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ABSTRACT

Bootstrapping has been used to characterize the impact on discrete-event simulation output arising from input
model uncertainty for thirty years. The distribution of simulation output statistics can be very non-normal,
especially in simulation of heavily loaded queueing systems, and systems operating at a near optimal value
of the output measure. This paper presents issues facing simulationists in using bootstrapping to provide
confidence intervals for parameters related to the distribution of simulation output statistics, and identifies
appropriate alternatives to the basic and percentile bootstrap methods. Both input uncertainty and ordinary
output analysis settings are included.

1 INTRODUCTION

The interest in simulation models as digital-twins requires using input probability distributions that correctly
capture those of the real system. Input distribution mischaracterizations happen for many reasons. There
are issues of lack of stationarity, non-representative sampling methods, and limited sample size that must
be addressed. Here we focus on the issue of mischaracterization due to finite sample size, assuming that we
have input distributions that are stationary, and that truly random samples have been collected. Any finite
sample size is insufficient to perfectly characterize an input probability distribution. When the objective
is prediction rather than insight, it is important to give a quantitative characterization of the uncertainty in
simulation output results caused by imperfect input probability distributions. We often seek an estimate of
a parameter θ that characterizes the performance of the simulated system. Examples for θ might include
expected throughput, the .95-quantile for waiting time, etc. We want to characterize the effect of errors in
input distributions on errors in an estimated parameter, θ̂ . This is the input uncertainty problem.

The use of parametric distribution families such as exponential, lognormal, normal, or Weibull permit a
reduction in the uncertainty of probability model characterization, but they have their own drawbacks. Most
parametric distributions used by the simulation community have infinite support, yet that is not the case
for the distributions for real systems. Further, characteristics such as the exponential distribution family’s
continuously increasing density as the argument approaches zero is not representative of real systems. The
use of parametric probability models can lead to unrealistic characterization of congestion. Difficulties in
validating parametric probability distribution assumptions have, in part, motivated simulation modelers and
software developers to use nonparametric empirical distributions based on samples of data from the real
system. The issues and approaches discussed in this paper apply to both parametric and non-parametric
input distribution characterizations.

Denote the simulation output (using input distribution F) from the rth replication asYr(F)=E(Yr(F)|F)+
εr(F),r = 1,2, . . . ,R, where εr(F) represents the run-to-run deviation from the mean of the output statistic.
We assume that εr(F) has zero mean and finite variance that can depend on the input probability distribution
F : σ2(F) = Var(εr(F)|F). Note that F can be multivariate, and here we let it represent the entirety of input
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distributions used to drive the simulation. Our objective is to estimate some parameter θ(Fc) characterizing
the probability distribution ofYr(Fc)where Fc represents the true (c for correct) input probability distributions.
For example, θ(Fc) = E(Yr(Fc)) or θ(Fc) = q.95(Yr(Fc)). The parameter estimate θ̂(F̂c) is generally a
straightforward calculation using the outputs {Yr(F̂c)}, where F̂c represents the estimated input distributions
based on finite samples.

Consider characterizing the uncertainty in θ̂(F̂c) as an estimate of θ(Fc) by constructing a 100(1−α)%
confidence interval for θ(Fc). To construct the interval it is important to understand two different sources
of error in θ̂(F̂c).

θ̂(F̂c) = θ(Fc)+
(
θ̂(F̂c)−θ(Fc)

)
+ψ(εr(F̂c)). (1)

Uncertainty in the value of θ(Fc) comes from the second and third terms in (1). The second term captures
random variation that comes from the difference between the parameter estimate using the estimated
input distributions in F̂c (which depend on random samples) and the true parameter value using the true
distribution Fc. This source is called extrinsic error since it arises from error in the input distribution,
determined externally to the simulation model. The third term represents the impact of the finite duration
of the stochastic simulation on the estimated parameter. It arises from the internal stochastic nature of the
simulation and called intrinsic error. Even with the true input distributions, this error would remain: the
stochastic simulation runs for only finite time. This source of error leads us to write θ̂(F̂c) rather than
θ(F̂c). When θ is an expected value, the intrinsic error will have zero mean, but this need not be the case
for other parameters.

The two sources of error in (1) lead to complications in finding valid confidence intervals for θ(Fc)
addressed by the delta method (Cheng and Holland 1997) and special versions of the bootstrap (Barton,
Lam, and Song 2018). In this paper the focus is on bootstrap methods to characterize the uncertainties
caused by extrinsic uncertainty in (1) when the intrinsic uncertainty is negligible. These issues are also
present for the bootstrap applied to ordinary simulation output analysis: when the extrinsic uncertainty in
(1) is negligible. The key finding is that the performance of any particular bootstrap method depends on
the nature of the simulation response, and that two response characteristics that arise in simulation require
special care when using bootstrap methods.

Our objective is to construct valid (i.e., correct coverage probability) and tight (i.e., small) confidence
intervals for some characterization of a simulation output statistic, such as a mean or quantile. Bootstrap
methods can be effective in this setting, but care must be taken to avoid incorrect application of the
bootstrap. Section 2 reviews basic and percentile bootstrap methods and highlights their strengths and
weaknesses. The following section identifies two situations in which simulation output poses problems for
these methods. Section 4 presents alternative bootstrap methods that can perform well in these situations.
Section 5 presents two small computational studies comparing bootstrap method performance. The paper
concludes with recommendations on bootstrapping for input uncertainty characterization, and identifies
issues that remain open.

2 BASIC AND PERCENTILE BOOTSTRAPPING

The bootstrap has been an important method for characterizing input uncertainty for thirty years (Barton
and Schruben 1993). It continues to be an active area of research (Corlu et al. 2020; Barton et al. 2022).
Here we focus on bootstrap methods for constructing confidence intervals for some function of a simulation
output, typically a run-average statistic Yr for the rth replication. There are many flavors of the bootstrap
for this setting. To describe each, we simplify notation to and write Fc as F and F̂c as Fn, where Fn is
based on a (random) sample of size n.

The bootstrap concept was popularized and characterized in Efron (1979). Consider a parameter
estimate θ̂(F) based on a sample of X = {X1,X2, . . . ,Xn} drawn from F . The randomness in θ̂(F) comes
from the randomness in {X1,X2, . . . ,Xn}. One might imagine characterizing the distribution of θ̂(F) by
repeated real-world samples X , but there is only observed sample set x = {x1,x2, . . . ,xn}, and one resulting
θ estimate, θ̂(F |X = x), or just θ̂(x).
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Confidence intervals are constructed by inverting probability statements about θ̂(F)− θ(F). The
fundamental idea behind bootstrap methods is that the distribution of θ̂(F)−θ(F) can be approximated by
the distribution of θ̂ ∗(Fn)− θ̂(x) where θ̂ ∗(Fn) is the statistic computed from a random bootstrap resample
{X∗

1 ,X
∗
2 , . . . ,X

∗
n } drawn from the empirical distribution Fn (usually by drawing samples with replacement

from the original sample x = {x1,x2, . . . ,xn}). And θ̂(x) is known - it is the value of the statistic computed
from the original sample.

The distribution of θ̂ ∗(Fn) is often estimated empirically by taking repeated (with index b) so-called
bootstrap samples {X∗

b,1,X
∗
b,2, . . . ,X

∗
b,n} drawn randomly with replacement from the original sample x =

{x1,x2, . . . ,xn} and computing an estimate θ̂ ∗
b from each bootstrap sample, b = 1,2, . . . ,B. For a perfect

characterization of the bootstrap distribution for θ̂ ∗(Fn), an analytic form (or B = ∞) is required. Typically
an analytic form for the distribution θ̂ ∗(Fn) is not known, and the empirical distribution of a large number
of bootstrap resamples {θ̂ ∗

b ,b = 1,2, . . . ,B}, say B = 1000, approximates the true bootstrap distribution
of θ̂ ∗(Fn). For a parametric bootstrap, Fn is a parametric distribution fitted to the n samples. For the
nonparametric bootstrap, Fn is the empirical distribution function, and the bootstrap samples are drawn
from the original sample with replacement. Once we have the approximate distribution for θ̂ ∗(Fn) we can
construct confidence intervals by inverting probability statements about θ̂ ∗(Fn)− θ̂(x) (or about θ̂ ∗(Fn))
in the usual way, as shown in the next two sections.

When thinking about bootstrapping in a simulation context, it is important to determine what is the
sample and what is the statistic.

For input uncertainty:

• the sample data {X1,X2, . . . ,Xn} drawn from F are the data used to fit the input distributions, and
• the statistic computed is some function of a set of R simulation replications {Y1,Y2, . . . ,YR} - e.g.,

mean, variance, or quantile.

For output analysis:

• the sample data {Y1,Y2, . . . ,YR} are drawn from the distribution of outputs having cdf F , and
• the statistic computed is some function of R simulation replications {Y1,Y2, . . . ,YR} - e.g., mean,

variance, or quantile.

When examining input uncertainty with both extrinsic and intrinsic error, both n and R are important in
the analysis. For output analysis only R is important.

The two simplest and most common bootstrap methods are the basic bootstrap and the percentile
bootstrap. Each of these can be applied in the parametric or nonparametric setting, and the resulting
confidence intervals can be based on a standard error estimate or can be based on the empirical distribution
of the output statistic.

2.1 The Basic Bootstrap Confidence Interval

Approximation of the distribution of θ̂(F)−θ(F) by θ̂ ∗(Fn)− θ̂(x) is used directly in the basic bootstrap.
P(L ≤ θ̂(F)− θ(F) ≤ U) ≈ P(L ≤ θ̂ ∗(Fn)− θ̂(x) ≤ U) permits L and U calculation as L = q(θ̂ ∗(Fn)−
θ̂(x),α/2) and U = q(θ̂ ∗(Fn)− θ̂(x),1− (α/2)), where q(x, p) is the quantile function for data x with
probability value p. Using these values for L and U and, since θ̂(x) is fixed, q(θ̂ ∗(Fn)− θ̂(x), p) =
q(θ̂ ∗(Fn), p)− θ̂(x) gives the basic bootstrap 100(1−α/2) confidence interval:

CIbasic = [2θ̂ −U∗,2θ̂ −L∗], (2)

where L∗ and U∗ are the quantiles for θ̂ ∗(Fn).

423



Barton and Rhodes-Leader

2.2 The Percentile Bootstrap Confidence Interval

The percentile interval takes the simpler form:

CIpercentile = [L∗,U∗], (3)

where the quantiles for θ̂ ∗(Fn) are used directly in construction of the confidence interval. The percentile
bootstrap appears to be backwards, but Efron and Tibshirani (1994) show that the percentile bootstrap can
be valid. First, it is important to understand that if the distribution of the statistic is symmetric, then the
values L∗ and U∗ are interchangeable. When the distribution is not symmetric, both methods can have
problems, but less so for the percentile bootstrap. That is due to two properties of the percentile bootstrap.
First, the percentile bootstrap has the range-preserving property. Because of the way it is constructed,
confidence interval bounds are always within the range of the original data. This is not necessarily true for
the basic bootstrap. Second, the percentile bootstrap has the transformation-preserving property. Suppose
that a monotonic transformation h exists that gives a symmetric distribution for h(θ̂(F)) (e.g. the logarithm
for a lognormally distributed θ̂(F)). One expects better performance on the transformed statistic. Back-
transforming to establish a percentile bootstrap confidence interval for θ̂(F) from the percentile bootstrap
interval for h(θ̂(F)) results in the same interval that would be found without transformation. Thus the
percentile bootstrap interval has some robustness to statistics having asymmetric distributions, as we will
see in Section 5.

3 LIMITATIONS OF THE BASIC AND PERCENTILE BOOTSTRAP METHODS

The basic bootstrap is sensitive to deviations from a symmetrically distributed sample statistic, resulting
in bias in the approximating distributions and confidence intervals with incorrect coverage. In spite of the
flexibility provided by the range-preserving and transformation-preserving properties, bias can remain for
the percentile bootstrap. Further, the range-preserving property can lead to difficulties in some simulation
settings. In this paper the focus is on two characteristics that one might find in simulation output statistics:
asymmetry and boundedness of the bootstrap distribution. Each of these are discussed below. When the
bootstrap is used to characterize input uncertainty with both intrinsic and extrinsic uncertainty present,
bootstrap methods require special modifications that are not covered here. See for example, (Barton et al.
2014) and (Barton et al. 2018).

3.1 Statistics with Asymmetric Distributions

Simulations of queues under high utilization produce asymmetrically distributed output statistics. Bootstrap-
based confidence intervals for output analysis must be chosen with this in mind. For example, Figure 1
shows the distribution of daily waiting time for the five-teller bank simulation in Law (2015), implemented
in simmer (Ucar 2022). The figure is based on a sample of 20,000 average daily waiting times, and the
mean and .95-quantiles are indicated by vertical lines. Computing a confidence interval for daily average
waiting time is problematic for the basic bootstrap when the sample size is small. Computing a confidence
interval for a quantile can be problematic for the basic bootstrap with samples of size 200. We revisit this
example in Section 5.

3.2 Bounded Statistics

In a digital-twin simulation one might expect that the real system has been designed for approximately
optimal performance. Consider for example the service queuing network represented by the Jackson network
in Figure 2. Jobs of different types arrive at the input nodes, and are routed to processing stations that have
different processing capabilities. In this simple example one might assume that the route assignments have
been made to balance the load, approximately minimizing mean sojourn time. Of course the balance will
not likely be perfect. The arrival rates λi and service rates µ j have been estimated from finite samples and
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Figure 1: Daily average waiting times for the 5-teller bank.

Figure 2: A service network digital twin.

so have sampling error. In this situation, bootstrapping for input uncertainty characterization is unlikely to
generate a system response lower than the result from the model (nearly) optimized to the available data.
This leads to difficulties in constructing input uncertainty confidence intervals for mean sojourn time. We
consider a similar but simpler example in Section 5.

4 ALTERNATIVE BOOTSTRAP METHODS

The shortcomings of the basic and percentile bootstrap methods have been recognized almost since their
development. Many enhancements have appeared in the literature. The books Davison (1997) and Efron
and Tibshirani (1994) describe many of these. Here we focus on the BCa, double bootstrap, and subsample
methods. They have arisen for different reasons and so are discussed separately in the next two sections.

4.1 Bootstrap Methods for Statistics with Asymmetric Distributions

Asymmetry in the distribution of the sample statistic leads to bias in determining bootstrap confidence
intervals, and undercoverage for both asymmetric and bounded statistics. The BCa and double bootstrap
methods have been shown to be effective in estimating and removing or reducing bias. Each has its
shortcomings.
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4.1.1 The BCa Bootstrap

Efron’s bias corrected and accelerated (BCa) bootstrap adjusts the p-values of the bootstrap quantiles to
compensate for bias. The form is:

CIpercentile = [q(θ̂ ∗(Fn),α1),q(θ̂ ∗(Fn),α2)]. (4)

The complication is in how the adjusted p-values α1 and α2 are determined. Assume that a transformation
exists, say φ = h(θ) so that h(θ̂) ∼ N(φ −wσ(φ),σ2(φ)) with σ(φ) = 1+ aφ . Then w characterizes
skewness and a characterizes heteroskedasticity. For a nominal quantile probability α the BCa adjustment
uses

α̃ = Φ

(
w+

w+ zα

1−a(w+ zα)

)
(5)

where the bias is estimated as w = #(θ̂ ∗
b ≤ θ̂)/(n+ 1), and a is estimated as one sixth the standardized

skewness using a linear approximation to the maximum likelihood estimate for θ̂ . See Section 5.1 of
(Davison 1997) for the detailed derivation. The advantage is an asymptotically accurate adjustment for
bias and heteroscedasticity in θ̂ ∗(Fn). The disadvantage is that small samples can lead to poor estimates
of the variance and skewness and resulting in α1 < 1/(n+1) or α2 > n/(n+1), i.e. outside the range of
observed bootstrap statistics, with a deleterious impact on coverage.

4.1.2 The Double Bootstrap

The double bootstrap provides a different method to correct for bias (Davison 1997). Originally requiring
a pivot statistic, Shi (1992) showed a version that can be applied when an estimate of variance is not
available to construct a pivot, further illustrated by McCullough and Vinod (1998). Shi’s double bootstrap
also adjusts the p-values for the θ̂ ∗(Fn) quantiles using the form in (4), but the computations for α1 and α2
do not require pivot construction, nor a normal approximation, nor do they require estimating variance and
skewness. Further, the computations are somewhat easier to understand. The method adjusts the confidence
interval quantile α1 and α2 values by bootstrapping each bootstrapped sample K times for each outer
bootstrap sample b. The revised α1- and α2-values are based on Qb, the fraction of the K inner-bootstrap
statistic estimates from the bth bootstrap resample {X∗

b,1,X
∗
b,2, . . . ,X

∗
b,n} that are less than or equal to the

bootstrap statistic estimate:

Qb =
1
K

#
(
θ̂
∗∗
bk ≤ θ̂

∗
b
)
. (6)

The revised α1- and (α2)-values are computed as α∗
1 = q(Qb,α/2) and (α2)

∗ = q(Qb,(1−α/2)), where
q(x, p) is the quantile function for data x with probability value p. Letson and McCullough (1998) discussed
optimal selection of B and K, and gave one example with B= 1999 and K = 246. For use in input uncertainty
characterization, the double bootstrap as defined above may not be practical: BK simulations (491,754 for
the case just given!) are required as opposed to only 2B for the BCa method, not counting replications. The
effort per resample would be greatly reduced for metamodel-resampling input uncertainty (Barton, Nelson,
and Xie 2014). An extension of Lam’s ‘cheap bootstrap’ might be applied in some direct-resampling cases
(Lam 2022). Unfortunately, its application in the case of bounded or highly skewed sample statistics is
problematic, particularly when a pivot is not available. When a pivot statistic is available and only intrinsic
uncertainty must be characterized, there are other ways to reduce the computational effort (Davison 1997).
The added computation is less concerning for simulation output analysis, since no new simulations need
be run.

4.1.3 Software for Computing BCa and Double Bootstrap Confidence Intervals

Functions for basic, percentile and BCa bootstrap confidence interval calculations are available in the boot
package in R. Software for double bootstrap confidence interval calculation is not readily available, but
Davison (1997) give example R code that uses the boot function from the boot package.
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4.2 Bootstrap Methods for Statistics with Bounded Values

The basic and percentile bootstrap methods can fail to be consistent for statistics estimating bounded
parameters or statistics that are bounded themselves. Davison (1997) present a frequently cited example,
constructing a confidence interval for θ using a sample X ∼U(0,θ). Andrews (2000) identify many such
examples from the literature, including their own: X ∼ N(θ ,1);θ ≥ 0. They present four methods that are
effective in this setting. Here we focus on one that is well-researched: subsampling. The double bootstrap
can also be effective in this setting.

4.2.1 The Subsample Bootstrap

Subsampling was defined by Politis and Romano (1994) and its asymptotic properties evaluated in Politis,
Romano, and Wolf (2001). This method takes repeated resamples {X∗

1 ,X
∗
2 , . . . ,X

∗
m} from X where m < n.

The confidence interval calculations are analogous to (2) and (3) but the resulting statistics and distributions
must be adjusted for the difference in sample size. While the asymptotic characteristics are demonstrated for
a subsample of all

(n
m

)
subsets of size m, they later show the results hold asymptotically for a random sample

of B subsets of {X∗
1 ,X

∗
2 , . . . ,X

∗
m} with or without replacement. Lee (1999) develops further enhancements

using the double bootstrap that we do not explore here. Asymptotic consistency requires that B → ∞,
n → ∞ and m/n → 0. Yet the latter does not seem critical since jackknife estimates have good asymptotic
properties and correspond to m = n−1. In the computational examples below, large m (e.g., m = .9n) gave
the best coverage.

Software for m_out_of_n bootstrap confidence interval calculation is available in the distillery
package in R.

5 COMPUTATIONAL EXAMPLES

In this section we compare the performance of these bootstrap methods on two representative examples. The
first example applies bootstrap methods to output analysis, where the output (average waiting time) exhibits
the high asymmetry arising from a congested queueing system. The second example applies bootstrap
methods to input uncertainty in a case with negligible intrinsic uncertainty. It imitates the time-in-system
for an example like that shown in Figure 2, where the system is designed to minimize the time-in-system
for values that are near the estimated parameter values. Bootstrapping for input uncertainty results in
deviations from these parameters and so almost always poorer performance.

5.1 Bank Waiting Time Simulation

We examine the distribution of daily average waiting time for a simple bank simulation described in Law
(2015). A detailed example of the simulation model built in simmer is described in the tutorial Web pages
Garmonsway (2022a) and Garmonsway (2022b). The version used here is a simple case, with only one
entity type: customer, and all customers have identical characteristics. There is only one trajectory for all
customers, unlike a real bank, where some customers would go to the safety deposit box, some to a cubicle
to apply for a loan with a loan officer, etc.. Only one resource type is employed: teller. The number of
tellers can be chosen, but all tellers are identical in their characteristics. The simulation runs for one day,
with the bank doors open for 8 hours. There may be customers waiting and in service at closing time. In
order to process these, no simulation end time is specified, but the generation of arrivals ends at time 480
minutes (= 8 hours). Effectively, the bank doors close, but tellers continue to service those already inside.
The simulation ends when there are no events in the future events list.

We retain the interarrival time and service time characteristics used in the tutorial. The model description
below shows that interarrival and service times have exponential distributions with rates 1 and 1/4.5
respectively, suggesting that utilization will be higher than 1 unless there are 5 tellers or more. For
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Figure 3: Distribution of 20-day averages.

example, with four tellers the combined service rate would be 4/4.5, less than the arrival rate of 1. We
study the waiting time (time in system - time in service) averaged over all customers in a day.

5.2 Mean Waiting Time

Suppose that we have a sample of 20 simulated days, and wish to compute a confidence interval for the
expected value of the average waiting time. Figure 3 shows a histogram for 1000 such averages over
20 days along with the true mean daily average. The central limit theorem certainly has had an effect;
the asymmetry and non-normality are greatly reduced. This is not the situation requiring attention. The
standard interval based on the sample standard deviation and the critical t19 value works well in this case.

5.3 A Waiting Time Quantile

Now consider the estimation of the 95% quantile of the daily average wait. The distribution of estimated
quantiles over 100 samples of 200 days is shown in Figure 4. Confidence intervals for quantiles are more
difficult to determine correctly. As for the mean, the usual confidence interval for a quantile θ is based on

a normal approximation. The standard error is estimated by
√

p(1− p)/(n f̂ 2) where f̂ is an estimate of

the density at θ̂ .
The estimated coverage and average confidence interval widths are shown in Table 1. The table includes

the standard confidence interval for a quantile using the normal approximation.

Table 1: 95% quantile confidence interval coverage and widths.

Normal Basic Percent BCa Subsample Double
Coverage 0.89 .83 .93 .93 .95 .94

Width 4.6 5.5 5.5 5.6 5.7 5.9

The results show inferior coverage of the normal interval and the basic bootstrap. The percentage
bootstrap and BCa perform similarly, and are only slightly inferior to the more complex subsample and
double bootstraps. The subsample basic bootstrap interval had inferior performance and is not shown. The
normal interval has an advantage over the basic bootstrap because it is based on a pivotal statistic, but still
suffers from bias. While its interval width is smaller than the others, its coverage is inferior. The other
widths are somewhat comparable. Figure 5 shows one of the 100 computations of confidence intervals in
this experiment. For this instance, both the normal and basic fail to cover. Their bias is clear. It is clear
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Figure 4: Distribution of 95% sample quantiles, 100 samples of 200 days each.

Figure 5: Waiting times and CIs for one real sample of 200 days.

that the least biased intervals for this sample are the subsample and double bootstrap intervals. All interval
widths are similar except for the normal (Z) based interval, which is smaller.

Note that while we used quantile confidence interval estimation to illustrate the performance of bootstrap
methods for statistics with asymmetric distributions, there are methods superior to the bootstrap that can
be used for this problem. See for example the quantile interpolation method (Hettmansperger and Sheather
1986; Nyblom 1992) implemented in the eqnpar function in the EnvStats package (Millard and
Kowarik 2022), described by Höhle (2016).

Next, we compare the performance of these methods for constructing confidence intervals for a bounded
statistic.

5.4 A Bounded Statistic

This input uncertainty example is stylized to represent a system whose output parameter of interest is
near optimal for the current parameter settings. For this example we assume that intrinsic uncertainty is
negligible: for fixed input distribution parameter values, expected values of simulation output are measured
without error as θ(x) = 100(x− 1)2. So the simulated system has a minimum performance with input
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parameter x = 1. The two cases we examine have true input parameter values x = .60 and x = .99. The input
parameters are estimated with normally distributed input uncertainty. The two input uncertainty probability
models are X ∼ N(.60, .2) for a true parameter value x = .60 and X ∼ N(.99, .2) for a true input parameter
value x = .99. We considered sample sizes of 50, 100, and 200 and compute the 95% confidence interval
for θ by various methods. Tables 2 and 3 show the results. The tables include the standard confidence
interval for a mean using the t distribution.

Table 2: Mean confidence interval coverage and widths, E(X)=.60, θ = 16.

Sample Size t Basic Percent Subsample Double
Coverage 50 .65 .92 .93 .94 .93

Width 50 .11 8.8 8.8 9.2 8.9
Coverage 100 .37 .95 .95 .96 .95

Width 100 .08 6.2 6.2 6.5 6.3
Coverage 200 .07 .95 .96 .96 .94

Width 200 .06 4.4 4.4 4.6 4.5

Table 3: Mean confidence interval coverage and widths, E(X)=.99, θ = .01.

Sample Size t Basic Percent Subsample Double
Coverage 50 0.0 .82 .96 .96 .96

Width 50 .11 .69 .69 .74 .71
Coverage 100 0.0 .72 .97 .97 .97

Width 100 .08 .34 .34 .36 .35
Coverage 200 0.0 .71 .96 .97 .96

Width 200 .06 .19 .19 .20 .19

Figure 6: Boxplots for θ̂ values, x = .60 (top) and x = .99 (bottom).

The subsample basic bootstrap interval had inferior performance and is not shown. The BCa procedure
frequently failed to solve for its parameters and so did not return an interval. As in the bank waiting time
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example, the percentile, subsample, and double bootstraps all performed well, with similar confidence
interval widths. Without compensation for bias, both the standard and basic bootstrap intervals show
decreasing coverage with increasing sample size since their confidence interval sizes capture variance but
not bias.

Figure 6 shows boxplots for 200 resampled Y = θ̂ values. Both show the extreme bias in values due
to the near-optimal E(X) values. The upper plot is for E(X) = .60 (θ = 16), where E(X) is two standard
deviations from the value (zero) yielding the minimum (bounded) output statistic. The lower plot for E(X) =
.99, very near the value yielding minimum simulation output performance. In this case the bias is extreme,
and the coverage of the standard confidence interval is approximately zero.

6 SUMMARY

The nature of simulation output makes the basic bootstrap a risky choice for constructing confidence intervals.
Output statistics commonly have asymmetric or bounded distributions, which can make confidence interval
construction difficult. The percentile bootstrap worked reasonably well in the two computational examples
for asymmetric and bounded statistics. The subsample percentile and double bootstrap methods had slightly
better performance. Given the extreme computational cost, the subsample percentile bootstrap appears to
be the best choice. To learn more about the bootstrap for confidence intervals in a variety of settings, see
(Chernick 2008) and (Mammen and Nandi 2012).
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