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ABSTRACT 

Existing grammars generate Finite Deterministic DEVS models, a restricted subset of DEVS. The proposed 

context-free grammar generates the unrestricted set of Classic DEVS models. The grammar is implemented 

in ANTLR, a powerful parser generator for reading, processing, executing, or translating structured text or 

binary files. ANTLR enables the efficient processing of the specifications needed for generating members 

of Classic DEVS with ports. Applications include an easier introduction to DEVS for students and easier 

translation between different DEVS implementations. 

1 INTRODUCTION 

The Discrete Event System Specification (DEVS) (Zeigler et al. 2018) is a Modeling and Simulation (M&S) 

formalism that supports a general methodology for describing discrete event systems with the capability to 

represent both continuous and discrete systems due to its system theoretic basis. Both types of DEVS 

models (i.e., atomic and coupled) are formalized by combining set theory and systems theory. When 

practitioners want to simulate DEVS models, they need to program them in the input language of a concrete 

simulator (Cristiá et al. 2019). That means writing code in Java, C++, or another general-purpose 

programming language. Such implementation is often called “reduction to concrete form” (Zeigler 2019). 

 In this regard, a DEVS formal model is defined using DEVS formal specification, and a DEVS concrete 

model is defined as an implementation of a DEVS formal model. However, is it possible to ensure that a 

DEVS concrete model developed with a programming language is (in fact) an implementation of a DEVS 

formal model? According to Sarjoughian et al. (2015), ensuring that an implementation conforms to a 

formalization is not straightforward. In (Blas and Gonnet 2023), we argue this is because i) formalization 

and implementation are often carried out as two distinct tasks, and ii) the principles under which 

programming languages are designed do not easily conform with the theory used in the DEVS formal 

specification (i.e., the formal language supporting DEVS model definitions cannot be used directly in 

programming languages). Thus, building an implementation of a DEVS formal model (i.e., a concrete 

computer model) in a way that ensures its formal specification (i.e., the mathematical definition) is not easy. 

 The lack of computer languages supporting the DEVS formalization task (i.e., domain-specific 

computer languages) is evident. Namely, we are referring to a domain-specific modeling language. This 

paper addresses the use of grammar and the role of metamodeling in the M&S field devoted to defining 

DEVS formal models in a computer form through a new modeling language. When building a modeling 

language, three components are required i) abstract syntax, ii) concrete syntax, and iii) semantics. The main 

contribution of this paper is the development of a Context-Free Grammar (CFG) named CFG_DEVS that 
can be used to support textual definitions of DEVS formal specifications as a well-defined concrete syntax. 

Such a syntax was implemented using ANTLR (ANTLR 2023) and can be combined with the abstract 

syntax already defined in “the DEVS metamodel” (Blas and Gonnet 2023). The paper points out the 
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technical aspects of the CFG developed. Applications include an easier introduction to DEVS for students 

since (as we will show with some examples) the grammar allows defining models found in exiting literature 

as a first step in a DEVS-learning process. Our final goal is to develop a computer language for expressing 

DEVS formal specifications suitable for being used across different concrete simulators (i.e., M&S software 

tools based on distinct programming languages). The semantics of the language is out of the scope of this 

paper. 

The remainder of this paper is structured as follows. Section 2 presents the main concepts used across 

the paper by summarizing the fundamentals of the proposal. Section 3 presents the grammatical model 

defined as CFG_DEVS. To show both applicability and usability, it includes a set of examples (taken from 

the DEVS literature) (re)written in the grammar. Section 4 is dedicated to the discussion of our results, 

including a comparison with other DEVS existing languages and a quality analysis of our development. 

Finally, Section 5 is devoted to conclusions and future work. 

2 COMPUTER LANGUAGES, METAMODELS, AND GRAMMARS 

From the taxonomy proposed by Lando et al. (2007), we have that: i) programming languages are a subset 

of general-purpose computer languages designed to express computer programs that can be understood by 

humans, and ii) Domain-Specific Computer Languages (DSCLs) are a subset of computer languages limited 

to the writing of particular types of expressions. Hence, languages used in computing that have a restricted 

set of expressions (i.e., a distinct goal than expressing high-level computer programs) are designated as 

DSCLs. These languages are claimed to increase productivity while reducing the required maintenance and 

programming expertise (Barisic et al. 2011). Modeling languages are a particular type of DSCLs. 

 In the software engineering community, a modeling language is a language used to “specify, visualize, 

construct, and document a software system” (Rumbaugh et al. 2005). Such a definition can be extended 

more generally into a problem domain, giving a Domain-Specific Modeling Language (DSML). Such a 

type of computer language enables the specification of (computer) models using concepts and notations of 

a specific domain (Kelly and Tolvanen 2008). In particular, a DSML for DEVS should enable the 

specification of DEVS computer models using concepts and notations of the DEVS formal specification 

domain. In this way, DSMLs enable domain experts to develop, understand, and verify models more easily, 

without having to use concepts outside of their domain (Van Mierlo et al. 2019). 

Modeling languages can be either graphical or textual (Engelen and Van Den Brand 2010). Visual 

modeling languages provide the means to effectively convey components and interactions allowing 

developers to focus on parts of a system/domain at any time. However, primarily textual modeling 

languages achieve these intended uses more concisely without the problems of secondary notation (e.g., 

layout and typographic cues) (Petre 1995). It is not clear what an appropriate notation (i.e., textual or 

graphical) is in a given context. There are no rules to apply here: graphical, textual, and hybrid notations 

are more or less useful depending on specific circumstances. For representing DEVS formal models, we 

decided to develop a DSML based on a textual notation. That is mainly because (i) we want to maintain the 

mathematical form of notation used in the formal specification, and (ii) textual languages are more like 

programming languages, making it easier for programmers to start using the DSML. 

A key question is: for what do we intend to use a DEVS formal modeling language? Modeling 

languages are built to be used by designers (not programmers) (Paige et al. 2000). In this regard, we aim to 

develop a modeling language friendly to both DEVS designers and programmers, allowing them to build 

DEVS models following their formal specifications in a simple way. Simulationists (from any field, not 

necessarily computer sciences) will benefit from such a language. For those who do not have programming 

skills, the language provides an easy way to develop computational DEVS models starting from the formal 

specification. That is great for educational purposes since DEVS could be quickly used in practice without 

requiring teaching basic notions of programming languages. On the other hand, for simulationists that also 
are great programmers (i.e., those you can assume will have a faster development using general-purpose 

programming languages), the main benefit is in the verification process. Using the modeling language, the 

cost of ensuring a concrete model follows its formal definition is very low. 
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2.1 How to Build a Domain-Specific Modeling Language? 

Modeling languages, like programming languages, need to be designed if they are to be practical, usable, 

accepted, and of lasting value (Paige et al. 2000). Commonly, these languages are defined using three 

primary blocks (Krahn et al. 2007): abstract syntax, concrete syntax, and semantics. The abstract syntax 

identifies modeling concepts, while the concrete syntax clarifies how these modeling concepts are rendered 

by visual and/or textual elements (Baar 2006). Both syntaxes need to be consistently defined to avoid 

discrepancies and problems while handling the language (Krahn et al. 2007). Frequently, a mapping 

function is defined to match a concrete syntax with the abstract syntax. At this point, it is worth noting that 

we can have more than one concrete syntax for the same abstract syntax (depending on the application 

scenario and modeler profile). Both syntaxes frequently are developed first, and then semantics is designed 

to define the meaning of the language (Harel and Rumpe 2004). To avoid confusion, the vocabulary used 

in this paper is defined as follows: 

• A concrete modeling language is defined as the abstract syntax, concrete syntax, and semantics that 

defines the full vocabulary (i.e., it includes the meaning of the models built from such a language). 

• For textual concrete syntaxes, a grammatical model is a method for analyzing sentence structures 

(Crystal 2008). Such a grammatical model includes a methodology of generative grammar designed 

to produce grammatically correct strings of words (Seuren 2015). 

The abstract syntax of a language is typically captured in a metamodel (Kleppe 2008). Metamodeling 

allows defining such a syntax in a precise, non-ambiguous way. For the DEVS formal specification, we 

have proposed such a metamodel originally in (Blas et al. 2021). An updated version was introduced in 

(Blas and Gonnet 2023). The “DEVS metamodel” is defined as a layered set of ten UML packages: 

Mathematical Function, Set Theory Utility, DEVS Model Core, DEVS Structural Model, DEVS Coupling 
Definition, DEVS Atomic Behavioral Model, DEVS Atomic Structural Model, DEVS Coupled Structural 
Model, DEVS Atomic Interaction Model, and DEVS Coupled Function Definition. Each package groups 

concepts and relationships according to their scope. For example, the “DEVS Model Core” package defines 

basic concepts used to identify a DEVS Model such as DEVS Model, Atomic Model, Atomic Structural 
Part, Atomic Behavioral Part, and Coupled Structural Part. 

 According to (Baar 2006), the abstract syntax definition is the most basic block when defining a 

modeling language but, at the same time, it is the only block for which a commonly agreed format exists. 

Other blocks (i.e., concrete syntax and semantics) are given in many cases only informally. This is not our 

case. In the following sections, we present a grammatical model to address the concrete syntax of “the 

DEVS metamodel” using a CFG. A CFG is defined as a finite set of symbols (alphabet), a finite set of 

variables (also called nonterminal character), a finite set of productions (also called rewriting rules), and a 

start symbol (Hopcroft et al. 2001). All these elements allow for defining a context-free language composed 

of structured sentences. Indeed, we propose a CFG specifically designed to describe DEVS formal models 

(atomic and coupled) following the most common mathematical expressions observed in current literature. 

As a remark, when building a new language, one of the main aspects to be considered regarding 

language implementation is the transition from (or to) existing technologies. For example, the designers of 

UML focused on standardizing the syntax and informal semantics of the modeling language as long as 

ensuring a degree of syntactic and conceptual compatibility from existing technologies to UML (Paige et 

al. 2000). Hence, it is not enough to build a DSML for DEVS formal models. It is also important to develop 

a solution that can be integrated with existing M&S software tools keeping all capabilities already provided 

by them. As stated earlier, there is a collective agreement that DEVS models are implemented as a tool-

depending artifact (Van Tendeloo and Vangheluwe 2017). Porting models between different M&S tools 

involves rewriting the model from scratch since most M&S software tools are based on general-purpose 

programming languages (or special libraries developed over such languages). The development of a high-

level modeling language with a well-defined meaning can lead to a joint community effort to allow porting 
models based on the translation of formal model definitions to specific implementations (without requiring 

rewriting tasks). From this point of view, DEVS models (been implemented as computer programs) will be 
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implemented as computer models based on the DEVS formal specification. Such computer models act as 

the formalization of previous implementations in a higher level of modeling hierarchy (Blas et al. 2021). 

2.2 Related Work: Existing Approaches 

Over the years, several notations have been developed to address the definition of DEVS models. Some of 

them are (in practice) considered modeling languages. Two of the most used (and related to our work) are 

DEVSML (Mittal and Douglas 2012) and DEVSNL (Zeigler and Sarjoughian 2017). Each one is focused 

on defining DEVS simulation models from a particular modeling perspective. In both cases, there are 

software tools supporting their use in practice. 

DEVSML (DEVS Modeling Language) provides a platform-independent way to specify DEVS 

models. The language is based on Finite Deterministic DEVS (FD-DEVS), an extension of DEVS whose 

sets of events and states are finite among other things (i.e., a restricted subset of DEVS). Like any language, 

DEVSML uses keywords that allow modelers to build their definitions in a structured manner. The grammar 
was specified using an Extended Backus-Naur Form (EBNF) notation (i.e., a meta-syntax notation for 

CFGs). While the atomic model has a notion of ports, the language has a notion of messages specified as 

entity structures that are eventually transformed into port definitions. Models defined in DEVSML can be 

transformed into platform-specific language implementations (such as, for example, Java and C++). 

On the other hand, DEVSNL (DEVS Natural Language) provides a natural language structure to 

understand FD-DEVS simulation models. These models can be used to automatically generate DEVS 

atomic models in Java that have full capability to express messages and states. The modeling perspective 

is defined as a “constrained natural language specification of DEVS models”. Indeed, as in DEVSML, the 

textual notation was defined as an EBNF. Due to the EBNF specification, the processing of textual 

expressions/definitions defined in DEVSNL does not involve any natural language reasoning (i.e., the 

language does not involve dealing with, for example, natural language ambiguity). In Section 4, we present 

a DEVS atomic model defined using DEVSNL. 

As detailed before, both DEVSNL and DEVSML are based on FD-DEVS. Regarding this perspective, 

CFG_DEVS (Section 3) can be used to define textual specifications of DEVS formal models in general 

(i.e., the grammar does not restrict the specification to a particular DEVS extension). Since FD-DEVS is a 

class of DEVS models, the set of models that can be defined in DEVSNL and DEVSML is smaller than the 

set of models that can be defined with CFG_DEVS. That is one of the main foundational differences 

between our paper and existing approaches. Other differences are described with an example in Section 4. 

3 THE DISCRETE EVENT SYSTEM SPECIFICATION AS A GRAMMATICAL MODEL 

3.1 DEVS Formal Models 

Table 1 presents the mathematical specification of DEVS models. Such a mathematical definition with the 

system basis allows for building hierarchical models using sets and functions. See (Zeigler et al. 2018) for 

more details regarding the DEVS formal definition. 

3.2 The DEVS Context-Free Grammar: CFG_DEVS 

The DEVS grammar was developed using ANTLR. ANTLR (ANother Tool for Language Recognition) is 

a powerful parser generator for reading, processing, executing, or translating structured text or binary files 

(ANTLR 2023). By using such a technology, the grammatical model was defined as an ANTLR project 

composed of five source files (named CFG_DEVS_MODEL.g4, CFG_SET_THEORY.g4, 

CFG_BOOLEAN_EXPRESSION.g4, CFG_MATH_EXPRESSION.g4, CFG_TOKENS.g4). Each file 

groups production rules according to its scope. Moreover, each element defined as a concept in “the DEVS 
metamodel” is represented by a production rule. For space reasons, we describe the main content of each 

file. In some cases, syntax diagrams are used to denote the structure of nonterminal symbols as a graphical 

approach to how the grammar is defined. 
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Table 1: Formal definition of DEVS models. 

DEVS Atomic Model DEVS Coupled Model 

DEVS = {X, Y, S, δext, δint, λ, ta} 

where 

X = {(p,v)| p ∈ InPorts, v ∈ Xp } is the set 

of inputs, with 

InPorts as the set of input ports, p as the pth port 

of InPorts, Xp as the set of input values for the p, 

and v as an element of the p-values; 

Y = {(p,v)| p ∈ OutPorts, v ∈ Yp } is the 

set of outputs, with 

OutPorts as the set of output ports, p as the pth 

port of OutPorts, Yp as the set of output values 

for the p, and v as an element of the p-values; 

S is the set of sequential states; 

δext is the external state transition function; 

δint is the internal state transition function; 

λ is the output function; 

ta is the time advance function. 

N = {X, Y, D, Md, EIC, EOC, IC, Select} 

where 

X and Y are defined in the same way as in the atomic 

model, with IPorts as the set of input ports and 

OPorts as the set of output ports; 

D is the set of the component names; 

For each d ∈ D, Md is a DEVS model, with  

Xd = {(p,v)| p ∈ IPortsd, v ∈ Xp}, and  

Yd = {(p,v)| p ∈  OPortsd, v ∈ Yp}; 

EIC = {((N,ipN),(d,ipd))|ipN ∈ IPorts, d∈ 

D, ipd ∈ IPortsd} are the external input couplings; 

EOC = {((d,opd),(N,opN))|opN∈ OPorts,d ∈ 
D,opd∈OPortsd} are the external output couplings; 

IC = {((a,opa),(b,ipb))|{a,b}∈ D, opa∈ 
OPortsa,ipb∈IPortsb} are the internal couplings; 

Select is the tie-breaking function. 

 

CFG_DEVS_MODEL. The CFG_DEVS_MODEL.g4 file contains the start symbol devsModel and 

imports other source files to use their notation as part of its productions. It defines that a devsModel can 

be either an atomicModel or coupledModel. For each nonterminal symbol, a production rule is specified. 

For example, the atomicModel symbol is defined as: 

atomicModel: modelSignature EQUAL atomicModelTuple WHERESYMBOL modelDefinition; 

atomicModelTuple: BEGINPARENTHESES setInModel COMMA setInModel COMMA setInModel COMMA 
DELTAEXTNAMESYMBOL COMMA DELTAINTNAMESYMBOL COMMA LAMBDANAMESYMBOL COMMA TANAMESYMBOL 
ENDPARENTHESES; 

modelDefinition: modelSentence (SEMICOLON modelSentence)*; 

 In these rules, elements named as EQUAL, WHERESYMBOL, BEGINPARENTHESES, COMMA, 

DELTAEXTNAMESYMBOL, DELTAINTNAMESYMBOL, LAMBDANAMESYMBOL, TANAMESYMBOL, ENDPARENTHESES and 

SEMICOLON are tokens defined in the CFG_TOKENS.g4 file. The rule defined for the nonterminal symbol 

modelDefinition implies a model is defined as a sequence of (at least one) modelSentence separated by 

semicolons. Each modelSentence can be either a setExplicitDefinition or a function.  

 The setExplicitDefinition is described in the CFG_SET_THEORY.g4 file. The function is a 

generic nonterminal symbol for defining delExtFunction, delIntFunction, lambdaFunction, 

taFunction, and selectFunction. A partial syntax diagram of such a symbol can be seen here. At the 

basic level of the function definition, the nonterminal symbol mathExpression is used to describe 

mathematical expressions. Such a symbol is defined in the CFG_MATH_EXPRESSION.g4 file. Moreover, 

grammar allows combining conditions (defined in the nonterminal symbols ifThenCondition or 

ifCondition) with function statements. These nonterminal symbols are defined in the 
CFG_BOOLEAN_EXPRESSION.g4 file. 

 As part of the function definitions, assignments can be defined. To this end, the grammatical model 

includes a set of productions used to identify such statements as follows: 
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assignIdentifier: variable ASSIGNOPERATOR identifier; 

assignParameter: variable ASSIGNOPERATOR parameter; 

assignValue: variable ASSIGNOPERATOR value; 

 Each nonterminal symbol is used for a specific purpose to ensure a proper definition of model elements. 

The ASSIGNOPERATOR token (from the CFG_TOKENS.g4 file) is used to denote the operation. The 

variable, identifier, parameter, variableTuple, and tupleValue are special elements of the 

grammar defined in a unique form in the CFG_TOKENS.g4 file. 

 

CFG_SET_THEORY. The CFG_SET_THEORY.g4 file contains productions used to denote a set in an 

implicit (nonterminal symbol setImplicitDefinition) or explicit (symbol setExplicitDefinition) 

way. In practice, the setExplicitDefinition involves a setSymbol and a setImplicitDefinition. 

Hence, we explain here the setImplicitDefinition definition defined as follows:  

setImplicitDefinition: setDefinition | setOperationResult; 

 As the previous rule shows, we consider a set can be defined "statically" in a setDefiniton or, instead, 

be the result of a set operation (setOperationResult). For the first case, we consider both 

elementCollection and tupleCollection. The elementCollection syntax diagram can be seen here. 

 For operations returning a new set, we provide a set of nonterminal symbols to identify sentence 

structures for several set operations such as cartesian product, union, intersection, and difference. The 

precedence of operators in an expression is given following mathematical foundations. Other basic 

operations involving sets are also allowed in the grammar (e.g., belongs to). 
 

CFG_MATH_EXPRESSION. The file contains production rules used for all nonterminal symbols 

defining a mathematical expression (mathExpression). Available operations to define complex 

expressions are addition, subtraction, multiplication, division, square root, and power. As in the set theory 

production rules, the precedence of operators in an expression follows mathematical foundations. A partial 

syntax diagram of the mathExpression can be seen here. 
 

CFG_BOOLEAN_EXPRESSION. As in the previous case, the file contains all the production rules 

defined for identifying Boolean expressions (nonterminal symbol booleanExpression) as follows:  

booleanExpression: boolExpressionTerm | binaryCondition; 

binaryCondition: boolExpressionTerm (binaryConditionalOperator boolExpressionTerm)*; 

boolExpressionTerm: relationalExpressionTerm | unaryCondition; 

 We consider that a booleanExpression can be a term (boolExpressionTerm) or the result of a well-

defined condition (defined over a binaryCondition). A Boolean term is defined as a 

relationalExpressionTerm (based on relational operators such as “equal to”, “greater than”, “less than 

or equal to”, and so on) or as a unaryCondition. On the other hand, a binaryCondition is structured 

using boolExpressionTerm combined with (binary) conditional operators. The operators included in the 

grammar are “and” and “or”. Again, the precedence in an expression follows mathematical foundations. 

 Finally, the file contains two symbols for identifying conditional structures based on if conditionals: 

ifCondition: ifSymbol booleanExpression | ifSymbol BEGINPARENTHESES booleanExpression 
ENDPARENTHESES | inOtherCaseSymbol; 

ifThenCondition: ifSymbol booleanExpression thenSymbol | ifSymbol BEGINPARENTHESES 
booleanExpression ENDPARENTHESES thenSymbol | inOtherCaseSymbol; 

 These structures combined with the booleanExpression allow describing complex functions as part 

of DEVS models.  
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CFG_TOKENS. The file contains all tokens used in the grammar. These tokens include keywords (either 

symbols or operators) and special characters (e.g., ‘(’, ‘)’, ‘{’, ‘}’, and so on). Keywords start with ‘\’ and 

follow with the string naming its purpose. For example, the token EMPTYSETSYMBOL is defined as the string 

“\emptySet” while the token ASSIGNOPERATOR is defined as “\assign”. We decided to use such a naming 

convention to get a complete identification of sentences (including keywords). If a modeler uses the “real” 

CFG, he should write models following this naming convention. However, intelligent editors can be 

developed based on the use of macros (i.e., identifiers associated with token strings) associated with 

keywords. Once the macros are ready to be used, preprocessing can be performed to substitute the token 

string for each occurrence of the identifier in the text. In this way, for example, the empty set symbol ∅ (or 

the LaTex notation \emptyset) will be able to be used in the model definition and (when preprocessing the 

text) been replaced with the string “\emptySet”. 

 The definition of basic elements is also included in the CFG_TOKENS.g4 file. Each element type is 

defined using a naming convention as follows: 

modelSymbol: UPPERCASEID | LOWERCASEID | FULLCASEID; 

variable: LOWERCASEID APOSTROPHE; 

parameter: HASH LOWERCASEID; 

identifier: LOWERCASEID; 

 For the modelSymbol, any string that starts with a letter and follows with a combination of 

letters/numbers can be used. For the variable, parameter, and identifier, lowercase letters are 

mandatory. In these cases, the naming requires an extra symbol to distinguish between them.  

3.3 Rewriting Models from the Literature Using CFG_DEVS 

Our first example is “the Switch” proposed in (Zeigler et al. 2018). Figure 1 shows the original definition 

of the atomic model, while Figure 2 presents the model rewritten using CFG_DEVS. The parse tree obtained 

when parsing the specification of Figure 2 using the CFG_DEVS can be seen here. 

 To show how different CFG_DEVS notations work, we use “the Worker model” defined by Goldstein 

et al. (2013). Instead of defining function results as tuples, such an atomic model details values for state 

variables using conditional expressions. Figure 3 presents the formal specification. Figure 4 shows one 

possible way of writing such a model in our grammar. The parse tree of Figure 4 can be consulted here. 
 

 

 

 

Figure 1:“The Switch ” (Zeigler et al. 2018). 
 

Figure 2: CFG_DEVS specification of Figure 1. 
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 A larger atomic model is “the Hummingbird Feeder” (Zeigler and Sarjoughian 2003). Such a model 

employs parameters (i.e., time_feed, time_refill, time_query) and special conditions surrounding function 

statements (for space reasons, see the DEVS formal model here). Figure 5 presents the CFG_DEVS 

specification of this atomic model. The parse tree can be seen here. 

 

 
 

Figure 3:“The Worker” (Goldstein et al. 2013). Figure 4: CFG_DEVS specification of Figure 3. 

 

 

Figure 5: The CFG_DEVS specification for “the Hummingbird Feeder” (Zeigler and Sarjoughian 2003). 
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 As an example of DEVS coupled models, we present “the Lighting model” proposed in (Goldstein et 

al. 2013). Figure 6 shows the formal specification. Figure 7 presents the model expressed in the CFG_DEVS 

notation. The parser tree can be consulted here. As the reader can appreciate, in all cases both definitions 

are quite similar except for the use of keywords instead of symbols. 

 

 

 

 

Figure 6: “The Lighting model” (Goldstein et al. 

2013). 

 
Figure 7: The CFG_DEVS specification for the 

model detailed in Figure 6. 
 

4 DISCUSSION 

Frequently, the DEVS formalization task is left aside due to distinct reasons (e.g., time constraints, good 

programming skills, and so on) - that is due to the development of DEVS formal models being a time-

consuming task that delays the delivery of operational model solutions. However, when introducing DEVS 

formalism to students (or even in literature), DEVS formal specifications are used. Then, the students 

(depending on their programming skills) should get the equivalent model implementations that allow model 

execution. So far, existing grammar implementations are focused on describing DEVS models using other 

modeling perspectives (such as proving interoperability or using natural language). Moreover, they generate 

FD-DEVS models (i.e., a restricted subset of DEVS). 

 Our grammatical model allows defining the unrestricted set of DEVS formal models that can be 

processed in a computational form to denote well-defined sentences. As examples presented in Section 3.3 

show, all definitions are almost identical to the “natural” specification of DEVS (formal) models. Moreover, 

parse trees show our ANTLR implementation can recognize members of the Classic DEVS with ports 

structure without any trouble. That enables a further matching among these members and metamodel 

concepts. Both are advantages of our notation. The latter is about the development of a new modeling 

language, while the first is regarding our grammar over existing ones. 

 Take as an example Figure 8 which shows “the Switch” (i.e., a DEVS atomic model) defined in 

DEVSNL using MS4 Me (MS4 Me 2023). Such a model definition is quite different from the model detailed 

in Figure 1 (i.e., the model formal specification). But it is also closer to a “natural language” definition (we 

use quotes because, as stated in Section 2.2, it is not based on natural language processing). That makes 

sense because the modeling perspective used as a guide in DEVSNL was focused on getting natural 

language expressions for defining DEVS models. Most likely, natural language expressions are useful for 

describing DEVS models. Still, for books and teaching processes, the use requires knowing the DEVSNL 

language structure and how DEVS specifications are translated into such a language. Both alternatives 

(Figures 2 and 8) are suitable. Still, when using CFG_DEVS, the modeler (students or non-DEVS experts 
in the context described) only must type the DEVS specification model in an editor (does not need to 

“translate” the formal modeling perspective to a new form of structured sentences). In this way, 

CFG_DEVS enables a suitable introduction to DEVS for students. 
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Figure 8: The DEVSNL specification for the model of Figure 1 (“The Switch” (Zeigler et al. 2018)). 

 Building a software tool as an editor of the CGF_DEVS grammar is crucial. So far, we are parsing 

model specifications using ANTLR directly. ANTLR implementations can be embedded in other platforms 

to use parsing capabilities of a defined grammar in distinct environments. Unifying such a parser in an 

editor with the metamodel (already implemented in Ecore) to instantiate well-defined DEVS formal models 

is part of the development in progress. Both activities are part of our current joint work with RTSync.  

 Like the case of DescribeML (Giner 2022), describing models in a structured format based on a textual 

notation promotes the development of other semi-automated formal scenarios that are not possible in 

programming language implementations, such as, for example, generating artifacts from a model 

specification, such as documentation regarding formal definitions and hierarchical traceability. Moreover, 

using a well-defined modeling language with a semantic meaning enables the translation between different 

DEVS implementations. 

4.1 About the Quality of the CFG_DEVS Notation 

Textual notations should follow basic quality principles. Most of these properties are relevant when the 

concrete syntax is not something brand new (i.e., it uses icons or keywords that users may already associate 

asemantic with). The analysis performed by Cabot (2022) focuses on how the quality of a good 

mathematical notation can be applied to evaluate the quality of modeling language. From such an analysis, 

we can say that the CFG_DEVS achieves the following features: i) Preservation of quality (every “natural” 

concept in the abstract syntax should be easy to express in the notation): Each element defined as a concept 

in the metamodel is represented by a production; ii) Error correction/detection (typos in a well-formed 

expression should create an expression that can be easily corrected -or at least detected- to recover the 

original intended meaning -or a small perturbation thereof-): We promote a set of production rules that 

allow parsing sentence elements detecting pitfalls in expressions; and iii) Suggestiveness (the calculus of 

formal manipulation in the language should resemble the calculus of formal manipulation in other 

languages that users of the language are already familiar with): The grammar is defined just as the 

mathematical form of DEVS models. 

 Other features such as unambiguity (every well-formed expression in the concrete notation should 

correspond to a single instantiation of the abstract syntax), expressiveness (every abstract syntax 

instantiation should be describable in at least one way using the concrete notation), and transformation 

(“natural” transformation of concepts in the abstract syntax should correspond to “natural” manipulation of 
their symbolic counterparts in the concrete syntax notation) cannot be discussed at this point. 

 As a remark, we still have not evaluated the “costs” of the notation defined. Such costs are classified 

into two types (Cabot 2022): “one-time costs” (e.g., the difficulty of learning the notation and avoiding 
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standard pitfalls with that notation) and “recurring costs” (costs incurred with each use of the notation). So 

far, modelers using the CFG_DEVS notation are primarily related to the development team. 

5 CONCLUSIONS AND FUTURE WORK 

Formalization and implementation of DEVS models are two activities that are often carried out 

independently of each other. While formalization deals with the definition of a model over the basis of a 

formal specification, implementation deals with developing a concrete model (from the formal definition) 

in a programming language. That is one key difference of DEVS models with other types of formal models, 

for example, models from the operation research field (where modelers are focused on improving the 

mathematical definition to obtain better and faster results in the equivalent implementation). 

 To get a new modeling language to support the definition of DEVS models in a computational form, 

we have presented a CFG as textual notation for DEVS formal models. Such a grammatical model can be 

combined with “the DEVS metamodel” to define a new modeling language with computational support. 
Since the definition of the concrete syntax is a determining factor in the usability of a DSML, we have 

followed the mathematical expressions used in the DEVS specification. Examples presented in Section 3.3 

show how CFG_DEVS grammar can help to learn DEVS allowing students to define DEVS formal models 

in a computer form without needing to learn programming or other languages. These examples follow the 

syntactical rules defined in the CGF_DEVS model identifying members of Classic DEVS with ports in a 

parse tree. In this way, we have shown how the grammatical model allows describing DEVS formal models 

using mathematical notions. Such a definition allows for building a textual specification of DEVS models 

that can be verified to ensure syntactical correctness. We are working now on building the syntactical 

mapping of the concrete syntax (presented in this paper) with the abstract syntax (i.e., the metamodel) in a 

formal well-defined function. 

 Regarding semantics, the future work is devoted to completing the language definition by including a 

formal specification of the semantics. Having semantics explicitly defined makes different interpretations 

impossible, enabling the possibility of integration among different DEVS implementations.  
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