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ABSTRACT 

Our objective is to show how the hierarchy of system specifications and morphisms affords a framework 
that supports modeling and simulation of mind/brain in a coherent manner.  Such a framework provides a 
credible path for simulation/implementation of cognitive behavior at the level of neurons and neuronal 
compositions. Here we characterize this methodology and use it to  extend the set of DEVS building blocks 
and architectural patterns within complex decision trees and advanced classifier implementations as DEVS 
coupled models.  Such a methodology offers insight into the way real brains realize cognitive behaviors 
and can improve upon current hardware architecture to support simulation/implementation of neuromorphic 
designs that comply with physiologically based brain network properties and constraints.  

1 INTRODUCTION 

With the increased availability of brain experimental data at increasingly granular levels and the growing 
computational technologies to process them, the challenge persists to connect such observations to behavior 
at the cognitive level. A framework is needed that supports modeling and simulation (M&S) in a consistent 
manner that links knowledge gained at all levels of structure and behavior and enables knowledge gained 
at any level to contribute to relevant knowledge residing at levels above or below. This entails a 
computational bridge (Carandini 2012) between models at the level of neural circuits and those at the level 
of cognitive behavior that supports experimental investigation of cognitive behaviors and modeling them 
in abstraction stages by biologically plausible networks in brain structures (Petersen and Sporns 2015). 
Such a framework is a family of models and pair-wise mappings that provide a credible path for neural-
based mechanistic generation of cognitive behavior. The bridge is bi-directional in that constraints 
established on behaviors at higher levels induce mapped constraints at the lowest level and vice versa.  
 Currently there is no generic bridge between neural and cognitive levels – there are only some examples 
of such a computational mapping in specific contexts and there are very few attempts to associate well-
known or newly discovered cognitive behaviors with neural level structures on a causal foundation. For 
example, monkeys’ reaction times in a forced-choice motion task (O'Connell et al. 2018) were 
experimentally observed to be correlated with increased spike activity of lateral intraparietal cortical 
neurons. Here a succession of models (Wong and Wang 2006)  representing valid simplifications to a final 
reduced two-variable neural model was shown to offer a simple and biophysically plausible mechanistic 
explanation for the observed reaction time characteristics. However, currently this is a rare instance in 
which a full model chain was created between structure and behavior. Moreover, there is no easy 
generalization to other examples. Our ultimate goal is to develop a methodology to create such 
computational bridges to help suggest experiments that causally link  the activity of local neuronal circuits 
with observations at cognitive behavior levels.  
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 A spinoff of the bridging methodology is implementation of formally specified cognitive behavior in 
biologically inspired  (Feinerman, Rotem and Moses, 2008). and other hardware (Adegbija 2022). This can 
be accomplished in a manner similar to the realization theory for implementing finite state machines in 
logic nets built with hardware primitives. by the algebraic structure theory of sequential machines and 
Krohn-Rhodes decomposition theory. This realization theory is based on systems modeling and simulation 
theory (Stearns and Hartmanis 1966, Krohn and Rhodes 1965) as expressed in the Discrete Event System 
Specification (DEVS) formalism (Zeigler,  Muzy, and Kofman 2018).  

2 BACKGROUND 

DEVS has been used to model cognitive behavior and has been used to build cognitive architectures 
(Douglass and Mittal 2013).  Zeigler (2021) presented concepts for building blocks and  architecture 
coupling patterns  drawn from the cognitive science literature, particularly, the fast, frugal and accurate 
paradigm (Gigerenzer  and Goldstein, 2000) for applications intelligent cyberphysical  system design. The 
proposed concepts are formulated with the discrete event abstraction embodied in the DEVS formalism and 
its extensions to hybrid modeling and simulation (Zeigler 2020) that are increasingly being adopted as the 
preferred approach to hybrid (continuous and discrete) cyberphysical  system design (Castro 2019). 
Building blocks and architectural patterns that can be replicated and reused in system development are 
intended to accelerate this adoption. In this paper, we place this methodology within the broader framework 
of the levels of system specification and confirm its utility by using it to identify additional primitives and 
architectural coupling patterns that help to understand and design intelligent cyberphysical systems. With 
this capability established, we go on to compare this approach with those of other prominent theories of 
mind. 

Our methodology can be described along the following dimensions: 
• Use of system specification hierarchy and associated morphisms. The levels of system 

specification range from lowest level behavior specification to highest level structural specification 
(Zeigler,  Muzy and Kofman 2018; Mittal and Zeigler 2014). Corresponding to each system 
specification level  is a morphic relation appropriate to a pair of systems specified at that level.  
Morphisms at each level are defined such that  a morphism which preserves the structural features 
of one system in another system at one level also preserves its features at all lower levels. The 
morphisms at the I/O Function and State Transition levels are the ones that underlie the minimal 
realization and homomorphic image concepts supporting the quest for minimal forms mentioned 
earlier. We provide an example of the application of the minimal realization and levels of system 
specification in Section 3.2. 

• Development Method. We seek to develop models and potential primitive components and 
coupling patterns as illustrated in Zeigler (2021).  To do this, we try to define cognitive behaviors 
as I/O System Functions at the lower levels of the system specification hierarchy. We then seek 
minimal realizations and computationally feasible implementations. Finally, we try to validate the 
latter via proofs and DEVS simulations. Our choice of behaviors is motivated by the desire to come 
up with, and define, building blocks and architectural coupling patterns for ubiquitous, composable, 
and reusable application. 

• Minimal forms. In line with the hoary dictum of philosophy, Occam’s razor, we seek explanations 
of behavior that contain only those assumptions that are necessary to the explanation. However, the 
minimal realizations that we seek are based on concepts formulated in mathematical systems theory 
derived from both linear systems theory and finite automata theory (Zeigler 2021). Proving that a 
realization of a behavior is minimal in this sense implies that it is a homomorphic image in relation 
to any implementation of the same behavior.  Moreover, definitions for state-based realization of 
cognitive behaviors based on mathematical system theory and DEVS fundamentally include 
temporal and probabilistic characteristics of neuron system inputs, state, and outputs (Zeigler,  
Muzy and Kofman 2018). Moreover, they provide a solid system-theoretical foundation and 
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simulation modeling framework for the high-performance computational support of intelligent 
cyberphysical systems.   

• Network construction. The hierarchy of system specifications includes levels for definition of 
networks of components with coupling specification. This is exemplified by the DEVS coupled 
model definition with its well defined coupling specification. The proof of closure under coupling 
shows how resultant networks are equivalent to basic models, and can be treated as such in 
hierarchical construction. 

• Model formalism for Simulation and Design. DEVS enables formal and complete description of 
hybrid model components and subsystems. DEVS-based software tool sets provide atomic model 
and hierarchical coupled model specifications that support graphical description of the internals 
and interfaces of component behavior combining energy, material, and information flows. The 
hybrid DEV&DESS (Zeigler,  Muzy and Kofman 2018) formalisms enable expressing differential 
and algebraic equations for energy-related internal variables intermixed with discrete behavior 
described in state-based system form. Finally, transparent implementation of the canonical DEVS 
abstract simulator for handling events and equations enable design of dedicated simulation 
functionality. 

These dimensions were selected after examining the alternative theories to be compared with the proposed 
levels of systems specification approach. They are intended to help identify the most important ways in 
which the theories differ and discern the consequences for arriving at the “best” understanding  possible. 

3 DEVS DECISION BEHAVIOR USE CASE  

We now apply the methodology to  extend the set of DEVS building blocks and architectural patterns 
based on minimal realizations and the levels of system specification developed earlier (Zeigler 2021).   
Our approach to establishing that a model is a minimal realization of a given cognitive behavior is to start 
by specifying the behavior as a system at the I/O behavior level. This requires us to: 

1. Define the behavior formally as a function mapping input segments to output segments  
2. Seek a DEVS model at the state description level that generates the defined behavior. This 

amounts to associating the state description to the original i/o system description. 
3. Try to show that the state description is a minimal realization of the behavior: the state level 

description sets up the design of a network equivalent which amounts to a specification at 
the coupled component level of systems specification  

4. Try to prove that the network is homomorphic to the established minimal realization. 
Alternatively, validate that it generates the required behavior by direct simulation.  

 
The network form is typically closer to potential plausible biological implementations and the established 
minimality of realization allows to claim that the latter realizations must be a homomorphic image of any 
such realization. Please refer to  Chapter 16 of (Zeigler,  Muzy and Kofman 2018) for a detailed 
exposition of system realization theory. 

 

Figure 1: A primitive miniature-brained organism which can sense the size of a large oncoming object in a) 
and in later evolution, can distinguish between both large and small objects (b)). 
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 DEVS abstractions attempt to capture many features of biological neurons that are not represented in 
conventional artificial neural networks and  try to exploit these capabilities to perform intelligent control 
tasks (Vahie 2000).  We demonstrated how a “one-spike per neuron” architecture employs a temporal, 
rather than firing rate, code for propagating information through neural processing layers. Here a winner-
take-all decision is made by the arrival of the first spike at an output actuator – subsequent later arrivals are 
blocked from affecting the output.  In this paper, we apply the same approach to slightly more complex 
spikes which carry magnitude information and support choices based on such magnitudes. We can imagine 
a primitive miniature-brained organism which can sense the size of an oncoming object. Then, as in Figure 
1a it is able to react to a large enough size by running away but lacks the ability to respond otherwise.  
In later evolution, such an organism might be able to distinguish between both large and small objects, 
considering the small instance as something to eat (Figure 1b). In other words, the single output event 
(respond/non-respond) is a more primitive form of decision making than the common binary choice with 
two distinct alternative output events. These elementary decision forms are depicted as I/O functions in 
Figure 2.  In the first case  (a), an arrival of a spike with value x, exceeding a threshold, Th causes an output, 
Yes, at some time later, while the arrival of sub-threshold spike results only in a null event.  In contrast, 
Figure 2b models a binary decision element with the arrival of a sub-threshold spike causing an output of 
No some time later. Figures 2c and 2d sketch minimal DEVS atomic models that realize the I/O functions 
depicted in 2a and 2b, respectively. We omit the proof of realization and minimality in these examples as 
they follow the pattern discussed by Zeigler (2021). 
 Notice that the primitive Yes/null  behavior and its state system realization models the functionality of 
a spiking neuron (Gautrais and Thorpe 1998). Such neurons generate a spike when their membrane potential 
reaches the threshold but are incapable of generating different outputs for  individual sub-threshold inputs. 

Appendix A discusses a DEVS coupled model with two components to realize the binary choice Yes/No.   
The model shows how to extend the Yes/null behavior associated with a single neuron to obtain the 

needed No output functionality.  Given the limitation of single neurons, we infer that evolution needed to 
move in the direction of either constructing more complex neurons or enabling neurons to collaborate to 

Figure 2: Elementary decision forms depicted as I/O functions and state minimal realizations. 
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implement the Yes/No binary decision behavior. Such a step would also lead to reuse of the model  as a 
building block in the form an iterative decision tree illustrated in Figure 3a.  

Here, the action of eating is no longer unconditional — it has been restricted to soft objects as 
determined from a test of edibility with the alternative leading to avoidance of the object.  The 
implementation of  such a tree is depicted in Figure 3b with a DEVS network model with components 
taking the form of magnitude-based binary decision elements and  a coupling pattern that is similar to that 
described for finite state acceptor network realizations Zeigler (2021).  We dive deeper into this 
development in the next section. 

3.1 Random Forests 

Random Forest classifiers are the products of a popular machine learning approach to training and 
deploying tools that can predict, for example, whether a smartphone has been infected by malware. The  
Random Forest technique is an ensemble supervised classifier trained on large feature datasets with the 
goal of  classifying applications as malicious or benign based on performance, memory and other attributes 
that are easily observed (Alam and Vuong 2013). The detection accuracy depends on free parameters of the 
Random Forest algorithm such as the number of trees, and depth of each tree and number of random features 
selected. More detail on Random Forest classifiers can be found in the Wikipedia article 
https://en.wikipedia.org/wiki/Random_forest. From the DEVS perspective, a forest is a coupled model with 
decision tree components, such as depicted in Figure 3b, coupled in parallel.  The DEVS building blocks 
and coupling pattern discussed earlier enable DEVS implementation of  such coupled models for both 
simulation and real-time application. Appendix B discusses such an implementation. 

Figure 3: Decision tree iterating the Yes/No decision element and its implementation. 
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3.2 Summary of DEVS Decision Realization Results 

The above discussion results in a complexity ranking of decision behavior primitives: 1) First-arrival, 2) 
Yes/null, and 3) Yes/No.  While First-arrival requires only all-or-none event messages, the latter, more 
complex, elements require event messages with magnitude information. Moreover, the more complex form 
of such magnitude-based elements requires two distinct output ports for the Yes/No alternatives.  Further, 
in the iterated form of decision tree structure, exemplified by the Random Forest architecture, we need to 
add  activation ports to atomic models so that the output decisions flowing from parent to children are 
differentially propagated. the Random Forest architecture represents an existence proof for the meaningful 
application of the DEVS neuromorphic primitives and coupling patterns to implement cognitive behavior. 

The use of the hierarchy of system specifications and morphisms in this application is summarized in 
Table 1. 

 

Table 1: Levels of system specification and morphisms in the DEVS Decision Primitives. 

Level Specification 
Name 

DEVS Decision Primitive 

0 Observation Frame Input: event message with positive real value 
Output: event message occurring on one (Yes/null) or two 
(Yes/No) ports (Figure 2) 

1 I/O Behavior Event occurrence on input may result in output on a port 
(Figure 2a,b) 

2 I/O Function Event occurrence on input may result in output on a port 
depending on magnitude relation to threshold (Figure 
2a,b) 

3 State Transition Minimal realization of the I/O Function determines the 
minimum number of states and their transitions/output 
required to realize the function (Figure 2c,d) 

4 Coupled 
Component 

One or more network implementations of the minimal 
realization with components that are reusable building 
blocks using architectural coupling patterns (Figure 3) 

 

4 CONTRAST WITH CURRENT THEORIES OF MIND 

In the sequel, we attempt to contrast the level of system specification based bridging approach with three 
approaches to developing a theory of mind representing today’s state-of-the-art. 
The first approach is that taken by chief founder of Artificial Intelligence, Marvin Minsky’s Society of 
Mind (Minsky  1986). This work is full of insights into how such a theory would work but is not presented 
in a formal manner. We discuss it here for the complexities that it reveals and the contrast that it suggests 
with our formal levels of systems specification approach. Mind is conceived as a collection of agencies 
hierarchically constructed, with agents at the lowest level capable of simple “mindless” functions. Minsky 
lays out the difficulties encountered in reconstructing cognitive behavior from primitives, emphasizing the 
combinatorial explosion of interactions: “First we will have to understand how brain cells work. This will 
be difficult because there are hundreds of different  types of brain cells. Then we'll have to understand how 
the cells of each type interact with the other types of cells to which they connect. There could be thousands 
of these different kinds of interactions. Then, finally, comes the hardest part: we'll also have to understand 
how our billions of brain cells are organized in societies.” To make progress in such decomposition and 
reconstruction will require many new theories and organizational concepts that lay out the principles of  
how societies of parts can accomplish what those parts cannot do separately. He suggests that exploiting 
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knowledge from evolution is essential in that “the more we can find out about how our brains evolved from 
those of simpler animals, the easier that task will be.” 

4.1  Contrast with Minsky’s Society of Mind  

With this as background, Table 2  summarizes Minsky’s theory of society of mind along the dimensions of 
the methodology advocated  in Section 1. Some basic contrasts between the two approaches are included 
in the last column to illustrate aspects of the levels of system specification approach. 

Table 2: Contrast of Minsky’s approach to society of mind with the proposed methodology. 

Aspect of 
methodology 

Relation to Minsky Society of Mind Contrast with levels of system 
specification bridging methodology 

Use of system 
specification 
hierarchy and 
associated 
morphisms 

No specific mention is made. The complexities that Minsky lays 
out may be better managed with an 
ordered framework to relate models 
of agents and agencies at different 
levels of organization. 

Development 
Method  

Attempt to formulate principles of 
emergence, development, and coordination 
of agencies – assemblies of parts 
considered in terms of what they can  
accomplish as units, without regard to what 
each of the parts does by itself. Exploit  
knowledge of evolution to go from simple 
to complex. One principle of agency 
interaction is that of limited modularity 
called “insulation” relative to siblings but 
not parents.  

Focuses on tasks and their 
accomplishment as opposed to the 
formulation of I/O behavior and their 
system realization. 

Minimal forms Attempt to identify agents as opposed to 
hierarchical collection of agents, called 
agencies: Any part or process of the mind 
that by itself is simple enough to 
understand. Agents occupy one of two 
states (arousal, quiescent). 

Criterion for atomic entities (agents) 
is subjective (ability to be 
understood) as opposed to minimality 
of state realization. 

Network  
construction 

As indicated, hierarchical construction 
involving agents and agencies The 
architecture of a mind-society must 
encourage the formation and maintenance 
of distinct levels of management by 
preventing the formation of connections 
between agencies whose messages have no 
mutual significance (insulation).   

Criteria for society of mind 
architecture as opposed to criteria for  
well-defined and repeatable 
simulation compositions. 

Model 
formalism for 
Simulation and 
Design 

As Minsky indicates, theories need to be 
specified clearly enough to enable 
simulation and will require high intensity 
computation with capacity and speed to 
simulate enough agents. 

Support for model continuity through 
stages of development including 
hardware realization viz., 
neuromorphic architectures. 
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4.2 Contrast with Approaches of Grossberg and Wang 

Grossberg (2021) summarized a long history of research aimed at developing a unified theory that links 
mind and brain. He outlined the main design principles, mechanisms, circuits, and architectures that show 
how psychological functions arise as emergent properties of brain mechanisms. As an example, Adaptive 
Resonance Theory, a core model, shows how advanced brains learn to attend, recognize, and predict objects 
and events in a changing world that is filled with unexpected events. He also asserts that a theory of this 
kind may be useful in the design of autonomous adaptive agents in engineering and technology.  
 A very broad formulation of the problem of bridging cognitive and neuron circuit levels is found under 
the rubric of cognitive informatics, a discipline concerned with applying information technology and 
computer science to solve challenges in neuroscience. Wang (2003), a main proponent, presents a set of 
theories and mathematical models to explore natural and computational intelligence. A wide range of 
applications of cognitive informatics theory includes cognitive computers, cognitive properties of 
knowledge, simulations of human cognitive behaviors, cognitive complexity of software, autonomous agent 
systems, and computational intelligence.  
 Table 3 compares the approaches of Grossberg and Wang with the levels of system specification 
methodology along the dimensions identified earlier. In overview, Grossberg and Wang differ 
fundamentally in their preferred formalisms, with Grossberg committed to systems of differential equations 
as the only way to construct models while Wang sees mind as an advanced form of software executed in 
real time.  Both construct complex networks using component abstractions that are quite removed from 
neuronal details. This leaves the gap between cognitive behavior and neuron level circuits open to question. 
Grossberg’s Method of Minimal Anatomies expresses a working approach to model development consistent 
with accepted philosophical and scientific principles. However, it fails to enjoy the specific structural 
uniqueness properties that can be inferred from minimal realization theory. 

Table 3: Comparison of the approaches of Grossberg and Wang with the proposed methodology.  

Aspect of 
methodology 

Grossberg Wang 

Use of system 
specification 
hierarchy and 
associated 
morphisms 

No specific mention is made. No specific mention is made. 

Development 
Method  

Construct minimal anatomy models 
that demonstrate evolutionary 
success; validate via analysis and 
simulation 

Mathematical abstraction, symbolic 
reasoning, and formalism rigorously 
model the cognitive process of problem 
solving in order to enable machine 
simulation of the human cognitive 
process. 

Minimal forms Method of Minimal Anatomies - a 
mathematical model embodies the 
psychological principles using 
the simplest possible differential 
equations. The first task of the 
mathematical model is to explain and 
predict a lot more behavioral data 
than were used to derive it. 

No specific mention is made. 
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Network  
construction 

Functional units are not individual 
cells, but rather whole networks of 
cells. Equations are used to define 
a somewhat larger number of 
modules, or microcircuits that can 
carry out different functions within 
each modality (vision, audition, 
cognition). Modal architectures 
connect module equations, via 
informal unspecified coupling of 
differential equations.  

A meta-process serves as a basic building 
block for modeling software behaviors. 
Complex processes can be composed 
from meta- processes using process 
relational operations.  
in the context of real-time software 
behaviors. 

Model formalism 
for Simulation 
and Design 

Asserts that any minimal 
mathematical model that is capable of 
realizing proposed design principles 
in real time requires systems of 
differential equations 

Real-time process algebra (RTPA) 
provides a coherent notation system and a 
formal engineering methodology for 
modeling both software and intelligent 
systems. RTPA can be used to describe 
both logical and physical 
models of systems, where logic views of  
the architecture of a software system and 
its operational platform can be described 
using the same set of notations.  

5 DISCUSSION AND CONCLUSION 

The hierarchy of system specifications and morphisms affords a framework that supports modeling and 
simulation in a consistent manner that links knowledge gained at all levels of structure and behavior. This 
methodology seeks to computationally bridge models at the level of neural circuits and those at the level of 
cognitive behavior. Such a framework is a family of models and pair-wise mappings that provide a credible 
path for neural-based mechanistic generation of cognitive behavior. We demonstrated the application of 
this methodology to  extend the set of DEVS building blocks and architectural patterns based on minimal 
realizations and the levels of system specification developed earlier. We illustrated our approach to 
establishing minimal realizations of given cognitive behaviors is to DEVS decision behaviors, showing 
how it helped us to distinguish between Yes/null and Yes/No decision elements and their use within 
complex decision trees and advanced classifier implementations as DEVS coupled models. Prior work by 
Mittal and Zeigler (2014) developed an attention-focusing architecture for building intelligent systems 
including sampling algorithms based on winner-take-all formulated in DEVS. Going beyond the basic 
building blocks discussed so far, it allows a new sensor activity to break through an existing activity matrix.   
An interesting open question is how to relate such more complex models to the minimal realizations 
discussed here. Also, in continued research, we aim to apply this approach to attempts to measure individual 
neuronal firing patterns and their relation to information coding in network compositions (Pryluk 2019; 
Ballesta 2022).  

Considering the information flows themselves lead us to examine the form of messages sent/received 
by the components and the corresponding types of the inputs and output ports. As examples of such 
considerations, neuromorphic hardware implementations of spiking neuron nets have to make such 
architectural choices in order to tradeoff processing capability with energy consumption and design 
complexity (Adegbija 2022). The proposed methodology has the potential to support computational tools 
that enable compositions of well-defined simplification operations from cognitive behavior to neural level 
realization. Temporal constraints that flow in both directions – in both structure-to-behavior and reverse – 
are uniquely enabled by the DEVS formalism. Current state-of-the-art employs neuromorphic primitives 
that do not necessarily comply with physiologically based brain network properties/constraints and do not 
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require the simplification stages required when mapping onto cortical/sub cortical networks. As a result 
they offer limited insight into the way real neural wetware realizes cognitive behaviors. In contrast, we seek 
to support experimental investigation of cognitive behaviors and modeling them in abstraction stages by 
biologically plausible networks in brain structures (Feinerman, Rotem and Moses 2008). Moreover, newly 
available experimentation technologies can be marshalled by transdisciplinary teams of biologists and 
computer scientists specifically brought together to test simulation models developed through the 
realization chains derived  (Mascart 2021).  

A APPENDIX: IMPLEMENTATIONS OF YES/NO WITH HOMOMORPHISM PROOF  

Figure 4 shows a DEVS coupled model in MS4 Me (Seo et al. 2013) with two components to realize the 
binary choice Yes/No.  One component realizes the Yes/null behavior associated with a single neuron, the 
other adds the needed No output functionality.  The  input X port is coupled to both the input X port of the 
Yes/No atomic model as well as the Activate port of the No atomic model. The latter sends the model to 
the Active state where it is scheduled to stay for a duration by its time advance (here 10). At the expiration 
of this time, a No output would be generated unless a DeActivate input sends the model back to its initial 
state. This input is generated only if the input crosses the threshold and outputs a DeActivate message 
simultaneously with the Yes output.  

To verify that the coupled model simulates the atomic model and therefore has the same behavior, we 
construct a mapping as defined in Table 4.  

Table 4: Mapping from Coupled to Atomic Realization of Yes/No Behavior. 

Model/State Coupled Yes/No Atomic Yes/No Output 
1 (passive,WaitForActivate) pass null 
2 (sendYes,Active) sendYes Yes 
3 (passive,Active) sendNo No 

 
To establish the mentioned simulation relation requires showing that the mapping is preserved under 

state transitions caused by all events both external and internal. For example, the state transition from state 
1 to state 2 in the table is caused by the external input of an above threshold input  in both models. We omit 
the technical details and refer the reader to (Zeigler,  Muzy and Kofman, 2018). 

B APPENDIX: IMPLEMENTATIONS OF RANDOM FOREST  

Figure 5a sketches a decision tree that constitutes a component in a Random Forest (Alam and Vuong 
2013).   

Figure 4: Realization of the Yes/No behavior using a DEVS coupled model with two components. 
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In a DEVS coupled model implementation, Yes/No atomic models populate the interior nodes, while simple 
atomic models generate the outputs at the leaves.  Each input feature connects to one or more interior nodes 
which tests its value against a threshold as implemented by the node’s Yes/No model.  

The assignment of input features and thresholds to nodes constitute the parameters of the tree and are 
determined in training against I/O data. As illustrated in Figures 5a,b, an Activate message is transmitted 
from parent to the child determined by threshold-based decision. The path of activation from root to leaf 
constitutes the decision computation of the tree. Two implementations are possible. In the standard form. 
after receiving the external input, nodes wait to be activated by their parent and proceed to compute the 
threshold comparison. In the second form, after receiving external input, all nodes compute the threshold 
comparison concurrently. This is possible because the threshold only depends on the input and the 
preassigned computations that are not on the activation path are “wasted”. Nodes then wait for parental 
activation before propagating their own activation. In this form, they  take the maximum time of any one. 
In the standard form, computations are only made on the activation path but the sequential process takes 
the sum of the individual times on this path. In brief, let the depth of a tree = d, the node time of computation 
= 𝑡𝑐 , and the node time of activation = 𝑡𝑎 . Then the computation time for the standard (sequential) 
implementation is 𝑇𝑆 =  𝑑(𝑡𝑐 + 𝑡𝑎) , and the computation time for the Parallel implementation 
is  𝑇𝑃 =  𝑡𝑐 + 𝑑𝑡𝑎 , because all computations are performed concurrently. The speedup is then  𝑇𝑆/  
𝑇𝑃 =  ~𝑑  where the node activation time is considered negligible compared to the computation time. The 
speedup of a forest is governed by the deepest tree if all of the trees report their decisions to generate the 
final output. This is a special case of sequential versus parallel simulation discussed by Zeigler (2017). A 
homomorphic proof of simulation similar to that of Appendix A is used to verify correct implementation 
of each processing method. 
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