; Zheng and Glynn 2017; Morgan et al. 2019). These methods can
provide efficient estimations with fewer data points and offer interpretable parameter estimates. However,
they heavily rely on the correctness of the assumed parametric form and may struggle to capture complex
patterns or irregularities in the intensity function. On the other hand, nonparametric methods provide
flexibility and robustness by making fewer assumptions about the form of the intensity function. Although
they may have higher computation complexity and produce less interpretable estimates, nonparametric
models can capture complex patterns well and are less sensitive to model misspecification, which has been
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the focus of several recent studies. Henderson (2003) estimates the piecewise-constant intensity function
using event-count data and presents its asymptotic properties. Such theoretical results are developed to a
systematic nonparametric estimation procedure and a simulation algorithm in Leemis (2004). Based on the
mean-constrained premise (Chen and Schmeiser 2013), Nicol and Leemis (2014) introduced I-SMOOTH to
modify the intensity function from the piecewise constant form to the piecewise linear form, which ensures
the continuity of λ (t). Moreover, the derivability and smoothness have also gained increasing attention.
Max nonnegativity ordering piecewise-quadratic rate smoothing (MNO-PQRS) is proposed by Chen and
Schmeiser (2017) to estimate λ (t) in piecewise quadratic forms.

In some applications, higher degree of smoothness for the intensity function, for instance, twice
differentiable everywhere, may be required. One of the ways to achieve this is to use splines, which are
higher degree piecewise polynomials, but determining the optimal coefficients for higher degree polynomials
can be computationally expensive. Morgan et al. (2019) consider spline functions as the basic functions to
estimate the intensity function for NHPP. To simplify calculations, a trust region algorithm is employed to
obtain near optimal coefficients; however, obtaining the hessian matrix and its inverse version of the penalised
likelihood function still necessitates extensive computations. Therefore, the spline-based estimation model
for NHPP intensities lack efficient techniques to reduce computation complexity.

This paper focuses on fitting the spline-based Poisson intensities using constrained quadratic program-
ming (CQP), which can derive the optimal estimated intensity function with high accuracy and efficiency.
We assume that the interval count data is given prior to estimation since the event-count data usually require
less storage and can be more easily obtained in comparison with the arrival time data (the time data also can
be aggregated to the event-count data). The rest of the paper is organized as follows. Section 2 describes
the procedures for formulating the estimation problem for NHPP based on B-splines. In Section 3, the
process of computing the optimal coefficients of the spline-based intensity function is transformed into a
tractable CQP. Section 4 details the calculation of the integrals. Numerical experiments are implemented
to verify the effectiveness of our methods in Section 5 and Section 6 concludes the paper.

2 FORMULATING THE B-SPLINE INTENSITIES

Suppose z independent and identically distributed (i.i.d.) nonhomogenous Poisson processes N1,N2, · · · ,Nz
over the time interval [Tinit ,Tend ] have been observed. To improve the smoothness of the estimated
intensity function, we consider a spline-based intensity λ (t) based on the sequence of ordered knots
Tk = {T−k,T−k+1, · · · ,Tm−2,Tm−1}, where k represents the degree of the spline function and 0 = T−k ≤
T−k+1 ≤ ·· · ≤ Tm−2 ≤ Tm−1 = Tend . The positions of these knots depend on the types of B-splines. For
open uniform B-splines, all knots are distributed uniformly with a constant interval δ = Ti − Ti−1, i =
−k+ 1,−k+ 2, · · · ,m− 1 (cf. Morgan et al. (2019)). As the uniform B-splines can exhibit overshoot
or undershoot behavior at the boundaries, the clamped B-spline can be adopted instead to ensure the
function reaches zero beyond the endpoints of the data smoothly. Clamped B-splines repeat the knots
at the end points k − 1 times, which is denoted by Tinit = T−k = T−k+1 = · · · = T−⌊k/2⌋−1 ≤ T−⌊k/2⌋ ≤
·· · ≤ Tm−⌊k/2⌋+1 = · · · = Tm−1 = Tend where ⌊·⌋ is the floor function. In this case, the interval becomes
δ = Ti −Ti−1, i = −⌊k/2⌋+ 1,−⌊k/2⌋+ 2, · · · ,m−⌊k/2⌋+ 1. For a normalized B-spline function Bk(t),
the intensity function λ (t) is given by

λ (t) =
m−1

∑
j=−k

c jBk(
t −Tj

δ
),

where ci ∈ R, i = −k,−k+1, · · · ,m−1 are the weighting coefficients. More specifically, the normalized
B-spline function of degree k is Bk(t) = Sk−l,k(t − l) when l ≤ t < l + 1 for l = 0,1, · · · ,k; otherwise it
is equal to 0. In the spline function, Sl,k(t − l) denotes the basis element. Based on the initialization
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S0,0(t) = 1, Sl, j(t) can be calculated recursively using the following function

Sl, j(t) =
j− l + t

j
Sl−1 j−1(t)+

1+ l − t
j

Sl, j−1(t),

where l = 1,2, · · · , j − 1 and j = 0,1, · · · ,k. For l = 0 and l = j, the basic elements are obtained by
S0, j(t) = 1−t

j S0, j−1(t) and S j, j(t) = t
j S j−1, j−1(t), respectively.

Once the knot sequence Tk is determined, the m+ k B-splines are fixed. Since it is non-conducive to
calculate each B-spline at a certain time point t through the traditional recursive algorithm, Kano et al.
(2011) propose a transformation of the recursive algorithm into a matrix multiplication between a constant
matrix Mk and a vector comprising polynomial terms qk(t). The basic element can be written by

Sk(t) = Mkqk(t),

where
qk(t) = [tk, tk−1, · · · ,1]T ,Sk(t) = [S0,k(t),S1,k(t), · · · ,Sk,k(t)]T .

Based on Kano et al. (2011), Mk can be obtained by

Mi =
1
i
([0i+1 ΓiMi−1]+ [∆iMi−1 0i+1]),

where M0 = 1, and 0i+1 denotes a (i+1)-dimension zero vector. Γi,∆i ∈ R(i+1)×i are defined as

Γi =



1
i−1 2

i−2 3
. . . . . .

. . . . . .
1 i
0 0


,∆i =



−1
1 −1

1 −1
. . . . . .

. . . . . .
1 −1

1


.

Note that here the results from Kano et al. (2011) are directly applied to the estimation problem
of NHPP. Since the m+ k B-splines are fixed after the knot sequence Tk is determined, the shape of a
spline-based λ (t) merely depends on the weighting coefficients. The following section will describe the
detailed procedures of choosing optimal weighting coefficients ci in our model according to the given
event-count data.

3 ESTIMATING THE WEIGHTING COEFFICIENTS

Suppose that the numbers of arrivals over the time period (Ti−1,Ti], i = −k,−k + 1, · · · ,m− 1 in h-
th realization are recorded as Nh(ti,0, ti,1],Nh(ti,1, ti,2], · · · ,Nh(ti,ζi−1 , ti,ζi ] where Nh(ti, j−1, ti, j] represents the
event counts in (ti, j−1, ti, j], j = 1,2, · · · ,ζi. We use ζi to denote the number of equal time intervals from
the dataset during (Ti−1,Ti]. Note that (ti, j−1, ti, j] is one of the subintervals in (Ti−1,Ti] and Ti−1 = ti,0 ≤
ti,1 ≤ ·· · ≤ ti,ζi−1 ≤ ti,ζi = Ti.

Since the weighting coefficient ci should ensure the accuracy of the estimated intensity function, this
section takes the ordinary least squares (OLS) into account to establish the cost function W (c). The
mean square error loss function is defined based on the mean constraint property of NHPP, which is
E(Nh(ti, j−1, ti, j]) =

∫ ti, j
ti, j−1 λ (s)ds. Hence, the first term in the objective function is

β
′
1(c) =

m−1

∑
i=−k

ζi

∑
j=1

1
z

z

∑
h=1

(
Nh(ti, j−1, ti, j]−

∫ ti, j

ti, j−1

λ (s;c)ds
)2

.
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This term is inspired by the objective function in Zheng and Glynn (2017) that utilizes OLS on the piecewise
linear intensities. We modify β

′
1(c) to facilitate the construction of the quadratic cost function in our model.

Corollary 1 Minimizing β
′
1(c) is equivalent to minimizing β1(c) which is

β1(c) =
m−1

∑
i=−k

ζi

∑
j=1

(
1
z

z

∑
h=1

Nh(ti, j−1, ti, j]−
∫ ti, j

ti, j−1

λ (s;c)ds
)2

.

Proof. See Appendix A

To ensure smoothness and to prevent abrupt changes in the estimated intensity function, the square
of second derivative is used to avoid over-fitting. This kind of penalization has been also adopted in
spline-based intensities of NHPP with penalized likelihood method (Morgan et al. 2019). Thus, the second
term in our objective function is

β2(c) =
m−1

∑
i=−k

ζi

∑
j=1

α

∫ ti, j

ti, j−1

(
λ
(2)(s;c)

)2ds,

where α represents the smoothing parameter. Considering both the accuracy and smoothness of the
estimated intensities, we use the summation of the two terms as the cost function W (c) = β1(c)+β2(c)
where c = [c−k,c−k+1, · · · ,cm−2,cm−1]

T . For the purpose of computing the optimal c, this cost function
can be rewritten as a quadratic function

W (c) = cT Gc−2gT c+ γ, (1)

where

G = IbΦIT
b +αQ, g = IbΦN̄, γ = N̄T

ΦN̄,

with

Ib =
[
Ib(−k,1), Ib(−k,2), · · · , Ib(−k,ζ−k), · · · , Ib(m−1,1), Ib(m−1,2), · · · , Ib(m−1,ζm−1)

]
,

Ib(i, j) =

[∫ ti, j

ti, j−1

Bk(
1
δ
(x−T−k))dx,

∫ ti, j

ti, j−1

Bk(
1
δ
(x−T−k+1))dx, · · · ,

∫ ti, j

ti, j−1

Bk(
1
δ
(x−Tm−1))dx

]T

N̄ =

[
1
z

z

∑
h=1

Nh(t−k,0, t−k,1],
1
z

z

∑
h=1

Nh(t−k,1, t−k,2], · · · ,
1
z

z

∑
h=1

Nh(t−k,ζ−k−1, t−k,ζ−k
], · · · ,

1
z

z

∑
h=1

Nh(tm−1,0, tm−1,1], · · · ,
1
z

z

∑
h=1

Nh(tm−1,1, tm−1,2], · · · ,
1
z

z

∑
h=1

Nh(tm−1,ζm−1−1, tm−1,ζm−1 ]

]
.

Notice that Φ in (1) is a square diagonal matrix with ∑
m−1
i=−k ζi rows, and its diagonal element equals to 1/z.

The smoothness penalty term is represented by the gramian Q =
∫ tn

t0
d2b(t)

dt2
d2bT (t)

dt2 dt. It can be approximated
by using the results in Kano et al. (2005).

Based on the above definitions, each term of W (c) except c is a constant when the interval count data
is given. Quadratic programming techniques can be employed by minimizing the quadratic cost function
to obtain the optimal value of c efficiently. With the optimal coefficient c∗, the estimated intensity function
is expressed by

λ (t) = (c∗)T b(t),

where
b(t) = [Bk(

1
δ
(t −T−k)),Bk(

1
δ
(t −T−k+1)), · · · ,Bk(

1
δ
(t −Tm−1))]

T .

Since the intensity function is nonnegative everywhere, the solution searching range for c is limited
to the interval [0,∞). Therefore, the whole estimation problem can be viewed as a constrained quadratic
programming problem, which can be solved with relative ease.
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4 CALCULATING INTEGRALS

We see that Ib(i) consists of the integrals of B-splines over (ti, j−1, ti, j]. Using the matrix multiplication
version for computing the basic elements of B-splines, we can also denote their integral in matrix form by
modifying the vector comprised of polynomial terms. The integral of each element in qk(t)) is

∫ ti, j

ti, j−1

qk(t)dt =


1

k+1
1
k

. . .
1
2

1




tk

tk−1

...
t
1

 t|ti, jti, j−1 = Dktqk(t)|
ti, j
ti, j−1 , (2)

From (2), the integral of the basic element of B-splines can be derived by
∫ ti, j

ti, j−1 Sk(t)dt = MkDktqk(t)|
ti, j
ti, j−1 .

Each basis function has non-zero values over only a small interval of the curve, which is identified as the
local support property in B-splines. Consequently, the integral of Bk(

1
δ
(s−Tl)) is affected by different

event-count datasets and selections of knots. The calculations of the B-spline integrals for t ∈ (ti, j−1, ti, j]
are divided into three cases.

1. Case 1: 0 ≤ 1
δ
(ti, j−1 −Tl)< k+1.

Suppose that j0 satisfies j0 ≤ 1
δ
(ti, j−1 −Tl)< j0 +1 and ∆T = min{⌊ ti, j−ti, j−1

δ
⌋,m− l − j0,k− j0}.

When ∆T > 0, we have

∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds =

ξ=0

∑
∆T−1

[δMkDkqk(1)]k− j0+1−ξ +[δMkDk(
ti, j −Tl

δ
− j0 −∆T )

×qk(
ti, j −Tl

δ
− j0 −∆T )]k− j0−∆T+1 − [δMkDk(

ti, j −Tl

δ
− j0)qk(

ti, j −Tl

δ
− j0)]k− j0+1;

When ∆T = 0, ⌊ ti, j−ti, j−1
δ

⌋= 0 and∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds = [δMkDk

(
(
ti, j −Tl

δ
− j0)qk(

ti, j −Tl

δ
− j0)

−(
ti, j−1 −Tl

δ
− j0)qk(

ti, j−1 −Tl

δ
− j0)

)
]k− j0+1;

When T = 0, ⌊ ti, j−ti, j−1
δ

⌋ ̸= 0 and∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds = [δMkDk

(
qk(1)− (

ti, j−1 −Tl

δ
− j0)qk(

ti, j−1 −Tl

δ
− j0)

)
]k− j0+1.

2. Case 2: 1
δ
(ti, j−1 −Tl)≥ k+1 or 1

δ
(ti, j −Tl)≤ 0. We have∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds = 0.

3. Case 3: 1
δ
(ti, j−1 −Tl)< 0.

Suppose that ∆T = min{⌊ ti, j−ti, j−1
δ

⌋,k,m− l}. When ti, j−Tl
δ

< k+1,

∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds= [δMkDk(

ti, j −Tl

δ
−∆T )qk(

ti, j −Tl

δ
−∆T )]k−∆T+1+

∆T−1

∑
ξ=0

[δMkDkqk(1)]k−ξ+1;

343



Chen, Xi, and Chan

When ti, j−Tl
δ

≥ k+1, ∫ ti, j

ti, j−1

Bk(
1
δ
(s−Tl))ds =

∆T

∑
ξ=0

[δMkDkqk(1)]k−ξ+1

5 PERFORMANCE

This section presents numerical experiments to validate the effectiveness of our method and compare its
performance with that of two alternative estimation algorithms, I-SMOOTH (Nicol and Leemis 2014)
and MNO-PQRS (Chen and Schmeiser 2017), based on the interval counts data. I-SMOOTH considers a
piecewise linear function as the basic form of intensities, but ignores the smoothness of the intensity functions.
MNO-PQRS focuses on tackling the drawback of I-SMOOTH, and considers smoothing intensities on the
basis of a piecewise quadratic function.

For spline-based model with CQP, different types of splines with different knot positions are also
investigated. In the experiments, we consider both uniform splines and clamped splines. The former
predetermines the knots embedded in splines as T−3 ≤ T−2 ≤ T−1 · · · ≤ Tm−2 ≤ Tm−1, where Ti−Ti−1 remains
constant for any i = −2, · · · ,m− 1. The latter designs the knots by T−3 = T−2 ≤ T−1 · · · ≤ Tm−2 = Tm−1,
where all Ti −Ti−1’s have the same values for any i = −1, · · · ,m−2; there are k−1 points equal to the
boundary points. For simplicity, the uniform splines and clamped spline-based methods are denoted by
UBspline-CQP and CBspline-CQP, respectively.

To generate event-count data in numerical experiments, NHPPs are simulated using a thinning algorithm
based on a true intensity function λ ∗(t). Four methods, UBspline-CQP, CBspline-CQP, I-SMOOTH and
MNO-PQRS, are applied to the generated data to compute the estimated intensity function λ̂ (t). Compared
to other estimation methods, spline-based strategies are able to estimate intensities with higher continuity
and smoothness. To validate this advantage, we consider a smooth cosinusoidal function λ ∗

1 (t) given by

λ
∗
1 (t) = 8−5cos(

π

4
t), t ∈ [0,16].

Furthermore, our simulations adopt a piecewise linear function λ ∗
2 (t) to evaluate the performance of

UBspline-CQP and CBspline-CQP on nonsmooth functions. This function is given by

λ
∗
2 (t) =


5+ 5

4 t, t ∈ [0,4),
10− 5

4(t −4), t ∈ [4,8),
5− 5

8(t −8), t ∈ [8,12),
5
2 +

5
8(t −12), t ∈ [12,16).

Notice that t−k,1 = 0 and tm−1,ζ−k
= 16 in both cases.

The differences between the estimated function and the true intensity function are applied as metrics to
measure the performance of a method. For the purpose of this study, we use the integrated absolute difference
L1 = d1(λ̂ (t),λ ∗(t)) =

∫ Tm−1
T−k

|λ̂ (t)−λ ∗(t)|dt and the maximum absolute difference L∞ = d2(λ̂ (t),λ ∗(t)) =

maxt∈[T−k,Tm−1] |λ̂ (t)−λ ∗(t)|. Fifty independent replications are conducted in experiments, and the final
results are determined by calculating the averages of L1(λ̂ (t),λ ∗(t)) and L2(λ̂ (t),λ ∗(t)). Each replication
is comprised of five realizations which can be regarded as five NHPP samples. The smoothing parameter
is set to be α = 0.01 in all simulations.

5.1 Comparison of the Four Methods

We first generate event-count data with 20 intervals by the thinning algorithm; then, the cubic spline-based
methods: UBspline-CQP and CBspline-CQP (based on 20 knots), as well as the classical methods from
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the literature: I-SMOOTH and MNO-PQRS, are all applied to estimate the intensity function. In Figure
1, each subplot showcases the true intensity function λ ∗

1 (t) (black) and 50 estimated functions (colored)
based on the generated data. The differences L1 and L∞ are presented in the titles of each subplot. The
spline-based strategies perform better because of the smoothness and stability of their estimated functions.
Both the averaged metrics for both the uniform splines and clamped splines are very similar and further
illustrate the accuracy of our methods. On the other hand, the estimated intensities using I-SMOOTH and
MNO-PQRS are more easily influenced by noise due to more frequent and intense fluctuations. This results
in worse accuracy as seen in the larger averaged differences.
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Figure 1: Estimated Rate Functions for λ ∗
1 (t) and Averaged Metrics with Four Methods.

Next, we adopt the linear piecewise function λ ∗
2 (t) as the true intensity function. Figure 2 illustrates

the effectiveness of each method by simulation. Again, we see that both cubic spline-based intensities
using CQP still outperform the two classical methods, that is, the results are consistent with those analyzed
previously in Fig 1. This suggests that our methods are flexible and can be applied to different scenarios.
Lastly, for both λ ∗

1 (t) and λ ∗
2 (t), CBspline-CQP is able to control the estimated curve at the boundary
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points better than the UBspline-CQP, thereby preventing dramatic fluctuations. To be more specific, in
the simulations of estimating λ ∗

2 (t), the estimated intensities using UBspline-CQP ranges in (3.51,7.94)
with a standard deviation of 1.15 at the initial time, and ranges in (1.25,9.51) with a standard deviation
of 1.90 at the end time. CBspline-CQP method can have narrower ranges and smaller deviations at both
boundaries compared to those of UBspline-CQP. Its estimated values are bounded in (3.37,7.35) with a
standard deviation of 0.89 at the initial point, and bounded in (1.27,9.45) with a standard deviation of 1.89
at the end point. Similar findings can be observed in simulations when estimating λ ∗

1 (t).
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Figure 2: Estimated Rate Functions for λ ∗
2 (t) and Averaged Metrics under Four Strategies.

To compare the computational efficiency of existing methods for intensity estimations, we need to first
examine them in detail. I-SMOOTH and MNO-PQRS algorithms apply the matrix inversion to obtain the
optimal estimated intensity functions. The time complexity of matrix inversion methods, such as Gaussian
elimination or LU decomposition, is approximately O(n3), where n is the size of event-count data in one
realization. Our spline-based model transforms the whole estimation into quadratic programming. The
time complexity can vary depending on the problem size, desired accuracy, and the specific algorithm
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employed. For example, interior-point methods and active-set methods typically have time complexities of
around O((n3)log( 1

ε
)) and O(n3) respectively, where ε is the desired accuracy. The existing spline-based

method proposed by Morgan et al. (2019) uses the trust region algorithm to tackle a nonlinear optimization
problem. Since our objective function is quadratic, the spline-CQP is one of the sub-problems in the trust
region algorithm, which indicates our improvement of computational efficiency in spline-based methods.
Although the time complexity in spline-CQP is higher than that of I-SMOOTH and MNO-PQRS, we can
obtain better performance with similar time in medium- or small-scale problems. In our simulations, the
averaged implementation times of UBspline-CQP, CBspline-CQP, I-SMOOTH and MNO-PQRS are 2.13s,
1.33s, 0.04s and 0.03s, respectively. But for large-scale dataset, there exists trade off between accuracy
and computational efficiancy among all models.

5.2 Effects of NTI and NK

From previous results, we infer that inappropriate bin-size of the event-count data may causes the I-
SMOOTH and MNO-PQRS algorithms to estimate intensity functions with erratic fluctuations and poor
smoothness. In this subsection, we investigate how each estimation method is affected by the bin-size.
When the number of knots in the splines is NK = 10, we set the number of intervals to be NTI = 10,
15 and 20. Table 1 reports the integrated absolute difference and the maximum absolute difference for
each parameter combination. In most cases, our spline-based methods demonstrate better performance
than the two other methods regardless of which intensity function is used; moreover, thinner bin-size or
more intervals in data can improve the accuracy of estimation when NK is fixed to 10. In contrast, the
performances of I-SMOOTH and MNO-PQRS are very sensitive to NTI. Excessively thin intervals of
the event count data can result in significant deviation from the true intensity function. Recently, some
studies (cf. Chen and Schmeiser (2018) and Chen and Schmeiser (2019)) have observed this phenomenon
when using nonparametric techniques, i.e., I-SMOOTH and MNO-PQRS, and discuss the optimal choice
of bin-size in interval counts data.

Table 1: The Averaged Metrics under Different Numbers of Bins in Interval Counts Data.

UBspline-CQP CBspline-CQP I-SMOOTH MNO-PQRS
NK λ ∗(t) NTI L1 L∞ L1 L∞ L1 L∞ L1 L∞

10 λ ∗
1 (t) 10 13.765 2.449 16.275 2.590 15.767 3.291 14.946 3.109

15 12.728 2.405 15.481 2.527 18.629 3.987 17.990 3.529
20 12.085 2.340 15.470 2.472 20.237 4.307 19.550 4.145

λ ∗
2 (t) 10 15.725 3.999 16.832 4.562 11.985 5.026 11.683 5.000

15 14.361 4.015 15.961 4.557 14.598 5.093 14.198 5.000
20 13.796 4.059 16.236 4.546 16.661 5.178 16.262 5.020

Although the number of intervals has little impact on the accuracy of UBspline-CQP and CBspline-CQP,
different numbers of knots might create considerable variations in the averaged metrics. Therefore, we
study the effects of NK and the interactions between NTI and NK. Figure 3 and Figure 4 show the integrated
difference with varying NTI and NK using UBspline-CQP and CBspline-CQP, respectively. In the NHPP
simulations based on the true intensity λ ∗

2 (t), the NTI changes from 34 to 70, while the NK varies within
[12,30]. We see that the selection of NK can affect the performances of spline-based approaches in that
too few knots lack the flexibility to estimate relatively intricate intensity functions, while too many knots
may result in enormous deviations due to noise points. It can also be observed that NTI has a relatively
small impact on the accuracy of estimators. Both UBspline-CQP and CBspline-CQP can find an optimal
and several suboptimal combinations of NTI and NK, but they produce different patterns of interactions
between the two variables. For example, UBspline-CQP performs best when (NTI,NK)=(42,16), while
CBspline-CQP obtains the optimal accuracy when (NTI,NK)=(70,18). In addition, considering the larger
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Figure 3: The Heatmap of L1 Using UBspline-CQP
with Varying NTI and NK.

Figure 4: The Heatmap of L1 Using CBspline-CQP
with Varying NTI and NK.

variation span of integrated distance in CBspline-CQP, we find that its performance can be affected by the
choices of NTI and NK more easily compared to UBspline-CQP.

5.3 Discussions with Existing Spline-Based Method

Spline-based strategies increase the flexibility and continuity of the intensity function in NHPP. With
reasonable smoothing coefficient, NTI and NK, the accuracy and robustness of intensity estimations can
be improved. To the best of our knowledge, the existing spline-based method is the one introduced by
Morgan et al. (2019). We will summarize the differences and connections between it and our proposed
approach.

First, our spline-CQP model has higher computation efficiency than the existing spline-based method.
By minimizing the square error and considering some transformations, our objective function becomes
quadratic and can be easily tackled by quadratic programming algorithms. Morgan et al. (2019) formulates
the objective function as a nonlinear log-likelihood function without closed-form solutions. They apply
trust region algorithm which approximates the objective function as a quadratic form locally in each step;
yet the computational complexity of our model is only that of a subproblem in the very same algorithm.
Second, compared to the existing spline-based method (with only arrival time data), our spline-CQP can be
implemented based on more general-form data (both event-count data and arrival time data). Finally, Morgan
et al. (2019) puts forward an algorithm to compute the optimal parameters of spline-based intensities and
the smoothing coefficient by minimizing the RIC score. However, our model does not discuss the optimal
choice of the smoothing coefficient, which will be investigated in future work.

6 CONCLUSION

In this paper, we apply constrained quadratic programming to estimate the spline-based intensity function of
NHPPs and present detailed theoretical derivations to transform the estimation problem into an optimization
problem. Through numerical experiments, we show that this method is computationally inexpensive and
provides accurate estimations of the intensity function, even outperforming the I-SMOOTH and MNO-
PQRS algorithms in most cases. We also observe that there exist optimal combinations of NTI and NK
in both UBspline-CQP and CBspline-CQP, and the performance of CBspline-CQP can be affected more
easily by the two variables. Lastly, the differences and connections between our spline-CQP model and
the existing spline-based method on computational efficiency, input data types and optimization strategies
are also discussed.
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A PROOFS

The proof of corollary 1 is as follows.

min
c

β
′
1(c)

= min
c

m−1

∑
i=−k

ζi

∑
j=1

1
z

z

∑
h=1

(
Nh(ti, j−1, ti, j]−

∫ ti, j

ti, j−1

λ (s;c)ds
)2

= min
c

m−1

∑
i=−k

ζi

∑
j=1

1
z

z

∑
h=1

(
N2

h (ti, j−1, ti, j]−2Nh(ti, j−1, ti, j]
∫ ti, j

ti, j−1

λ (s;c)ds+(
∫ ti, j

ti, j−1

λ (s;c)ds)2
)

= min
c

m−1

∑
i=−k

ζi

∑
j=1

(
1
z

z

∑
h=1

N2
h (ti, j−1, ti, j]−2

∫ ti, j

ti, j−1

λ (s;c)ds(
1
z

z

∑
h=1

Nh(ti, j−1, ti, j])+(
∫ ti, j

ti, j−1

λ (s;c)ds)2
)

= min
c

m−1

∑
i=−k

ζi

∑
j=1

(
(
1
z

z

∑
h=1

Nh(ti, j−1, ti, j])2 −2
∫ ti, j

ti, j−1

λ (s;c)ds(
1
z

z

∑
h=1

Nh(ti, j−1, ti, j])+(
∫ ti, j

ti, j−1

λ (s;c)ds)2
)

= min
c

m−1

∑
i=−k

ζi

∑
j=1

(
1
z

z

∑
h=1

Nh(ti, j−1, ti, j]−
∫ ti, j

ti, j−1

λ (s;c)ds
)2

= min
c

β1(c).

Therefore, minimizing β
′
1(c) is equivalent to minimizing β1(c). It is reasonable to construct a cost function

including β1(c) and obtain the optimal parameter vector c by minimizing it.
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