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ABSTRACT

In rare-event simulation, importance sampling (IS) is widely used to improve the efficiency of probability
estimation. Asymptotic optimality is a common efficiency criterion, which requires that the relative error
of the estimator only grows subexponentially in the rarity parameter. Most studies, however, consider
low-dimensional problems and the effect of dimensionality is seldom analyzed. Motivated by recent AI-
related applications, we take a first step towards high-dimensional rare-event simulation and demonstrate
that for very simple examples, IS proposals that utilize exponential tilting, arguably the most common IS
approach, can suffer from the “curse of dimensionality”. That is, while the growth rate of the relative error
is polynomial in the rarity parameter thus leading to asymptotic optimality, the degree of the polynomial
depends on the problem dimensionality. Therefore, when the dimension is high, the relative error can be
huge even in the rarity parameter regime where IS is conventionally believed to work well.

1 INTRODUCTION

Rare-event simulation aims to estimate quantities of interest associated with events with tiny probabilities.
This problem is fundamental in risk assessment and management, and applies across a wide range of
disciplines such as queueing systems (Dupuis et al. 2007; Dupuis and Wang 2009; Blanchet et al.
2009; Blanchet and Lam 2014; Kroese and Nicola 1999; Ridder 2009; Sadowsky 1991; Szechtman and
Glynn 2002), reliability (Heidelberger 1995; Tuffin 2004; Nicola, Nakayama, Heidelberger, and Goyal
1993; Nicola, Shahabuddin, and Nakayama 2001), finance (Glasserman 2003; Glasserman and Li 2005;
Glasserman et al. 2008) and insurance (Asmussen 1985; Asmussen and Albrecher 2010). The most
straightforward method is to apply crude Monte Carlo (MC) simulation. That is, we simulate the original
dynamics and use the frequency of hitting the target event to estimate the probability. However, by the very
nature of rare events, the target event is seldom observed. Statistically, this results in a large estimation
variance and in turn requires a large number of simulation replications to ensure acceptable estimation,
thus rendering crude MC computationally expensive.

To address this challenge, various variance reduction techniques have been developed. These techniques
alter or enhance the sampling scheme to reduce the variance per simulation run, and subsequently the required
number of replications. Among these approaches, importance sampling (IS) (Juneja and Shahabuddin 2006;
Rubino and Tuffin 2009) is arguably the most powerful for rare-event estimation. It applies a change of
measure to the original distribution, which results in the IS distribution, to increase the frequency of hitting
the target event. To maintain unbiasedness, the simulation output needs to be multiplied with the so-called
likelihood ratio.
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In the rare-event context, the efficiency of IS and variance reduction techniques more generally is
measured by the relative error of the estimator, i.e., the ratio of the standard deviation (per simulation
replication) to the true probability. Relative error is used because, as the target probability is very small,
the estimation is meaningful only if the error is small relative to the magnitude of the target quantity. Via
Chebyshev’s inequality, it can be shown that the required number of replications to attain a prescribed
level of overall relative error is proportional to the squared relative error, so the smaller the relative error,
the more efficient the procedure. In particular, in typical large deviations settings, the target probability
decays exponentially in a “rarity parameter”. Correspondingly, crude MC can be readily shown to have an
exponentially growing relative error. On the other hand, IS with suitably chosen IS distributions can result
in the relative error growing subexponentially in the rarity parameter, thus providing a significant gain in
efficiency. This type of IS achieves so-called asymptotic optimality (Juneja and Shahabuddin 2006), also
known as asymptotic efficiency or logarithmic efficiency in the literature, which is a common efficiency
criterion that requires the relative error per simulation replication to grow at most subexponentially.

While asymptotic optimality has been widely studied in the rare-event literature, most existing work
focuses on low-dimensional problems without analyzing the effect of dimensionality. On the other hand,
motivated by emerging AI-related applications in safety evaluation of intelligent systems and robustness
quantification of machine learning models (Wang et al. 2021; Webb et al. 2018; Weng et al. 2019),
rare-event simulation for high-dimensional problems becomes increasingly relevant (Bai et al. 2022; Bai
et al. 2021). In this paper, we take a first step in this direction and investigate a simple setting to bring out the
prevalence of the “curse of dimensionality” in this context. More precisely, we consider the probability of a
Gaussian random vector hitting an infinite box in a finite-dimensional space. We show that IS distributions
formed by exponential tilting (Siegmund 1976; Sadowsky and Bucklew 1990), arguably the commonest
type of change of measure, give rise to a relative error that is polynomial in the rarity parameter, thus
leading to asymptotic optimality. However, this polynomial has a degree that depends on the problem
dimension. As a result, when the dimension is high, the relative error can be huge even for the rarity
parameter regime where the IS is believed to work well. In fact, if we let the dimension grow with the
rarity parameter, then the relative error could grow exponentially, thus violating the asymptotic optimality
property commonly satisfied by exponential tilting. Such a behavior is in contrast with existing rare-event
problems where the large rarity parameter is often the sole driver of the resulting tiny probability.

The rest of this paper is organized as follows. In Section 2, we review the background related to IS and
exponential tilting. In Section 3, we demonstrate the curse of dimensionality in a Gaussian example using
exponential tilting. In Section 4, we briefly summarize the key findings of our investigation and discuss
some future directions.

2 BACKGROUND

2.1 Challenge of Crude MC

Suppose that we are interested in estimating p = P(A) where A is a rare event, i.e., p is tiny. The crude
MC estimator is defined by I(ω ∈ A) where ω is sampled under the original measure P and I denotes the
indicator function. If we generate n i.i.d. samples ω1, . . . ,ωn, then we estimate p with p̂ = 1

n ∑
n
i=1 I(ωi ∈ A).

Since p is tiny, we would like to ensure that the discrepancy between p̂ and p is small relative to p itself.
By Chebyshev’s inequality, for any δ > 0, we have that

P(|p̂− p|> δ p)≤ var(p̂)
δ 2 p2 =

var(I(ω ∈ A))
nδ 2 p2 . (1)

We define the relative error of an unbiased estimator as the ratio of the standard deviation per simulation run
and the target quantity. Thus, in the last term, var(I(ω ∈ A))/p2 is the squared relative error for p̂. Moreover,
for any ε > 0, n ≥ var(I(ω ∈ A))/(εδ 2 p2) is a sufficient condition to guarantee that P(|p̂− p|> δ p)≤ ε ,
or in other words the required number of replications n to attain P(|p̂− p|> δ p)≤ ε is proportional to the
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squared relative error. As I(ω1 ∈ A)∼ Bernoulli(p), we know that var(I(ω ∈ A)) = p(1− p), and hence
var(I(ω ∈ A))/p2 = (1− p)/p ≈ 1/p. This further implies that the required number of replications n to
guarantee a high-confidence relative closeness between p̂ and p is reciprocal in p. In this regard, the crude
MC estimator is well known to be inefficient in the rare-event setting when p is tiny.

2.2 Importance Sampling and Asymptotic Optimality

As mentioned in the introduction, IS is a common approach to speed up the simulation. The key idea
is to choose an alternative measure P̃ and use the IS estimator Z = I(ω ∈ A)dP

dP̃(ω) where dP
dP̃ is the

Radon-Nikodym derivative, or likelihood ratio, between P and P̃. By this definition, the estimator Z is
guaranteed to be unbiased regardless of the choice of P̃, as long as the estimator is well-defined in the
sense of satisfying the requisite absolute continuity requirement. Note that, while unbiasedness is easy to
obtain, low variance is not, and we still need to choose P̃ carefully to ensure a small variance or relative
error of Z.

Now we suppose that the rare event A is parameterized by a rarity parameter γ , such that as γ → ∞, A
gets rarer and p → 0. We will show later that in the classic large deviations setting, p decays exponentially
in γ , which implies that the relative error of the crude MC estimator grows exponentially in γ . In contrast,
we would like to find an IS estimator whose relative error only grows subexponentially in γ , which implies
that the required simulation size is only subexponential following (1).

Formally, asymptotic optimality is defined as follows:
Definition 1 (Asymptotic Optimality) The IS estimator Z = I(ω ∈ A)dP

dP̃(ω) is said to be asymptotically

optimal if limγ→∞
log(Ẽ(Z2))

log p = 2 where Ẽ(·) denotes the expectation under P̃.

We note that Ẽ(Z2)≥ p2, so the limit condition limγ→∞
log(Ẽ(Z2))

log p = 2 in Definition 1 cannot be improved.
Intuitively, the condition implies that Ẽ(Z2) and p2 have the same exponential rate of decay. In particular,
when p is exponentially decaying in γ , the criterion of asymptotic optimality is equivalent to Ẽ(Z2)/p2,
or the relative error of Z, growing at most subexponentially in γ .

2.3 Exponential Tilting

To achieve asymptotic optimality, exponential tilting is often employed. Here we explain the methodology
with a standard Gartner-Ellis regime (Dembo and Zeitouni 2009) in the large deviations theory. Suppose
that the rare event A is formulated as A = {1

γ
Xγ ∈ E } where {Xγ}γ ⊂ Rd are random vectors indexed by

γ and E ⊂ Rd is a fixed Borel set. Define µγ(x) = 1
γ

log(ex⊤Xγ ),x ∈ Rd , which is the scaled cumulant
generating function. We assume that µ(x) = limγ→∞ µγ(x) exists for any x ∈Rd , where we allow ∞ both as
a limit value and as an element of the sequence {µγ(x)}γ . Then we define the rate function as its Legendre
transform, i.e., I(y) = supx∈Rd{x⊤y−µ(x)},y ∈ Rd . Some general assumptions on the properties of µ , I
and E are needed, but we do not list them in detail here as they are standard in the literature. Under the
assumptions, the Gartner-Ellis theorem states that

− lim
γ→∞

1
γ

P
(

1
γ

Xγ ∈ E

)
= inf

y∈E
I(y) =: I(E ),

which implies that the true probability p = P(A) decays exponentially in γ as long as 0 < I(E ) < ∞.
Intuitively, the rate function I measures the likelihood of hitting each point on the negative logarithm scale,
and the exponential rate of decay of p is determined by the minimum rate (or equivalently, maximum
likelihood) point over E . Following this intuition, shifting the mean of the distribution to this minimum
rate point potentially improves the efficiency, which is implemented via exponential tilting.

More specifically, let a denote the minimum rate point in E , i.e., a ∈ E and I(a) = infy∈E I(y) where
E is the closure of E , and assume that there exists a unique sa ∈ Rd such that ∇µ(sa) = a. Then the
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exponentially tilted IS measure P̃ is defined by

dP̃
dP

= exp{s⊤a Xγ − γµγ(sa)}. (2)

It is well known that under certain conditions the IS estimator with this choice of P̃ is asymptotically optimal,
and under more general conditions, mixing the distributions which are exponentially tilted to a set of points
is asymptotically optimal (Sadowsky and Bucklew 1990; Dieker and Mandjes 2005). For simplicity, in this
paper we will only consider the case where tilting to the minimum rate point is asymptotically optimal.

3 EXPONENTIAL TILTING IN HIGH DIMENSIONS

In the above discussion and also in most previous works, the effect of the dimension d is not analyzed.
However, as high-dimensional problems appear in emerging AI-driven applications, it is increasingly
important to understand whether the IS estimator is still “sufficiently efficient” in high dimensions. First,
we consider the scenario where d is fixed but high. We still have that the growth rate of the relative error in
γ is subexponential, but how would this growth rate depend on d? Say, if the relative error is polynomial
in γ with a high degree when d is large, then in the finite-sample applications, the required simulation size
can be prohibitively large, even though the relative error appears to be controlled in terms of γ . Second,
we consider the scenario where the problem also scales with d. That is, we can view d as another rarity
parameter. In this case, would the relative error still grow subexponentially in d? We note that in this case,
as we allow the dimension d to change, the result inevitably depends on how exactly the problem evolves
with d. While developing general results can be hard, it is easier to enforce a regime on the problem
evolution.

3.1 Fixed but High Dimensionality

We analyze a specific example to demonstrate the curse of dimensionality for exponentially tilted IS. Suppose
that Xγ ∼ N(γλ ,γΣ) where µ ∈Rd and Σ ∈Rd×d is a positive definite matrix. Thus, 1

γ
Xγ ∼ N(λ , 1

γ
Σ), which

becomes more concentrated around the fixed mean λ as γ grows. To ensure that the target event is rare, we
assume that λ /∈ E . For this Gaussian case, µγ(x) = µ(x) = x⊤λ + 1

2 x⊤Σx and I(y) = 1
2(y−λ )⊤Σ−1(y−λ ).

We see a natural link between the rate function I and the density function of N(λ , 1
γ
Σ). Besides, for any

a ∈ Rd , sa := Σ−1(a−λ ) is the unique solution to ∇µ(sa) = a, and also the gradient of I(y) at y = a.
Following (2), under the exponentially tilted measure to point a, we have 1

γ
Xγ ∼ N(a, 1

γ
Σ). That is, we

keep the covariance matrix and shift the mean from λ to a.
First, we derive a formula for the second moment of the IS estimator:

Lemma 1 Suppose we want to estimate p=P(1
γ
Xγ ∈ E ). Here, γ ∈R is the rarity parameter, Xγ ∼N(γλ ,γΣ),

λ ∈ Rd , Σ ∈ Rd×d is positive definite and λ /∈ E ⊂ Rd . Consider IS estimator Z = I(1
γ
Xγ ∈ E )dP

dP̃ where
Xγ ∼ N(γa,γΣ) under P̃ for some a ∈ Rd . Then

Ẽ(Z2) = exp{γ(a−λ )⊤Σ
−1(a−λ )}P

(
1
γ

Xγ ∈ E

)
where Xγ ∼ N(γ(2λ −a),γΣ) under P.

Proof. We have that

Z = I
(

1
γ

Xγ ∈ E

)
dP
dP̃

= I
(

1
γ

Xγ ∈ E

)
exp
{
−(Xγ − γλ )⊤Σ

−1(a−λ )+
γ

2
(a−λ )⊤Σ

−1(a−λ )
}
.
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We thus find that

Ẽ(Z2) =
∫

x/γ∈E
exp{−2(x− γλ )⊤Σ

−1(a−λ )+ γ(a−λ )⊤Σ
−1(a−λ )}×

(2π)−d/2|γΣ|−1/2 exp
{
− 1

2γ
(x− γa)⊤Σ

−1(x− γa)
}

dx

=exp{γ(a−λ )⊤Σ
−1(a−λ )}×∫

x/γ∈E
(2π)−d/2|γΣ|−1/2 exp

{
− 1

2γ
(x− γ(2λ −a))⊤Σ

−1(x− γ(2λ −a))
}

dx

=exp{γ(a−λ )⊤Σ
−1(a−λ )}P

(
1
γ

Xγ ∈ E

)
,

as claimed.

For simplicity, from now on we consider a special case where E = {x ∈ Rd : x ≥ a} for some a > λ .
Here, ≥ and > denote elementwise comparison. Clearly, a is the minimum rate point or maximum density
point in E , so we consider choosing the IS measure as the exponential tilting to the point a. As shown
later in Theorem 1, the resulting IS estimator is asymptotically optimal when d is fixed. We note that this
special case can be easily generalized to {x ∈ Rd : Bx ≥ b} where B is a matrix (not necessarily square),
BΣB⊤ is positive definite and b > Bλ . In the following lemma, we derive an expression for the probability
that a Gaussian vector 1

γ
Xγ falls in the set E .

Lemma 2 Suppose we want to estimate p=P(1
γ
Xγ ≥ a). Here, γ ∈R is the rarity parameter, Xγ ∼N(γλ ,γΣ),

λ ∈ Rd , Σ ∈ Rd×d is positive definite, a ∈ Rd and a > λ . Denote si = e⊤i Σ−1(a−λ ) where ei denotes the
i-th column of the d ×d identity matrix. Then we have that

P
(

1
γ

Xγ ≥ a
)

=(2π)−d/2|Σ|−1/2
γ
−d/2

(
d

∏
i=1

si

)−1

exp
{
−γ

2
(a−λ )⊤Σ

−1(a−λ )
}∫

x≥0
exp
{
−1

2
x̃⊤Σ

−1x̃− x⊤1
}

dx

where x̃ denotes the vector such that x̃i = (
√

γsi)
−1xi for any x and 1 denotes d-dimensional all-ones vector.

Note that si is the i-th element of sa.

Proof. Using the proof of Lemma 7.1 in Bai et al. (2022) (with Y := 1√
γ
(Xγ − γλ ), Σ̃ := Σ, s̃ :=

√
γ(a−λ ),y∗ :=

√
γ(a−λ ), e⊤i Σ−1(a−λ )> 0 for any i = 1, . . . ,d and hence I = I1 = {1, . . . ,d}), we get

this result.

We note that although Lemma 2 is presented with Xγ ∼ N(γλ ,γΣ), it can also be easily applied to
the measure P in Lemma 1. Then by combining these results, we can analyze the relative error of the
exponentially tilted IS estimator as in the following theorem:
Theorem 1 Suppose we want to estimate p = P(1

γ
Xγ ≥ a). Here, γ ∈ R is the rarity parameter, Xγ ∼

N(γλ ,γΣ), λ ∈ Rd , Σ ∈ Rd×d is positive definite, a ∈ Rd and a > λ . Denote si = e⊤i Σ−1(a−λ ) where
ei denotes the i-th column of the d × d identity matrix. Consider IS estimator Z = I(1

γ
Xγ ≥ a)dP

dP̃ where
Xγ ∼ N(γa,γΣ) under P̃. Then we have that

Ẽ(Z2)/p2 = γ
d/2(

√
2π/2)d |Σ|1/2

(
d

∏
i=1

si

) ∫
x≥0 exp{−1

8 x̃⊤Σ−1x̃− x⊤1}dx

(
∫

x≥0 exp{−1
2 x̃⊤Σ−1x̃− x⊤1}dx)2
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where x̃ denotes the vector such that x̃i = (
√

γsi)
−1xi for any x and 1 denotes d-dimensional all-ones vector.

Suppose λmax and λmin are the maximum and minimum eigenvalues of Σ−1. Then we have that

Ẽ(Z2)/p2 ≤ γ
d/2(

√
2π/2)d |Σ|1/2

(
d

∏
i=1

si

)(
d

∏
i=1

γs2
i

γs2
i +λmax

)−2

and

Ẽ(Z2)/p2 ≥ γ
d/2(

√
2π/2)d |Σ|1/2

(
d

∏
i=1

si

)(
d

∏
i=1

4γs2
i

4γs2
i +λmax

)
.

Proof. From Lemma 1, we have that

Ẽ(Z2)/p2 = exp{γ(a−λ )⊤Σ
−1(a−λ )}P

(
1
γ

Xγ ≥ a
)
/P2

(
1
γ

Xγ ≥ a
)
.

Using lemma 2, we have

P
(

1
γ

Xγ ≥ a
)

=(2π)−d/2|Σ|−1/2
γ
−d/2

(
d

∏
i=1

si

)−1

exp
{
−γ

2
(a−λ )⊤Σ

−1(a−λ )
}∫

x≥0
exp
{
−1

2
x̃⊤Σ

−1x̃− x⊤1
}

dx.

Since a > λ , we also have a > 2λ −a. Thus, by applying Lemma 2 similarly (replacing λ with 2λ −a)
we get that

P
(

1
γ

Xγ ≥ a
)

=(2π)−d/2|Σ|−1/2
γ
−d/2

(
d

∏
i=1

2si

)−1

exp
{
−2γ(a−λ )⊤Σ

−1(a−λ )
}∫

x≥0
exp
{
−1

8
x̃⊤Σ

−1x̃− x⊤1
}

dx.

Thus, we get that

Ẽ(Z2)/p2 = γ
d/2(

√
2π/2)d |Σ|1/2

(
d

∏
i=1

si

) ∫
x≥0 exp{−1

8 x̃⊤Σ−1x̃− x⊤1}dx

(
∫

x≥0 exp{−1
2 x̃⊤Σ−1x̃− x⊤1}dx)2

.
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First, we know that∫
x≥0

exp
{
−1

2
x̃⊤Σ

−1x̃− x⊤1
}

dx ≤
∫

x≥0
exp
{
−1

2
λminx̃⊤x̃− x⊤1

}
dx

=
∫

x≥0
exp

{
d

∑
i=1

(
−λmin

2γs2
i

x2
i − xi

)}
dx

=
d

∏
i=1

∫
∞

0
exp

{
−λmin

2γs2
i

(
xi +

γs2
i

λmin

)2

+
γs2

i

2λmin

}
dxi

=
d

∏
i=1

exp
{

γs2
i

2λmin

}√
2πγs2

i
λmin

Φ̄

√ γs2
i

λmin


≤

d

∏
i=1

exp
{

γs2
i

2λmin

}√
2πγs2

i
λmin

1√
γs2

i
λmin

1√
2π

exp
{
− γs2

i

2λmin

}
= 1,

where Φ̄ denotes the tail distribution function of the standard normal distribution. Next, we know that∫
x≥0

exp
{
−1

2
x̃⊤Σ

−1x̃− x⊤1
}

dx ≥
∫

x≥0
exp
{
−1

2
λmaxx̃⊤x̃− x⊤1

}
dx

=
∫

x≥0
exp

{
d

∑
i=1

(
−λmax

2γs2
i

x2
i − xi

)}
dx

=
d

∏
i=1

∫
∞

0
exp

{
−λmax

2γs2
i

(
xi +

γs2
i

λmax

)2

+
γs2

i

2λmax

}
dxi

=
d

∏
i=1

exp
{

γs2
i

2λmax

}√
2πγs2

i
λmax

Φ̄

√ γs2
i

λmax


≥

d

∏
i=1

exp
{

γs2
i

2λmax

}√
2πγs2

i
λmax

√
γs2

i
λmax

γs2
i

λmax
+1

1√
2π

exp
{
− γs2

i

2λmax

}

=
d

∏
i=1

γs2
i

γs2
i +λmax

.

Similarly, we get that

d

∏
i=1

4γs2
i

4γs2
i +λmax

≤
∫

x≥0
exp
{
−1

8
x̃⊤Σ

−1x̃− x⊤1
}

dx ≤ 1.

Therefore we derive the bounds in the theorem.

When d is fixed and γ → ∞, in Theorem 1, we note that λ ,Σ,a,si,λmax,λmin are all constant values.
First, from the proof, we get that the large deviations probability p itself satisfies

p ≤ (2π)−d/2|Σ|−1/2
γ
−d/2

(
d

∏
i=1

si

)−1

exp
{
−γ

2
(a−λ )⊤Σ

−1(a−λ )
}
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and

p ≥ (2π)−d/2|Σ|−1/2
γ
−d/2

(
d

∏
i=1

si

)−1

exp
{
−γ

2
(a−λ )⊤Σ

−1(a−λ )
} d

∏
i=1

γs2
i

γs2
i +λmax

.

As d is fixed and γ → ∞, we see that p decays exponentially in γ as stated in the Gartner-Ellis theorem,
but in addition to the exponential term, there is also a power rate γ−d/2, so it decays even faster when d
is larger. Moreover, the lower and upper bounds of Ẽ(Z2)/p2 both grow in the order of γd/2, which is
polynomial in γ . When d is large, although this growth rate is still subexponential, it could be fast in terms
of γ .

3.2 When Dimension Grows with the Rarity Parameter

Furthermore, if we allow the dimension d to change, the situation would be more complicated to handle, as
the relationship between the relative error and the dimension d also depends on how the problem parameters
λ ,Σ,a change with d. To obtain some insights, we consider the following simple example:
Example 1 Consider the setting in Theorem 1 with λ = 0, Σ is the identity matrix, and a = x1 for some
x > 0. In this case, we actually have that

p = Φ̄
d(
√

γx2)

and by applying Lemma 1, we have that

Ẽ(Z2) = exp{γa⊤a}Pd(N(−x,1/γ)≥ x) =
(

exp{γx2}Φ̄(2
√

γx2)
)d

.

Therefore, we get that

Ẽ(Z2)/p2 =

(
exp{γx2}Φ̄(2

√
γx2)

Φ̄2(
√

γx2)

)d

.

As mentioned before, when d is fixed and γ → ∞, we have that

p = (2π)−d/2
γ
−d/2x−de−dx2γ/2(1+o(1))

and that

Ẽ(Z2)/p2 =

(√
2πγx
2

)d

(1+o(1)).

That is, the decay rate of p in γ also depends on d, and the growth rate of Ẽ(Z2)/p2 is γd/2, which is fast
when d is large even though it is not exponential. When γ is fixed and d → ∞, p decays exponentially in
d. Moreover, the relative error is also exponential in d, and the growth rate depends on the values of γ

and x. Even when γ and x are very close to 0, we still have that

Ẽ(Z2)/p2 =

(
exp{γx2}Φ̄(2

√
γx2)

Φ̄2(
√

γx2)

)d

≈
(

exp(0)Φ̄(0)
Φ̄2(0)

)d

= 2d .

Specifically, we have that

lim
d→∞

log Ẽ(Z2)

log p
= lim

d→∞

dγx2 +d logΦ̄(2
√

γx2)

d logΦ̄(
√

γx2)
=

γx2 + logΦ̄(2
√

γx2)

logΦ̄(
√

γx2)
,

which can be strictly less than 2 (e.g., consider γ,x ≈ 0) and violate the “asymptotic optimality” condition.
In fact, under the IS measure, the probability of hitting the rare-event set is 2−d , which is small. In this
sense, the curse of dimensionality arises in this example.

382



Bai, Dieker, and Lam

4 CONCLUSION AND DISCUSSION

In this paper, we mainly analyze a specific example to understand how the problem dimensionality affects the
efficiency of the “asymptotically optimal” exponentially tilted IS estimator. In the literature, the estimator is
often considered efficient if the relative error grows only subexponentially in the rarity parameter. However,
we demonstrate that in the high-dimensional case, even though the growth rate is polynomial in the rarity
parameter, this polynomial has a high degree, so the resulting relative error can still be large and the IS is
inefficient. Moreover, even if we let the problem scale with the dimension in a reasonable way, the relative
error potentially grows exponentially in the dimension.

We plan to pursue several future directions. First, we would like to extend this investigation to other
setups than box-type rare-event sets to understand how general are the insights gained from this paper.
Second, while AI-driven problems serve as a general motivation for our investigation, we aim to find more
concrete applications where high dimensionality as discussed in this paper is indeed the driving rarity
factor. Third, we will study whether other types of estimators, such as strongly efficient estimators, can
remain efficient in high dimensions. Fourth, given that dimensionality can now demonstratably deteriorate
efficiency in addition to the rarity parameter, it would be interesting to obtain estimators that can balance
both in some suitable sense. That is, a future goal is to obtain efficient rare-event estimators that can
remedy the curse of dimensionality discovered in this paper.
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