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ABSTRACT

Simulation optimization is widely used to optimize complex systems. High-fidelity simulation can be
expensive, especially when the number of designs is large. In practice, fast but less accurate low-fidelity
simulation is often available and can provide valuable information. In this paper, we propose a sampling
algorithm that utilizes information from multiple fidelity simulation models to improve the efficiency of
searching for the best design. A k-means algorithm is introduced to help capture the performance clustering
phenomenon among designs, and a cluster validity index is proposed to determine the optimal number
of clusters. The proposed sampling algorithm can incorporate the information of performance clusters
and approximately minimize the expected opportunity cost of the selected best design. Numerical results
substantiate the superior performance of the proposed algorithm.

1 INTRODUCTION

Discrete-event simulation (DES) can fully capture the simulated systems’ challenging features and provides
accurate estimates to designs’ performance. By applying DES, managers can select the design with the
most promising estimated performance for implementation. In practice, simulation models with different
fidelities are often available. A high-fidelity model, e.g., a DES model, is accurate but suffers from
high computational cost. On the other hand, low-fidelity simulation models, e.g., analytical models and
reduced-order simulation models, are less accurate but cheaper and faster to run. However, due to some
significant features being trimmed off by the low-fidelity model, performance estimates provided by it may
be biased, and the bias is generally unknown and even large in scale. Therefore, making use of both fidelity
simulations is promising as it takes the advantages of the both and can fully utilize the simulation outputs.

The efficiency of searching for the best design via high-fidelity simulation can be substantially improved
if the significant information of low-fidelity simulation can be well utilized. The premise of this paper is
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that low-fidelity results can help classify designs into performance clusters. Specifically, designs within a
performance cluster tend to have similar performances, while the behavior of designs in different performance
clusters can be drastically different. The clustering phenomenon captured by low-fidelity results provides
useful global information that can further enhance the efficiency of searching locally within clusters.

Utilizing the information of multi-fidelity models to improve the efficiency of optimization is a hot topic
in simulation optimization literature. Multi-fidelity optimization usually involves constructing surrogate
models (Fernández-Godino et al. 2019). Two most widely-used surrogate models are the kriging model
(Gaussian process) (Huang et al. 2006; Wang et al. 2022) and the radial basis function (Gutmann 2001;
March and Willcox 2012). The intuition of the surrogate method is to fit a surrogate model to approximate
the objective and utilizes it to identify the most promising design to sample for the next iteration. The
construction of surrogate models usually replies on a desirable domain structure. For example, the kriging
model is built based on the assumption that the difference in performance between two designs is small
if the two designs are close to each other (Toal 2015). More recently, Xu and Zheng (2023) develop
a gradient-based method to solve simulation optimization problems when multi-resolution approximated
systems are available. However, the original design space in this paper can be high-dimensional, discrete,
and categorical. Therefore, both surrogate methods and gradient-based methods are not a suitable treatment.

Another branch of literature related to this paper follows the path of Ranking and Selection (R&S)
literature. The goal of R&S is to identify the best system design from a finite set of alternatives, where
“best” is defined with respect to the smallest/largest mean performance. The performance of each design
can be learned from samples, e.g., from simulation outputs. The idea of utilizing the information of
performance clusters provided by low-fidelity simulations firstly appears in Xu et al. (2016), in which the
MO2TOS algorithm is introduced. The MO2TOS algorithm considers deterministic simulation and regards
each performance cluster as a “design” in R&S. It uses the OCBA allocation rule in Chen et al. (2000)
to balance simulation budget among clusters. Li et al. (2015) and Zhang et al. (2016) go further along
this line, and they extend the MO2TOS algorithm to settings where multiple objectives and multiple levels
of models are available, respectively. More recently, Song et al. (2019) give a theoretical support to the
MO2TOS algorithm. Furthermore, Peng et al. (2018) use Gaussian Mixture Model (GMM) to capture the
performance clustering phenomenon among designs and consider the case where simulation realizations are
observed with stochastic noise. However, MO2TOS allows only equal-sized clusters; is a pure exploration
procedure; and has difficulty in determining the optimal number of clusters, which plays a key role in the
clustering problem. As for the GMM method, its applicability is limited by high computational cost.

In this paper, we develop a more general searching algorithm, called cluster-based multi-fidelity optimal
sampling (CMFOS). It aims to minimize the expected optimality cost (EOC) of the selected design, that is,
to minimize the expected gap between the performances of the selected design and the real best design. In
some context, EOC is also referred to as expected optimality gap (EOG) (Song et al. 2019). Theoretical
results show that minimizing the expected opportunity cost (EOC) of the selected best design is equivalent
to consuming all sampling budget on searching within the best cluster. CMFOS firstly uses a k-means
algorithm to partition designs into performance clusters according to low-fidelity outputs. Then, based
on the clustering results, CMFOS applies high-fidelity simulation to explore the best cluster (exploration)
and further search for the best design (exploitation). In particular, to determine the optimal number of
clusters, a modified Davies-Bouldin Index is introduced. Compared with the MO2TOS algorithm in Xu
et al. (2016), CMFOS is more flexible in partitioning designs; achieves a better balance between exploration
and exploitation; and can determine the optimal number of clusters. Furthermore, in contrast to the GMM
method in Peng et al. (2018), CMFOS is more efficient in terms of computational burden.

The rest of the paper is organized as follows. The problem statement and formulation are presented
in Section 2. In Section 3, we apply a k-means algorithm to partition designs into performance clusters
and develop an index for determining the optimal number of clusters. In Section 4, the optimal sampling
allocation procedure is formally proposed. Numerical results on a synthetic example, two benchmark test
functions, as well as a case study are given in Section 5. In the end, Section 6 concludes the paper.
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2 PROBLEM STATEMENT

We consider a simple case when only one high- and low-fidelity model are available, and the results can
be easily extended to the scenario where one high-fidelity model and multiple low-fidelity models are
available (Xu et al. 2016). Suppose that we have m independent designs x1,x2, . . . ,xm, and the accurate
performance of design xi, which is denoted by h(xi), for i = 1,2, . . . ,m, can only be estimated by running
a high-fidelity simulation model. The goal is to identify the design with the smallest performance

x∗ = argmin
i=1,2,...,k

h(xi),

where x∗ denotes the best design. In addition to the high-fidelity simulation model, we also have access
to a low-fidelity simulation model that provides less accurate approximations for h(xi). Let l(xi) be the
low-fidelity estimate of designs xi, for i = 1,2, . . . ,m. Furthermore, we assume the high-fidelity sampling
budget Nmax is much smaller than the number of designs m. As for the low-fidelity model, we assume its
sampling budget is large enough for evaluating every design’s performance, and therefore, the low-fidelity
results l(xi), for i = 1,2, . . . ,m, are completely observable and known. These assumptions are consistent
with the fact that high-fidelity simulation is often time-consuming to run, and high-fidelity sampling budget
is limited by its high expense, while low-fidelity simulation is much faster to run and can evaluate a huge
number of designs in a very short time.

2.1 Performance Clustering

Suppose that the set of designs and their low-fidelity performances, denoted by A = {x1,x2, . . . ,xm} and
L = {l(x1), l(x2), . . . , l(xm)}, respectively, are given. Without loss of generality, we consider partitioning
set A into a given number k of disjoint clusters {π1,π2, . . . ,πk}, such that

1. |π j| ≥ 1
2. πr ∩πs = /0,r ̸= s

3.
k⋃

j=1
π j = A

Since designs are discrete and categorical, it is important to note that their performances can be
drastically different, even if they are located closely together in the original design space. This observation
motivates the need of partitioning designs according to their low-fidelity performances. The similarities
among designs are measured by Euclidean distances. For each cluster π j, j = 1,2, . . . ,k, its centroid c j in
the low-fidelity performance space is determined by

c j = argmin
a ∑

xi∈π j

1
n j
∥a− l(x j)∥2, (1)

where n j := |π j| is the number of designs in cluster π j, and ∥ · ∥ is the Euclidean norm. In contrast, for a
given set of centroids c = (c1,c2, . . . ,ck), cluster π j can be defined by

π j = {xi ∈ A : ∥c j− l(xi)∥2 ≤ ∥cs− l(xi)∥2, ∀s = 1,2, ...,k}. (2)

The most widely used formulation of the clustering problem is a non-smooth, non-convex optimization
problem (Späth 1984; Teboulle 2007)

min fk(c) =
m

∑
i=1

min
j=1,2,...,k

∥c j− l(xi)∥2

s.t. c = (c1,c2, . . . ,ck) ∈ Rk,

(3)

where fk(c) is called the total clustering error. Problem (3) is also known as the minimum sum-of-squares
clustering problem.
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2.2 Sampling Allocation Problem

After designs are partitioned into performance clusters by their low-fidelity approximations, we proceed
to search for the best design x∗ by randomly sampling high-fidelity model. Assume that in each cluster
π j, designs’ high-fidelity performances h(X) are i.i.d. normally distributed, i.e., h(X) ∼ N(h j,σ

2
j ),∀X ∈

π j, j = 1,2, . . . ,k, where h j and σ2
j are called group mean and group variance of cluster π j (Xu et al. 2016).

Given a fixed number of high-fidelity sampling evaluations Nmax, which are much smaller than the
number of design m, the objective is to determine N j, the number of high-fidelity evaluations allocated
to cluster π j, for j = 1,2, . . . ,k, to minimize the EOC of the selected best designs after the high-fidelity
sampling budget is exhausted. Therefore, we consider the following sampling allocation problem:

min
N1,N2,...,Nk

E[∆H] = E [h(Xb)−h(X∗)]

s.t.
k

∑
j=1

N j = Nmax,

N j ≥ 0, j = 1,2, . . . ,k,

(4)

where h(Xb) and h(X∗) denote the accurate performance of the observed best design Xb and the real best
design X∗, respectively.

3 K-MEANS CLUSTERING

In this section, a global k-means algorithm is introduced to help partition designs into performance clusters
according to their low-fidelity approximations. Furthermore, to determine the optimal number of clusters,
a modified Davies-Bouldin Index is developed.

3.1 Global K-means Algorithm

The global k-means algorithm (GKM) is an incremental type of clustering algorithm that optimally adds
one centroid at each iteration. It can find an at least near optimal partition of a given data set (Likas et al.
2003).
Algorithm 1 Global k-means algorithm

Input: A, L, k.
1: Initialization: Set q = 1, π1 = A, and calculate the initial centroid c1 by Equation (1).
2: while q < k do
3: for xi ∈ A do
4: Apply k-means algorithm with starting points (c1, . . . ,cq−1, l(xi)), and obtain the updated cen-

troids yxi = (yxi
1 ,y

xi
2 , . . . ,y

xi
q ).

5: Calculate the total clustering error fq(yxi) by Equation (3).
6: end for
7: x′← argmin

xi∈A
fq(yxi), and ct ← yx′

t ,∀t ∈ {1,2, . . . ,q}.
8: q← q+1.
9: end while

10: Determine a k-partition of A with centroids c=(c1,c2, . . . ,ck)by Equation (2), and obtain{π1,π2, . . . ,πk}.
Output: {π1,π2, . . . ,πk} and c.

3.2 Determining the Number of Clusters

In simple cases, the number of clusters is automatically determined by the features of the problem itself.
However, in practice, the number of clusters k is unlikely to be given in advance. To determine the optimal
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number of clusters, we introduce a modified Davies-Bouldin Index (MDBI)

MDBI =

{
1
k

k

∑
i=1

max
j=1,...,k, j ̸=i

Sk (πi)+Sk (π j)

d (ci,c j)

}
× nb

Nmax , (5)

where Sk(πi) is the average distance of designs in cluster πi to the centroid ci in the low-fidelity performance
space, d

(
ci,c j

)
represents the distance between two centroids ci and c j in the low-fidelity performance

space, nb denotes the number of designs in the best cluster, and Nmax is the sampling budget.
The first term in MDBI is the Davies-Bouldin Index (DBI) developed by Davies and Bouldin (1979).

The clusters are compact and well-separated if DBI is small. Furthermore, given a sampling budget Nmax,
we expect the number of designs in the best cluster is as small as possible. Therefore, the number of
clusters k that minimizes MDBI is taken as the optimal number of clusters.

4 OPTIMAL SAMPLING PROCEDURE

In this section, we first show that the optimal sampling scheme, which can minimize the EOC, is allocating
all sampling budget to the best cluster (with the smallest group mean performance). Then, a cluster-based
multi-fidelity optimal sampling algorithm is developed.

Lemma 1 is firstly presented in Song et al. (2019), and it gives an explicit expression of EOC as the
number of designs n j in groups π j, for j = 1,2, . . . ,k, is sufficiently large.
Lemma 1 (Song et al. (2019)) Assume h(X) for all designs X ∈ π j are independent and identically
distributed (i.i.d.) with a cumulative distribution function Fj(h), for j = 1,2, . . . ,k. As the number of
designs n j→ ∞, for a given sampling allocation N1,N2, . . . ,Nk, we have

lim
min

j=1,...,k
n j→∞

E[∆H]→−
H̄∫

H

k

∏
j=1

[Fj(h)]
N j dh, (6)

where H̄ = maxi=1,...,m h(Xi), and H = mini=1,...,m h(Xi).
When the number of designs in each cluster is sufficiently large, minimizing the EOC is equivalent

to maximizing the integral in Equation (6). To maximize the integral, we need to maximize the product
inside. Therefore, as n j→ ∞, for j = 1,2, . . . ,k, Problem (4) can be rewritten as follows:

max
N1,N2,...,Nk

k

∏
j=1

[
Φ

(
h−µ j

σ j

)]N j

s.t.
k

∑
j=1

N j = Nmax,

N j ≥ 0, j = 1,2, . . . ,k,

(7)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Notice that Φ(·) ∈ [0,1] is a monotone increasing function of (h−µ j)/σ j. Suppose that the variances

of all designs are upper bounded by a positive constant σ̄2 > 0, that is, 0 < σ2
i ≤ σ̄2, for i = 1,2, . . . ,k.

Basically, this assumption requires the best cluster can be distinguished from others. Then, we have
(h−µ j)/σ̄ ≤ (h−µ j)/σ j. Moreover, it can be checked that for any 0 < a < b < 1 and two non-negative
integers i and j, we have aib j > a jbi if and only if j > i. Thus, maximizing the objective of Problem (7)
is equivalent to first identifying the cluster with the largest (h− µ j)/σ j, then allocating all high-fidelity
sampling budget Nmax to it. Since it is difficult to identify the largest (h−µ j)/σ j, we alternatively turn to
identify the largest lower bound for (h−µ j)/σ j, that is, to identify the cluster with the largest (h−µ j)/σ̄

or equivalently with the smallest µ j.
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Unfortunately, it is unknown which cluster has the smallest mean performance before sampling. To
identify the best cluster (with the smallest group mean), a sampling budget T,T < Nmax, is utilized to
evaluate a few designs’ high-fidelity performances in each cluster. Based on simulation output samples, the
cluster with the smallest sample group mean is selected as the best. Then, the rest of Nmax−T sampling
budget is allocated to the selected best cluster for further searching for the best design. In particular,
the OCBA policy in Chen et al. (2000) is one of the most efficient budget allocation rules and can be
implemented to maximize the probability of correctly selecting the best cluster. The optimal sampling
allocation rule is given in Theorem 1.
Theorem 1 Given Nmax sampling budget, in which T,T < Nmax, sampling budget is used for identifying
the best cluster, as n j→∞, for j = 1,2, . . . ,k, the sampling allocation N1,N2, . . . ,Nk, which solves Problem
(4) and approximately minimizes the EOC, satisfies,

N j =

{
w∗jT if j = 1,2, . . . ,k and j ̸= b
w∗bT +(Nmax−T ) if j = b

(8)

where,

w∗j =
I−1

j

∑
k
j=1 I−1

j
, for j = 1,2, . . . ,k, (9)

I j =


(µb−µ j)

2

σ2
j

if j = 1,2, . . . ,k and j ̸= b
1

σb

√
∑

k
j=1, j ̸=b I−2

j /σ2
j

if j = b

The optimal sampling procedure includes two-stage. First, a given T sampling budget is used to
distinguish clusters and identify the estimated best cluster (exploration). Second, all the rest of Nmax−T
sampling budget is allocated to the best cluster for further searching for the best design (exploitation). In
particular, if T = Nmax, the sampling procedure utilizes all budget for exploration, and it becomes the same
allocation rule as the OS policy introduced in Xu et al. (2016) and Song et al. (2019). Based on preceding
analyses, the cluster-based multi-fidelity optimal sampling (CMFOS) procedure is described with details
in Algorithm 2.
Algorithm 2 CMFOS

Input: A, l(·), h(·), k, Nmax, T , n0, and D = /0
1: for xi ∈ A do
2: Apply low-fidelity model to evaluate design xi, and obtain l(xi)
3: end for
4: (Partitioning): Run GKM algorithm to obtain a k-partition of A, i.e., P = {π1,π2, . . . ,πk}
5: for π j ∈ P do
6: Sample n0 designs from π j, and obtain Yj = {X j,1,X j,2, . . . ,X j,n0}
7: Apply high-fidelity model to obtain {h(X j,1),h(X j,2), . . . ,h(X j,n0)}
8: Calculate ĥ j, σ̂ j
9: π j← π j\Yj, and D← D∪Yj

10: end for
11: Set t = 1
12: while t < T do
13: Calculate w = (w∗1,w

∗
2, . . . ,w

∗
k) by Equation (9)

14: Generate a random variable s with Pr{s = j}= w j, j = 1,2, . . . ,k
15: Sample a design Xs,1 from π j
16: Apply high-fidelity model to obtain h(Xs,1)

17: Update ĥs, σ̂s

3453



Cao, Wang, Li, Chew, and Tan

18: πs← πs\Xs,1, D← D∪{Xs,1}, and set t = t +1
19: end while
20: Set b = arg min

j=1,...,k
ĥ j

21: Sample (Nmax−n0× k−T ) designs from πb, and obtain Yb = {Xb,1, . . . ,Xb,(Nmax−n0×k−T )}
22: Apply high-fidelity simulation model to obtain {h(Xb,1), . . . ,h(Xb,(Nmax−n0×k−T ))}
23: D← D∪Yb
Output: Xb = argmin

X∈D
h(X), and h(Xb)

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments on a synthetic example, two benchmark test functions,
and also a case study to show the superior efficiency and applicability of our proposed CMFOS. The
following searching algorithms are chosen as benchmarks for comparison:

1. Random sampling (RS): The RS algorithm is a pure random search procedure. It utilizes no
information from low-fidelity outputs and randomly samples designs for evaluation.

2. MO2TOS (Xu et al. 2016): The MO2TOS algorithm firstly ranks designs according to their low-
fidelity approximations. Then, it partitions designs into equal-sized clusters by ordinal rankings.
The OCBA algorithm in Chen et al. (2000) is implemented to balance sampling evaluations among
clusters. In particular, the MO2TOS algorithm is a pure exploration procedure.

The performance of different procedures is measured by the EOC, i.e., the difference in high-fidelity
performance between the selected best design and the truly best design. The empirical EOC is estimated
via running 10,000 independent macro replications. In all tested cases, the number of initial sample size
for each cluster is set as 2, i.e., n0 = 2, the sampling budget Nmax = 100, and the sampling budget for
identifying the best cluster T = 20. In particular, the optimal number of clusters is provided by the k with
the smallest MDBI.

5.1 A Synthetic Example

In this experiment, we generate 10 groups of designs, and the number of designs in group 1,2,3, . . . ,10 is
n1 = 100,n2 = 300,n3 = 500, . . . ,n10 = 1900, respectively. Thus, the total number of designs m = ∑

10
i=1 ni =

10000. In each group j, design’s low-fidelity performances are normally distributed with N(h j,σ
2
j ), i.e.,

l(x j,t) ∼ N(h j,σ
2
j ), for j = 1,2, . . . ,10 and t = 1,2, . . . ,n j, where h1 = 10,h2 = 20, . . . ,h10 = 100, and

σ1 = σ2 = · · · = σ10 = 1. The approximation errors δ (x j,t) are normally distributed with N(1,1), i.e.,
δ (x j,t)∼ N(1,1), for j = 1,2, . . . ,10 and t = 1,2, . . . ,n j. We use the equation h(x j,t) = l(x j,t)+δ (x j,t) in
Xu et al. (2016) and Song et al. (2019) to generate the high-fidelity performances of design x j,t . The
correlation ρ between h(·) and l(·) is 0.99.

In Figure 1, two cluster validity indices and performance comparisons of the three tested procedures
are reported. Both DBI and MDBI indicate the optimal number of clusters should be 10. As shown in
Figure 1c, the behavior of CMFOS changes when the sampling budget grows up to 40. In the first stage,
i.e., when Nmax ≤ 40, CMFOS consumes sampling budget for identifying the best cluster and is a pure
exploration procedure. In the second stage, i.e., when Nmax > 40, CMFOS allocates the rest of sampling
budget to the best cluster and becomes a pure exploitation procedure.

CMFOS outperforms both MO2TOS and RS. Compared with MO2TOS, CMFOS performs better in
the first stage, i.e., when Nmax ≤ 40, because it is more flexible and possesses a higher quality of partition
due to allowing to cluster designs into unequal-size groups. Furthermore, CMFOS also achieves a much
lower EOC than MO2TOS in the second stage, i.e., when Nmax ≥ 40, because the sampling budget is more
efficiently used to search for the best design within the identified best cluster by CMFOS. Or in other
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(a) Davies-Bouldin index. (b) Modified Davies-Bouldin index. (c) Performance comparison.

Figure 1: Results for the synthetic example.

words, CMFOS better balances exploration and exploitation than MO2TOS, which is a pure exploration
procedure. In contrast to RS, which is a pure random search procedure, CMFOS benefits from utilizing the
information of low-fidelity results to improve the efficiency of searching for the best design. Therefore, in
this tested example, CMFOS has the best performance and dominates both MO2TOS and RS.

5.2 Two Benchmark Test Functions

In this section, we conduct experiments on two benchmark test functions, both of which can be found
in Mainini et al. (2022), and they are discretized to be suitable for discrete optimization problems. In
particular, the Gaussian sampling distribution assumption does not hold for both test function examples,
and it is often the case in practice.

The first test function is the Forrester function introduced in Forrester et al. (2007), which is a well-
known test function for optimization using multi-fidelity models. The one-dimensional Forrester function
is defined by the following equations (from high-fidelity to low-fidelity) and is illustrated in Figure 2a,

h(x) = 6(x−2)2 sin(12x−4), x ∈ [0,1],

l(x) = 0.75h(x)+5(x−0.5)−2, x ∈ [0,1].

The global minimum of the Forrester function is given by h(x∗) = −6.020740, where x∗ = 0.75724876.
In this example, we randomly generate 10,000 designs from the interval [0,1]. The correlation ρ between
h(·) and l(·) for this tested example can be calculated as 0.93.

(a) Forrester function. (b) Paciorek function: high-fidelity. (c) Paciorek function: low-fidelity.

Figure 2: Benchmark test functions.

Figure 3 gives the two cluster validity indices and performance comparisons of the 3 tested procedures
on the Forrester test function example. MDBI suggests k = 12 should be the optimal number of clusters,
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while DBI gives k = 2. When k = 2, the clusters are more compact and separable, however, the size of the
best cluster is much larger than the case when k = 12. This leads to an inefficient searching. Therefore,
we take k = 12 as the optimal number of clusters according to the MDBI introduced in Section 3.2.

(a) Davies-Bouldin index. (b) Modified Davies-Bouldin index. (c) Performance comparison.

Figure 3: Results for the Forrester test function example.

(a) Davies-Bouldin index. (b) Modified Davies-Bouldin index. (c) Performance comparison.

Figure 4: Results for the Paciorek test function example.

As shown in Figure 3c, the proposed CMFOS performs the best. In the first stage of CMFOS, it
converges slowly because the sampling budget is used to identify the best cluster. After the best cluster
is specified, the EOC of CMFOS approaches 0 much faster. Furthermore, MO2TOS performs better than
RS when the sampling budget is relatively small, but it is surpassed by RS when the sampling budget
grows up to 40. The reason why MO2TOS doesn’t perform well in this example could be because it
allows only equal-sized-groups clustering, which often leads to a large clustering error if designs should
have been partitioned into unequal-sized groups. This results in MO2TOS assigning too many sampling
evaluations to clusters that are highly unlikely to contain the best design. However, CMFOS still dominates
both MO2TOS and RS in this example, verifying the benefits of unequal-sized-groups clustering, better
balancing exploration and exploitation, and utilizing information of low-fidelity results.

The second benchmark test function is the Paciorek function, which is a multi-modal function (Toal
2015). The two-dimensional Paciorek function without stochastic noise is defined by the following equations
(from high-fidelity to low-fidelity) and is plotted in Figure 2b and 2c,

h(x1,x2) = sin
(

1
x1x2

)
, x1,x2 ∈ [0.3,1],

l(x1,x2) = h(x1,x2)−9A2 cos
(

1
x1x2

)
, x1,x2 ∈ [0.3,1],
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where A is a parameter that varies between 0 and 1 and limits the approximation error of low-fidelity
model. Specifically, the approximation error of the low-fidelity model increases as A increases. When
A = 0, the low-fidelity model has no approximation error, and identifying the best design is equivalent
to identifying the design with the best low-fidelity performance. In this experiment, we set A = 0.5, and
randomly generate m = 10000 pairs of (x1,x2) from the interval [0.3,1] as designs. The correlation ρ

between h(·) and l(·) for this tested example can be calculated as 0.38.
The two cluster validity indices and performance comparisons of the tested procedures on the Paciorek

test function example are presented in Figure 4. According to Figure 4a and 4b, we take k = 12 as the
optimal number of clusters. As shown in Figure 4c, CMFOS outperforms the other two algorithms from
the beginning to the end. Again, MO2TOS outperforms RS when the sampling budget is small, while it is
surpassed by RS when the sampling budget is relatively large.

5.3 A Machine Allocation Problem

The machine allocation problem has been studied by Xu et al. (2016), Peng et al. (2018), and Song et al.
(2019). The jobs flow of a manufacturing system is shown in Figure 5. There are two products P1 and
P2, and P1 has priority over P2 in the system. When both products are waiting for being processed by the
same workstation, the processing of P2 will be deferred. The inter-arrival and service time of both products
are non-exponential. There are 5 workstations, and each of them contains a flexible number of machines.
These machines can perform serial batches with at most two products of the same type to save the machine
setup time. The total number of machines is 37, and the number of machines in each workstation must be
between 5 and 10. By enumeration, it is straightforward to verify there are 780 feasible machine allocation
plans. The objective is to determine the machine allocation plan that can minimize the average cycle time
of the manufacturing system.

Figure 5: Jobs flow through a manufacturing system with two products.

A discrete-event simulation (DES) model is constructed to fully capture the complex features of the
manufacturing system, such as the re-entrant jobs flow, priority scheduling, etc. The DES model is a
high-fidelity model and provides accurate estimates for the performance of machine allocation plans.
The low-fidelity model simplifies the manufacturing system and provides approximate estimates for the
performance of machine allocation plans. We set T , the sampling budget for identifying the best cluster,
as 10. In this experiment, there are 780 designs, and the correlation ρ between h(·) and l(·) for this tested
example can be calculated as 0.94.
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Figure 6 illustrates the two cluster validity indices and performance comparisons of the three tested
procedures on the machine allocation problem. According to Figure 6a and 6b, we take k = 10. As shown
in Figure 6c, CMFOS performs the best, followed by MO2TOS, and RS has the worst performance. This
observation corresponds to the results in the synthetic example and both benchmark test function examples,
and it verifies the superior efficiency and applicability of the proposed CMFOS.

(a) Davies-Bouldin index. (b) Modified Davies-Bouldin index. (c) Performance comparison.

Figure 6: Results for the machine allocation problem.

6 CONCLUSION

In this paper, we propose a cluster-based multi-fidelity optimal sampling (CMFOS) procedure that utilizes
information from the low-fidelity model to further enhance the efficiency of searching for the best design.
The proposed CMFOS algorithm is flexible, i.e., allows unequal-sized-groups clustering; can determine the
optimal number of clusters; achieves a balance between exploration and exploitation; and is computationally
efficient. Furthermore, the sampling allocation determined by CMFOS can approximately minimize the
EOC of the selected best design. Numerical experiments, including a synthetic example, two benchmark
functions, and also a machine allocation problem, substantiate the superior efficiency and applicability of
the proposed CMFOS.
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